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Abstract: Acetaminophen (APAP)-induced liver injury is a common hepatic disease resulting from
drug abuse. Few targeted treatments are available clinically nowadays. The flower bud of Rosa rugosa
has a wide range of biological activities. However, it is unclear whether it alleviates liver injury
caused by APAP. Here, we prepared an ethanol extract of Rosa rugosa (ERS) and analyzed its chemical
profile. Furthermore, we revealed that ERS significantly ameliorated APAP-induced apoptosis and
ferroptosis in AML-12 hepatocytes and dampened APAP-mediated cytotoxicity. In AML-12 cells, ERS
elevated Sirt1 expression, boosted the LKB1/AMPK/Nrf2 axis, and thereby crippled APAP-induced
intracellular oxidative stress. Both EX527 and NAM, which are chemically unrelated inhibitors
of Sirt1, blocked ERS-induced activation of LKB1/AMPK/Nrf2 signaling. The protection of ERS
against APAP-triggered toxicity in AML-12 cells was subsequently abolished. As expression of
LKB1 was knocked down, ERS still upregulated Sirt1 but failed to activate AMPK/Nrf2 cascade or
suppress cytotoxicity provoked by APAP. Results of in vivo experiments showed that ERS attenuated
APAP-caused hepatocyte apoptosis and ferroptosis and improved liver injury and inflammation.
Consistently, ERS boosted Sirt1 expression, increased phosphorylations of LKB1 and AMPK, and
promoted Nrf2 nuclear translocation in the livers of APAP-intoxicated mice. Hepatic transcriptions of
HO-1 and GCLC, which are downstream antioxidant genes of Nrf2, were also significantly increased
in response to ERS. Our results collectively indicated that ERS effectively attenuates APAP-induced
liver injury by activating LKB1/AMPK/Nrf2 cascade. Upregulated expression of Sirt1 plays a crucial
role in ERS-mediated activation of LKB1.
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1. Introduction

Acetaminophen (APAP) is a widely used non-steroidal anti-inflammatory drug world-
wide [1]. Overdose of APAP results in the accumulation of its toxic metabolites in the liver,
leading to intrahepatic oxidative stress, massive cell death, intense inflammatory reactions,
and ultimately severe liver damage [2]. The incidence of APAP-triggered liver injury, which
has become a common clinical liver disease caused by drug abuse, has elevated recently [3].
Without timely intervention, APAP-provoked liver damage may deteriorate into fatal liver
failure [2]. At present, N-acetyl cysteine (NAC) is mainly used to treat APAP-provoked
liver injury clinically. However, its therapeutic effects are generally not satisfactory [4–6].
Therefore, it is still necessary to search for new bioactive substances with the capacity to
alleviate liver injury triggered by APAP.
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Apoptosis is an important form of cell death [7] that plays a crucial role in APAP-
provoked massive cell death in the liver [8]. In hepatocytes, APAP increases expressions
of proapoptotic factor Bax and downregulates those of antiapoptotic factor Bcl-27. These
events further activate caspase cascades, including caspase-3, -8, and -9, ultimately leading
to cell apoptosis [9]. It has been reported that knockout of Bax or overexpression of Bcl-2
exerts inhibitory effects on APAP-induced liver injury [7,10]. Ferroptosis is a different
modality of cell death from apoptosis, characterized by iron-dependent lipid peroxida-
tion. During ferroptosis, levels of lipid peroxidation products, such as 4-HEN, MDA, and
LPO, are increased [11–13]. Recent studies unveiled close connections between hepatocyte
ferroptosis and APAP-provoked liver injury [14–16]. Suppressing the ferroptosis of hepa-
tocytes is implicated in the hepatoprotective activities of some natural products against
APAP [17–19].

Nrf2 is a transcription factor exerting positive regulatory effects on cellular antioxidant
capacity and has been widely identified as a therapeutic target for diseases related to
oxidative stress [20,21]. In a resting state, Nrf2 binds to the Keap1 protein and localizes in
the cytoplasmic matrix [21]. Intracellular oxidative stress results in conformational changes
of Keap1 and subsequent disassociation of Nrf2 from Keap1. Then, Nrf2 translocates into
nuclei and promotes transcriptions of its responsive genes such as HO-1 and GCLC. These
factors are beneficial for clearing intracellular reactive oxygen species (ROS) and elevating
antioxidative capacity [22]. Previous research unveiled that the sensitivity of animals to
APAP is negatively correlated with Nrf2 activity in the liver [16,23]. Similarly, hepatic
overexpression of Nrf2 effectively alleviates APAP-induced liver injury [24], and some
antioxidants, such as urolithin A, that are capable of increasing Nrf2 activity decline the
hepatotoxicity of APAP [25]. The findings above suggest that the potentiation of Nrf2 can
be a promising approach for intervening in APAP-triggered liver injury.

Nrf2 cascade is regulated by upstream signals such as LKB1/AMPK [26]. Activation
of AMPK promotes nuclear translocation of Nrf2 and potentiates Nrf2 [27]. Inhibiting
the catalytic activity of AMPK blocks Nrf2 potentiation mediated by some bioactive sub-
stances [28]. LKB1 catalyzes AMPK phosphorylation and activates AMPK, thereby inducing
Nrf2 translocation into nuclei and initiating transcriptions of its downstream genes [26].
Sirt1 is a protein deacetylase that promotes mitochondrial biogenesis and ATP synthesis by
catalyzing the deacetylation of some of its target proteins. In most cells, Sirt1 has the func-
tion of promoting cell proliferation, antagonizing oxidative stress, and inhibiting cell death.
APAP intoxication is accompanied with decreased Sirt1 in the liver, and the activation of
Sirt1 is conducive to the amelioration of APAP-induced liver injury [29,30]. Mechanistically,
Sirt1 plays a crucial role in regulating the activity of LKB1/AMPK [26,31]. It is widely
accepted that Sirt1 promotes LKB1 phosphorylation, which activates LKB1 and its down-
stream events [31]. Knockout of Sirt1 cripples phosphorylations of LKB1 and AMPK [32].
In myocardial cells, enhancing Sirt1/LKB1 interaction activates the LKB1/AMPK axis [31].
In mast cells, the knockdown of Sirt1 eliminates LKB1/AMPK activation triggered by
tanshinone IIA [33]. In the liver, a decrease of Sirt1 inhibits Nrf2 activity, exacerbating
APAP-induced oxidative stress and liver injury [34,35]. The aforementioned observations
indicate that Sirt1 has the potential to activate Nrf2 via LKB1/AMPK, thereby exerting
hepatoprotective effects against APAP.

Rose (Rosa rugosa) constitutes a commonly used herbal medicine with a wide range of
biological activities, especially in its dried flower buds. It boosts expressions of antioxidant
enzymes and inhibits lipid peroxidation in livers [36]. It also improves hepatic lipid
metabolism via modulating AMPK [37]. However, it is currently unclear whether rose has
the capacity to alleviate APAP-induced liver injury and modulate hepatic Nrf2 signaling.
Thus, we prepared an ethanol extract of Rosa rugosa (ERS), analyzed its characteristic
chemical components, evaluated the protective effects of ERS on APAP-induced liver injury
in mice, and explored the underlying molecular mechanisms.



Molecules 2023, 28, 7307 3 of 18

2. Results
2.1. The Chemical Profile of ERS

As clarified previously, polyphenols are the active ingredients in ERS [37–39]. We
showed that the total polyphenol content in ERS was 47.3%. Five active polyphenols, in-
cluding gallic acid, Di-O-galloyl-HHDP-glucoside, quercetin-3-O-sophoroside, kaempferol-
3-O-sophoroside, and ellagic acid, were identified in ERS and analyzed quantitatively
using mixed standards of these compounds as references (Figure 1). Data of our chemical
composition exploration are comparable to those of previous reports [40–42], indicating
the reliability of the process to prepare and analyze ERS.
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Figure 1. Chemical composition analysis of ERS. (A,B) ERS (A) and mixed standards of characteristic
compounds in ERS (B) were analyzed by HPLC. (C) Contents of characteristic polyphenols in ERS
were determined by HPLC.

2.2. ERS Ameliorates APAP-Provoked Apoptosis and Ferroptosis in AML-12 Hepatocytes

We evaluated the cytotoxicity of the APAP and ERS on AML-12 hepatocytes using
CCK8 assay. The cytotoxicity of APAP elevated with the increase of its concentration
(Figure 2A), whereas the cytotoxicity of ERS was undetectable (Figure 2B). As shown by
LDH and CCK8 assays, ERS considerably reduced APAP-provoked cytotoxicity in AML-
12 hepatocytes, and the ameliorative effects of ERS were comparable to those of NAC
(Figure 2C,D). ERS-mediated protection against APAP was further confirmed by MTT assay
(Figure 2E). APAP stimulation led to apoptosis of AML-12 cells, which was dramatically
relieved by ERS (Figure 2F,G). The detection of intracellular iron, MDA, 4-HNE, and LPO
unveiled that ferroptosis occurred in response to APAP. ERS reversed APAP-induced
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ferroptosis in AML-12 hepatocytes (Figure 2H). The findings above indicated that ERS can
dampen APAP-mediated cytotoxicity in AML-12 hepatocytes.
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Figure 2. ERS ameliorated APAP-provoked apoptosis and ferroptosis in AML-12 hepatocytes.
(A,B) AML-12 hepatocytes were treated with the indicated concentrations of APAP (A) or ERS
(B) for 24 h, and then subjected to CCK8 assay. (C,D) AML-12 hepatocytes were incubated with ERS
(10 and 30 µg/mL) or NAC (10 mM) for 24 h. Then, cells were treated with 5 mM APAP for another
24 h. Finally, cytotoxicity was determined by LDH (C) and CCK8 (D) assay. (E–H) AML-12 cells were
incubated with ERS (10 and 30 µg/mL) for 24 h and treated with 5 mM APAP for another 24 h. Then,
cell viability was determined by MTT assay (E). Both MTT staining results (left) and statistical results
(right) were shown. Cell apoptosis was detected by caspase activity assay (F) and FACS (G). Cell
ferroptosis was detected by measuring related parameters such as iron, MDA, 4-HEN, and LPO (H).
# p < 0.05, ## p < 0.01, compared to cells treated by vehicle. * p < 0.05, ** p < 0.01, compared to cells
treated by APAP alone.

2.3. ERS Elevates Sirt1 Expression and Activates LKB1/AMPK/Nrf2 Axis in AML-12 Cells

Immunoblotting showed that ERS increased Sirt1 expression and phosphorylation of
LKB1 and AMPK in AML-12 cells (Figure 3A). ERS also promoted nuclear translocation
of Nrf2 (Figure 3A,B). Transcriptions of typical Nrf2-responsive genes, including HO-1
and GCLC, were thereby boosted (Figure 3C). Consistently, ERS crippled reductions of



Molecules 2023, 28, 7307 5 of 18

intracellular antioxidant capacity and elevations of ROS resulting from APAP intoxication
(Figure 3D,E). Collectively, our data indicated that ERS elevates Sirt1 expression and
potentiates LKB1/AMPK/Nrf2 antioxidant signing in AML-12 hepatocytes.
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Figure 3. ERS elevated Sirt1 expression and activated the LKB1/AMPK/Nrf2 axis in AML-12 cells.
(A–C) AML-12 hepatocytes were incubated with the indicated concentrations of ERS for 24 h. Then,
protein levels of intracellular Sirt1, phosphorylation of LKB1 and AMPK, and Nrf2 in nuclei were
detected by immunoblotting (A). Both immunoblotting images (left) and statistical results (right) were
shown. Nuclear accumulation of Nrf2 was also detected by confocal microscope. (B). Transcriptions
of HO-1 and GCLC were detected by real-time PCR (C). (D,E) AML-12 cells were incubated with ERS
(10 and 30 µg/mL) for 24 h, and challenged with APAP (5 mM) for another 24 h. Then, intracellular
antioxidative parameters including GSH, T-AOC, and SOD were determined (D). ROS were determined
by fluorescence staining (E, left) and fluorescence spectrophotometry assay (E, right). ##: p < 0.01,
compared to cells treated by vehicle (D,E). * p < 0.05, ** p < 0.01, compared to cells treated by vehicle
(A,C) or APAP alone (D,E).

2.4. Inhibition of Sirt1 Eliminates ERS-Mediated Potentiation of LKB1/AMPK/Nrf2 Axis

Inhibition of Sirt1 by EX527 resulted in an abrogation of ERS-mediated activation
of LKB1/AMPK (Figure 4A). Upregulations of Nrf2 in nuclei and transcription of HO-
1 and GCLC were, in turn, eliminated by EX527 (Figure 4B,C). NAM is another Sirt1
inhibitor whose chemical structure is unrelated to that of EX527. NAM also antagonized
the nuclear translocation of Nrf2 induced by ERS (Figure 4G). Additionally, both EX527 and
NAM reversed the protective effects of ERS on APAP-provoked cytotoxicity in AML-12
hepatocytes (Figure 4D–F,H). The aforementioned results indicated critical involvement of
Sirt1 in the hepatoprotective activity of ERS.
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Figure 4. Inhibition of Sirt1 eliminated ERS-mediated potentiation of LKB1/AMPK/Nrf2 axis.
(A–C) AML-12 cells were subjected to the indicated treatments. Then, phosphorylation of LKB1 and
AMPK was measured by immunoblotting (A). Transcriptions of HO-1 and GCLC were detected by
real-time PCR (B). Nuclear translocation of Nrf2 was detected by confocal microscope (C). (D–F) Cells
were subjected to the indicated treatments. Then, cytotoxicity (D), apoptosis (E), and ferroptosis (F) were
quantified. (G,H) AML-12 hepatocytes were subjected to the indicated treatments. Levels of Nrf2 in
nuclei were determined by confocal microscope (G). Cytotoxicity was quantified by LDH assay (H).
** p < 0.01, compared with the indicated control (cells treated with ERS and APAP, but no Sirt1 inhibitor).
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2.5. Knockdown of LKB1 Abrogates ERS-Mediated Activation of AMPK/Nrf2 Pathway

Then, we explored the roles of enhanced phosphorylation of LKB1 in ERS-mediated
potentiation of AMPK/Nrf2. We transfected siLKB1 into AML-12 cells and found that LKB1
expression was effectively knocked down by siLKB1 (Figure 5A). Knockdown of LKB1
abolished ERS-induced AMPK phosphorylation and subsequent Nrf2 nuclear translocation,
while upregulation of Sirt1 remained almost unchanged (Figure 5B,C). Additionally, the
protective effects of ERS on APAP-caused cytotoxicity in AML-12 cells were also eliminated
after transfecting siLKB1 (Figure 5D). These results collectively indicated that ERS activates
AMPK/Nrf2 antioxidant axis via promoting LKB1 phosphorylation. Upregulation of Sirt1
expression appears to be a key upstream event resulting in LKB1 phosphorylation.
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Figure 5. Knockdown of LKB1 abrogated ERS-mediated activation of AMPK/Nrf2 axis. (A) Effects of
transfecting siLKB1 on levels of LKB1 were evaluated by immunoblotting. (B,C) AML-12 cells were
subjected to the indicated treatments. Then, protein levels of Sirt1 and AMPK phosphorylation were
detected by immunoblotting (B). Levels of Nrf2 in nuclei were determined by confocal microscope.
(C). (D) Cells were subjected to the indicated treatment. Then, cytotoxic effects were determined by
LDH and CCK8 assay. ** p < 0.01, compared to the indicated control (cells transfected with si-Con
and treated with ERS and APAP).
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2.6. ERS Alleviates APAP-Caused Liver Injury in Mice

As detected by liver appearance, HE staining, liver index, and serum liver function
parameters, APAP-provoked liver injury was ameliorated by ERS (Figure 6A and Table 1).
Under APAP stimulation, hepatic levels of inflammatory factors were increased dramati-
cally. Likewise, hepatic levels of inflammation-related factors, such as iNOS and COX-2,
were significantly upregulated (Figure 6B). ERS significantly attenuated APAP-provoked in-
trahepatic inflammation responses (Figure 6B and Table 2). The findings above collectively
unveiled that liver injury resulting from APAP intoxication can be improved by ERS.

Table 1. Effects of ERS on mouse liver indexes and serum parameters of liver function.

Group ALT
(U·L−1)

AST
(U·L−1)

LDH
(U·L−1)

Liver Index
(%)

Normal 26 ± 5.2 38 ± 6.9 60 ± 10 5.0 ± 0.24
APAP 199 ± 58 ## 150 ± 23 ## 150 ± 27 ## 6.9 ± 0.28 ##

APAP + ERS
(50 mg/kg) 90 ± 10 ** 92 ± 15 * 110 ± 14 ** 5.8 ± 0.56 *

APAP + ERS
(100 mg/kg) 55 ± 8.7 ** 56 ± 12 ** 73 ± 14 ** 5.2 ± 0.23 **

Data are presented as mean ± SD (n = 8). ## p < 0.01, compared with the normal group. * p < 0.05, ** p < 0.01,
compared with the APAP model group. Liver index = Liver weight/whole body weight × 100%.

Table 2. Effects of ERS on hepatic levels of inflammatory factors in mice.

Group TNF-α
(pg/mg Prot)

IL-1β
(pg/mg Prot)

IL-6
(pg/mg Prot)

PGE2
(pg/mg Prot)

NO
(µM/mg Prot)

Normal 155.7 ± 11.6 204.4 ± 17.5 123.5 ± 17.5 231.6 ± 31.3 69.4 ± 12.2
APAP 475.5 ± 24.8 ## 307.4 ± 29.4 ## 301.5 ± 22.8 ## 586.3 ± 75.6 ## 142.7 ± 23.7 ##

APAP + ERS (50 mg/kg) 250.1 ± 17.1 ** 260.4 ± 32.4 ** 242.7 ± 10.3 ** 386.7 ± 54.3 ** 74.5 ± 9.8 **
APAP + ERS (100 mg/kg) 183.7 ± 10.5 ** 215.3 ± 36.7 ** 141.4 ± 12.4 ** 268.2 ± 23.4 ** 49.1 ± 8.7 **

Data are presented as mean ± SD (n = 8). ## p < 0.01, compared with the normal group. ** p < 0.01, compared with
the APAP model group.

2.7. ERS Reduces Hepatocyte Apoptosis and Ferroptosis in APAP-Intoxicated Mice

As shown by TUNEL staining and caspase activity assay, ERS obviously relieved
APAP-induced apoptosis in mouse livers (Figure 6B,C). Consistently, APAP reduced the
hepatic expression of anti-apoptotic factor Bcl-2 in mouse livers, which was restored by
ERS (Figure 6B). Moreover, levels of ferroptosis indicators were dramatically increased by
APAP and declined in response to ERS (Table 3). GPX4 is an inhibitor of ferroptosis. APAP
reduced intrahepatic GPX4, and this process was rescued by ERS (Figure 6B). These results
indicated that ERS exerts suppressive effects on APAP-induced intrahepatic ferroptosis.

Table 3. Effects of ERS on hepatic levels of ferroptosis parameters in mice.

Group Iron
(µM/µg Tissue)

LPO
(nM/mg Prot)

4-HNE
(nM/mg Prot)

MDA
(nM/mg Prot)

Normal 1.6 ± 0.18 1.8 ± 0.18 1.8 ± 0.54 0.8 ± 0.36
APAP 5.4 ± 0.37 ## 2.9 ± 0.16 ## 7.8 ± 0.96 ## 1.3 ± 0.55 ##

APAP + ERS
(50 mg/kg) 3.3 ± 0.23 * 2.2 ± 0.12 * 3.7 ± 0.28 ** 1.04 ± 0.22 *

APAP + ERS (100 mg/kg) 2.6 ± 0.17 ** 2.0 ± 0.11 ** 2.7 ± 0.71 ** 0.96 ± 0.47 **

Data are presented as mean ± SD (n = 8). ## p < 0.01, compared with the normal group. * p < 0.05, ** p < 0.01,
compared with the APAP model group.
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2.8. ERS Modulates Sirt1/LKB1/AMPK/Nrf2 Cascade in Mouse Livers

In livers of mice receiving APAP, ERS considerably boosted Sirt1 expression, pro-
moted phosphorylations of LKB1 and AMPK, and induced nuclear translocation of Nrf2
(Figure 7A). Consistently, transcriptions of Nrf2 downstream genes, such as HO-1 and
GCLC, were upregulated by ERS (Figure 7B). Additionally, as shown in (Table 4), APAP
reduced contents of antioxidant factors in mouse livers. This lesion could be relieved by
ERS. These observations indicated that the Sirt1/LKB1/AMPK/Nrf2 antioxidant pathway
can be activated by ERS in vivo.
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nuclei were detected by immunoblotting (A). Transcriptions of HO-1 and GCLC were detected by
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Table 4. Effects of ERS on hepatic levels of indicators of oxidative stress in mice.

Group T-AOC
(mM/g Prot)

SOD
(U/mg Prot)

GSH
(µM/g Prot)

GPX-P
(µM/mg Prot)

CAT
(U/mg Prot)

Normal 1.2 ± 0.15 20 ± 1.4 15 ± 1.54 77 ± 7.2 43 ± 4.3
APAP 0.32 ± 0.09 ## 15 ± 1.1 ## 6 ± 0.89 ## 54 ± 10 ## 15 ± 1.8 ##

APAP + ERS (50 mg/kg) 0.53 ± 0.18 * 17 ± 1.5 ** 10 ± 1.24 * 73 ± 14 ** 18 ± 2.1 **
APAP + ERS (100 mg/kg) 0.77 ± 0.19 ** 19 ± 1.7 ** 13 ± 1.66 ** 82 ± 12 ** 34 ± 2.5 **

Data are presented as mean ± SD (n = 8). ## p < 0.01, compared with the normal group. * p < 0.05, ** p < 0.01,
compared with the APAP model group.

3. Discussion

In this study, dosages of ERS were selected based on previous kinds of literature and
our pilot experiments [38,39]. The concentration of APAP to induce cytotoxic effects in
AML-12 hepatocytes and the dosage of APAP to provoke hepatotoxicity in mice were
similar to previous reports [43,44]. We revealed that ERS pretreatment obviously hampered
APAP-induced cytotoxicity in AML-12 hepatocytes. The alleviative effects of ERS were
comparable to those of NAC, which is a positive control drug [45]. Our further animal
experiments showed that ERS relieved APAP-provoked hepatotoxicity in vivo. In this
study, after ERS treatment, serum ALT decreased to 27.6% of the APAP-intoxicated mice
and AST decreased to 37.3% of the APAP-intoxicated mice. In some of the literature, the
same dosage of APAP was used to induce hepatotoxicity, and the alleviative effects of
NAC in their report were comparable to those of ERS here, based on the ratio of changes in
serum ALT and AST values [46,47]. It is thus reasonable to speculate that the improvement
effect of ESR on APAP-induced liver injury in mice is close to that of NAC. Intrahepatic
inflammation plays a critical role in APAP-mediated hepatotoxicity. In response to ERS,
levels of inflammatory factors and mediators in the livers of mice exposed to APAP were
dramatically downregulated. Hepatic expressions of iNOS and COX-2 which promote
the synthesis of inflammatory mediators were also decreased. Consistent with our find-
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ings, silymarin, an approved hepatoprotective drug, ameliorates APAP-provoked hepatic
inflammation and subsequent liver injury [48]. The yield of ERS from dried rose buds
and the contents of five representative compounds in ERS were similar to data published
previously, suggesting the process of ERS preparation is reliable and stable [49,50]. Our
results collectively suggested that ERS has the potential to alleviate APAP liver injury
and support the application of ERS as a promising hepatoprotective reagent. Our further
studies would systematically analyze the compounds in ERS to clarify its HPLC fingerprint
and quality control standards. To widely validate the hepatoprotective activity of ERS, we
were going to use normal hepatocytes, such as primary hepatocytes, or different experi-
mental animals, such as C57 mice or SD rats, to assess the ameliorative effects of ERS on
APAP hepatotoxicity.

Hepatic oxidative stress is a key factor promoting APAP-provoked liver injury [51].
We found that, under APAP exposure, obvious oxidative stress occurred in both AML-
12 hepatocytes and mouse livers, which were dramatically impinged by ERS. Oxidative
stress results in cell apoptosis and ferroptosis [52]. Curcumin and cinnamon oil improve
APAP-induced hepatotoxicity by suppressing hepatocyte apoptosis [53,54]. Attenuation of
hepatocyte ferroptosis is critically involved in kaempferol or ulinastatin-mediated protec-
tion against APAP [17,55]. ERS effectively reduced hepatocyte apoptosis and ferroptosis
in vitro and in mice, indicating important roles of inhibition of hepatocyte apoptosis and
ferroptosis in ERS-mediated hepatoprotection. ERS promoted nuclear translocation of Nrf2
and transcriptions of its responsive genes in hepatocytes, suggesting that ERS activates
Nrf2 antioxidative signaling. Similarly, other natural bioactive substances also improve
APAP-provoked liver injury via activating Nrf2 [22,56]. It has been unveiled previously
that rose flowers enhance intracellular antioxidant capacity [41,57], but little is known
about the underlying molecular mechanism. Our findings suggested that potentiating
the Nrf2 cascade can be an indispensable contributor to the antioxidant activity of roses.
Ellagic acid is a characteristic chemical component in ERS. It positively modulates the Nrf2
cascade in HepG2 hepatoma cells at concentrations of 15 and 30 µM [58]. In our study,
ERS (10 and 30 µg/mL) potentiated Nrf2 in AML-12 hepatocytes. Concentrations of ellagic
acid in ERS were 2.03 and 6.09 µM. These discrepancies indicated that the hepatoprotective
effects of ERS are not equivalent to those of ellagic acid.

Many bioactive substances activate Nrf2 through AMPK [26]. Similar to this liter-
ature, ERS boosted AMPK phosphorylation and enhanced its catalytic activity in both
AML-12 hepatocytes and the livers of APAP-intoxicated mice. LKB1 imposes positive
regulatory effects on AMPK. Accompanied by palmitic acid-induced triglyceride depo-
sition in hepatocytes, obvious downregulation of LKB1 and AMPK phosphorylation can
be detected [59]. The activity of the LKB1/AMPK cascade is also reduced during acute
liver injury provoked by amino galactose [60]. The data above indicated a possibility
that declined hepatic LKB1/AMPK signaling is tightly associated with liver lesions. We
found that ERS upregulated LKB1 phosphorylation. Moreover, ERS could not activate
the AMPK/Nrf2 axis in hepatocytes or protect them from APAP if expression of LKB1 is
knocked down. Our findings above suggest that the potentiation of LKB1 can be a critical
contributor to ERS-mediated activation of AMPK/Nrf2. Similarly, compounds such as
ganodermandiol, berbamine, and rifampicin activate hepatic AMPK/Nrf2 via upregulating
LKB1 phosphorylation [28,61], thereby exerting their hepatoprotective activity. The results
above indicated that LKB1 can be a promising target for screening bioactive substances
with hepatoprotective potential.

Sirt1 is involved in regulating a series of important biological processes such as ox-
idative stress, inflammatory response, and cell death [62]. The regulatory effects of Sirt1
on LKB1/AMPK/Nrf2 signaling are receiving more and more attention. As a catalytic
activity of Sirt1 is enhanced, phosphorylation of LKB1 and AMPK is thereby considerably
upregulated [63]. Additionally, overexpression of Sirt1 in the liver activates the hepatic
LKB1/AMPK axis and promotes Nrf2-dependent gene transcription [64,65]. Under APAP
stimulation, levels of Sirt1 in the liver decline, which can be further supported by our
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current study [46,66]. We also unveiled that ERS upregulated Sirt1 expression in the liv-
ers of APAP-intoxicated mice. Previous studies unveiled that, in HepG2 hepatoma cells,
roses eliminate ethanol-induced Sirt1 downregulation and AMPK dephosphorylation [38].
However, based on their data, it is still uncertain whether roses directly increase Sirt1
or indirectly affect Sirt1 expression levels by reducing ethanol toxicity. We found that
ERS significantly boosted Sirt1 expression in AML-12 hepatocytes. Moreover, EX527 and
NAM which are two structurally unrelated inhibitors of Sirt1 both blocked ERS-mediated
activation of the LKB1/AMPK/Nrf2 axis and amelioration of APAP-induced hepatotoxicity.
Additionally, even if an expression of LKB1 was knocked down, ERS still boosted Sirt1
expression in AML-12 cells. This phenomenon suggested that the upregulation of Sirt1 is
the upstream event of elevated LKB1 phosphorylation triggered by ERS. This point can
be supported by a series of previous studies unveiling that Sirt1 is an upstream regulator
of LKB1 activity [63,67,68]. Our findings above collectively indicated that ERS induces
LKB1 phosphorylation and activates its downstream AMPK/Nrf2 pathway via upregulat-
ing Sirt1. Consistent with our research, many bioactive substances activate Nrf2 cascade
through Sirt1 [63,69]. The aforementioned observations suggest that enhancing the hepatic
Sirt1/LKB1 cascade appears to be a feasible method for controlling liver diseases. Here,
we used a Sirt1 inhibitor in our in vitro experiments. Previous studies showed that Sirt1
inhibitor NAM improved APAP-induced liver injury in mice [70,71]. Therefore, it would
be difficult to obtain our expected results, that the inhibition of Sirt1 by its inhibitor elimi-
nated ERS-mediated protection against APAP-induced liver injury in vivo. To confirm the
molecular mechanisms underlying the hepatoprotective activity of ERS in vivo, we would
try to knockdown/overexpress Sirt1 or LKB1 in hepatocytes of living mice and explore the
effects of these alterations on ERS-mediated protection against APAP hepatotoxicity.

4. Materials and Methods
4.1. Materials

APAP was procured from Aladdin (Shanghai, China). N-Acetyl-L-cysteine (NAC),
EX527, and NAM from Beyotime Biotechnology (Shanghai, China). The manufacturers of
kits and antibodies are provided in the Supplementary Materials.

4.2. Preparation of ERS

ERS was prepared and analyzed as described previously [48]. Briefly, 10 g of dry
flower buds of Rosa rugosa were grounded into powders and extracted in 200 mL of solvent
(ethanol/water, 85:15, v/v) under ultrasound for 30 min at 45 ◦C. Extract supernatant was
collected, filtered, and lyophilized, yielding 1.29 g of ERS. Total polyphenol content in ERS
was measured by the corresponding assay kit. The chemical profile of ERS was identified
based on previous literature [41] and was quantified by HPLC. Detailed HPLC conditions
are provided in the Supplementary Materials.

4.3. Cells and Transfection

Mouse AML-12 hepatocytes were cultured and transfected as described previously [72].
Sequences of siRNA targeting mouse LKB1 (si-LKB1) and the corresponding control siRNA
(si-Con) were the same as described previously [73].

4.4. Cytotoxicity Detection and ROS Quantification

Cytotoxic effects were determined by LDH, CCK8, and MTT assays using the corre-
sponding kit following the manufacturer’s instructions. Intracellular ROS was quantified
using the DCFH-DA ROS assay kit.

4.5. Detection of Apoptosis and Ferroptosis

Cell apoptosis was determined by caspase activity assay and flow cytometry analysis
using the corresponding kit. Cell ferroptosis was determined by measuring levels of iron,
MDA, 4-HNE, and LPO using the corresponding kit.
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4.6. Immunoblotting, Immunohistochemistry and Immunofluorescence

Immunoblotting, immunohistochemistry, and immunofluorescence were performed
as described previously [74].

4.7. Quantification of Gene Transcription

Transcriptions of indicated genes were determined by reverse transcription-quantitative
PCR. The experimental procedure and primer sets were the same as described previously [73].

4.8. Animal Experiments

Male Kunming mice (6 weeks old, approximately 25 g) were bought from the Hubei
Experimental Animal Research Center (Wuhan, China) and maintained in a standard
specific pathogen-free environment. All of our animal experiments were performed under
the supervision of the Ethical Committee of Experimental Animal Care at South-Central
Minzu University (2020-SCUEC-AEC-014).

Previous literature reported that the dosages of ESR for mice ranged from 80 to
150 mg/kg [36,75]. Our preliminary research showed that, at a dosage of 100 mg/kg, ERS
exerted a convincing ameliorative effect on liver injury induced by APAP. Therefore, the
higher dosage of ERS in vivo here was set to 100 mg/kg.

Mice were randomly divided into four groups with eight mice in each group, i.e., a
normal group, an APAP model group, a model + ERS (50 mg/kg) group, and a model + ERS
(100 mg/kg) group. ERS was administrated via gavage once daily for 7 consecutive days.
Two hours after the final ERS gavage, mice in the APAP model group and model + ERS
groups were intraperitoneally injected with APAP (300 mg/kg). All mice were sacrificed
24 h later after collecting blood under ether anesthesia. Their livers were immediately
collected, properly preserved, and subjected to further experiments.

4.9. Statistical Analysis

Data were expressed as mean ± standard deviation (n = 3 unless otherwise indicated).
Statistical significance was tested by one-way ANOVA followed by Turkey’s multiple
comparisons and considered achieved if p < 0.05.

Further descriptions of the materials and methods are provided in the Supplemen-
tary Materials.

5. Conclusions

As summarized in Figure 8, ERS effectively relieves APAP-induced AML-12 hepato-
cyte demise, including apoptosis and ferroptosis and mouse liver injury. Mechanistically,
ERS potentiates the LKB1/AMPK/Nrf2 antioxidant cascade via upregulating intracellular
Sirt1 in hepatocytes.
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Abbreviations

4-HNE 4-hydroxynonenal
ALT alanine aminotransferase
AMPK AMP-activated protein kinase
APAP acetaminophen
AST aspartate aminotransferase
Bax BCL2-associated X protein
Bcl-2 B-cell lymphoma-2
CAT catalase
COX2 cyclooxygenase-2
ERS ethanol extract of Rosa rugosa
EX527 6-Chloro-2,3,4,9-tetrahydro-1H-Carbazole-1-carboxamide
GCLC glutamate-cysteine ligase
GPX glutathione peroxidase
GPX4 glutathione peroxidase 4
GSH glutathione
HE hematoxylin-eosin
HO-1 heme oxygenase 1
HPLC high-performance liquid chromatography
IL-1β interleukin-1β
IL-6 interleukin-6
iNOS inducible nitric oxide synthase
Keap1 kelch-like ECH-associated protein 1
LDH lactate dehydrogenase
LKB1 liver kinase B1
LPO lipid peroxidation
MDA malondialdehyde
NAC N-acetyl cysteine
NAM nicotinamide
NO nitric oxide
Nrf2 nuclear factor erythroid 2-related factor 2
p-AMPK phosphorylated AMPK
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p-LKB1 phosphorylated LKB1
PEG2 prostaglandin E2
ROS reactive oxygen species
Sirt1 sirtuin 1
SOD superoxide dismutase
T-AOC total antioxidant capacity
TNF-α tumor necrosis factor-α
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