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Abstract: The study of medicinal plants and their active compounds is relevant to maintaining
knowledge of traditional medicine and to the development of new drugs of natural origin with
lower environmental impact. From the seeds of the Brazilian plant Pterodon emarginatus, six different
preparations were obtained: essential oil (EO), ethanol extract (EthE) prepared using the traditional
method, and four extracts using solvents at different polarities, such as n-hexane, chloroform, ethyl
acetate, and methanol (HexE, ChlE, EtAE, and MetE). Chemical characterization was carried out with
gas chromatography, allowing the identification of several terpenoids as characteristic components.
The two sesquiterpenes β-caryophyllene and farnesol were identified in all preparations of Pterodon
emarginatus, and their amounts were also evaluated. Furthermore, the total flavonoid and phenolic
contents of the extracts were assessed. Successively, the antiradical activity with DPPH and ORAC
assays and the influence on cell proliferation by the MTT test on the human colorectal adenocarcinoma
(HT-29) cell line of the preparations and the two compounds were evaluated. Lastly, an in silico
study of adsorption, distribution, metabolism, excretion, and toxicity (ADMET) showed that β-
caryophyllene and farnesol could be suitable candidates for development as drugs. The set of data
obtained highlights the potential medicinal use of Pterodon emarginatus seeds and supports further
studies of both plant preparations and isolated compounds, β-caryophyllene and farnesol, for their
potential use in disease with free radical involvement as age-related chronic disorders.

Keywords: phenols; terpenes; medicinal plants; ADMETlab web tool; essential oil; traditional
medicine; gas chromatography; antioxidants; DPPH assay; ORAC assay; ADMET

1. Introduction

Medicinal plants are still used in several countries in traditional medicine and also
represent an inexhaustible source of potential new drugs. In addition, they are included in
the composition of many widely marketed dietary supplements [1]. In traditional Brazilian
medicine, the seeds of Pterodon emarginatus Vogel (synonyms Pterodon pubescens Benth. and
Pterodon polygaliflorus Benth., Fabaceae family), in the forms of tincture, infusion, or dry
extracts, have been used for centuries in a wide range of diseases, especially as systemic
analgesic and anti-inflammatory treatments [2]. Pterodon emarginatus, also known by the
popular names “sucupira-branca” and “faveira”, is a native tree plant that grows in isolated
specimens, up to 10 m high, in the middle region of Brazil [2–4]. Inside each fruit is one seed,
surrounded by an alveolar structure that contains an amber-yellow resin [4,5]. The most
common preparations of Pterodon emarginatus are made by macerating the seeds in ethyl
alcohol (or high-grade alcoholic beverages) for 24–48 h in a ratio of 1:5; then, after filtration,

Molecules 2023, 28, 7494. https://doi.org/10.3390/molecules28227494 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28227494
https://doi.org/10.3390/molecules28227494
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0002-5936-1789
https://orcid.org/0000-0003-1264-8878
https://orcid.org/0000-0002-4172-1010
https://orcid.org/0000-0003-1448-0175
https://doi.org/10.3390/molecules28227494
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28227494?type=check_update&version=1


Molecules 2023, 28, 7494 2 of 13

40 mL per day are administered orally for 7 days to treat mainly inflammatory-related
diseases [4,6–8].

Previous studies have considered the chemical characterization of extracts obtained
from the seeds of Pterodon emarginatus, detecting the typical presence of terpenes and
isoflavones [3,9]. In detail, in the essential oil of seeds, the presence of β-caryophyllene
(35.9%), β-elemene (15.3%), germacrene D (9.8%), spathulenol (5.9%), α-humulene (6.8%),
and bicyclogermacrene (5.5%) was reported [3,6]. Terpene compounds have a variety of bio-
logical functions, but their potential therapeutic use has not been extensively studied [10,11].
Therefore, during this investigation, a total of six extracts were obtained from the seeds of
Pterodon emarginatus, such as the essential oil (EO), the ethanol extract used in traditional
medicine (EthE), and four extracts using solvents of different polarities, such as n-hexane,
chloroform, ethyl acetate, and methanol (HexE, ChlE, EtAE, and MetE). Furthermore, the
activity of two components of the seeds, such as β-caryophyllene and farnesol (Figure 1),
was evaluated and compared with that of Pterodon emarginatus extracts. β-Caryophyllene
is a bicycle sesquiterpene that has been identified in several species of plants [12,13]. A
notable peculiarity of this molecule is the butane ring, a very rare structure in nature
(Figure 1). Farnesol is an acyclic sesquiterpene alcohol that is widely identified in the
essential oils of several plants. It also acts as a precursor to sterol biosynthesis [14,15].
Both β-caryophyllene and farnesol are often used in food supplements as flavoring agents
and antimicrobial agents [10,16]. Additionally, they are known for their pharmacological
potential, as demonstrated in various in vitro and in vivo studies [11,17,18]. As an example,
they can modulate NF-kB signaling, which plays an important role in the pathogenesis of
inflammatory diseases and cancer [19,20]. It should be noted that Gertsch et al. discovered
that β-caryophyllene is naturally present in Cannabis sativa L. and has specific agonist
activity on the CB2 receptor [21].
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This research focused on the study of six selected extracts obtained from the seeds of
Pterodon emarginatus, detecting their chemical characterization with gas chromatography
analysis and antiradical activity using two different antiradical tests, known as DPPH and
ORAC assays, also in comparison with β-caryophyllene and farnesol. Successively, plant-
derived preparations and the two phytoconstituents were evaluated in the concentration
range of 0.01 µg/mL to 50 µg/mL on the viability of the human colorectal adenocarcinoma
HT-29 cell line to study their potential cytotoxicity. Additionally, the pharmacokinetic
parameters of absorption, distribution, metabolism, excretion, and toxicity (ADMET) of
β-caryophyllene and farnesol were evaluated in silico.

2. Results and Discussion
2.1. Essential Oil and Extracts of Pterodon emarginatus Seeds

In the first phase of this study, several extracts from Pterodon emarginatus seeds were
prepared to evaluate the types of phytoconstituents present in them and their activity
in vitro. Essential oil was obtained by steam distillation, while the extract used in traditional
medicine was obtained by macerating the seeds in ethanol for 24 h. Furthermore, an
extraction sequence was performed using solvents of different polarities. In this way, by
steam distillation, a light white essential oil (EO) was obtained from the seeds with a dry
weight yield of 1.5% w/w, while a higher yield of 40.9% was achieved using traditional
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procedures with ethanol (EthE). Furthermore, by sequential extraction of solvents with
different polarities, such as n-hexane, chloroform, ethyl acetate, and methanol, four extracts
were obtained with yields of 16.9%, 16.7%, 1.4%, and 2.0%, respectively (residual plant
matrix 63.0%).

2.2. Phytochemicals of Pterodon emarginatus Extracts Detected by Gas Chromatography

Qualitative and quantitative analyses were performed using gas chromatography to
determine the types of compounds present in the extracts and, furthermore, the amount
of β-caryophyllene and farnesol in each one. Figure 2 shows a gas chromatogram of
the EO obtained from the seeds of Pterodon emarginatus; the peaks corresponding to β-
caryophyllene (1) and farnesol (2) were highlighted, while the peak of the internal standard
1,3,5-triisopropylbenzene was indicated with (IS). Exemplificative chromatograms of the ex-
tracts studied in this research are available in the Supplementary Materials (Figures S1–S5).
Table 1 reports the compounds detected as a percentage ratio between the peak area of inter-
est and the peak area of IS. Each compound reported was identified by comparing the mass
spectrum with that found in the NIST Standard Reference database (Figures S6–S12) [22],
the percentage abundance relative to the standard, and the retention time. Then, a quantita-
tive analysis was performed for β-caryophyllene and farnesol, building a calibration line
with their standards.
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Figure 2. An example of a gas chromatogram of essential oil obtained from the seeds of Pterodon
emarginatus. (IS): internal standard (1,3,5-triisopropylbenzene, Rt = 16.11); (1): β-caryophyllene
(Rt = 26.88 min); (2) farnesol (Rt = 39.35 min).

The first observation is that both compounds were detected in all seed extracts obtained
with the different solvents, as well as in the essential oil. The amount of β-caryophyllene
and farnesol was 22.0 mg/g and 38.0 mg/g in EO, respectively, which corresponds to 2.2%
and 3.8% w/w (Table 2). The quantity of β-caryophyllene was higher in EO than in the
ethanol extract obtained following the traditional method. The quantitative decreasing
order was: EO >> EthE > HexE > ChlE ≥ EtAE ≥MetE. In part, the amount of farnesol
was high in both essential oil and ethanol extracts, but different from β-caryophyllene,
its amount was also considerable in all other extracts, such as ChlE, EtAE, and MetE
(Table 2). Sequential solvent extractions resulted in a total yield of 4.5 mg/g caryophyllene
and 20.4 mg/g farnesol. Essential oil and ethanol extract were found to be the richest
preparations of terpenoids.
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Table 1. Chemical composition of the extracts of Pterodon emarginatus seeds.

Compounds RT
EO EthE HexE ChlE EtAE MetE

% *

α-Copaene 21.12 6.24 14.90 4.55 1.53 1.25 1.45

β-Caryophyllene 26.88 6.92 12.6 3.37 1.01 0.53 0.64

Allo-Aromadendrene 32.18 6.10 13.14 3.73 -- -- --

Germacrene D 33.54 212.10 350.85 109.50 25.87 -- 1.75

Germacrene B 34.22 69.73 115.02 37.59 7.85 -- --

Spathulenol 36.71 8.07 28.81 6.26 6.91 8.32 3.94

Farnesol 39.35 11.00 110.89 16.69 23.70 23.30 16.46

Farnesyl acetate 45.57 -- 156.27 15.69 25.45 -- --

RT: retention time; *: percentage of each phytoconstituent obtained by comparison with the internal standard
(1,3,5-triisopropylbenzene); EO: essential oil; EthE: ethanol extract; HexE: n-hexane extract; ChlE: chloroform
extract; EtAE: ethyl acetate extract; MetE: methanol extract; --: not detectable.

Table 2. Quantitative detection of β-caryophyllene and farnesol in Pterodon emarginatus seed extracts.

Compounds
EO
p/p

EthE
p/p

HexE
p/p

ChlE
p/p

EtAE
p/p

MetE
p/p

mg/g % mg/g % mg/g % mg/g % mg/g % mg/g %

β-Caryophyllene 22 2.2 2.8 0.28 1.8 0.2 <1.0 <0.1 <1.0 <0.1 <1.0 <0.1

Farnesol 38 3.8 20 2.0 4.4 0.4 5.6 0.6 5.8 0.6 4.6 0.6

These data are consistent with previous studies on the essential oil of Pterodon emargina-
tus, which have shown the presence of an appreciable amount of the representative
sesquiterpene β-caryophyllene [23–27]. Furthermore, other constituents have been de-
tected in other studies, such as α-copaene [26], allo-aromadendrene [24,26], germacrene
D and spathulenol [23], and farnesol [23,26]. In general, few studies are available in the
literature on Pterodon emarginatus extracts and their phytoconstituents. Therefore, since
this class of compounds has multiple biological activities, this research also focused on the
actions of two selected compounds, β-caryophyllene and farnesol.

2.3. Total Phenolic and Flavonoid Levels in Pterodon emarginatus Extracts

Due to their beneficial effects on health, phenols are considered valuable components
of medicinal plants. In particular, free radical scavenging activity is considered of interest
in the prevention of several human illnesses. In this context, the detection of the levels of
phenols and flavonoids in Pterodon emarginatus extracts was performed. Figure 3 shows
that the methanol extract has the highest amount of both phenolic (A) and flavonoid
(B) compounds compared to the ethanol or ethyl acetate extracts. The total phenolic content
values of ethanol, ethyl acetate, and methanol extracts were 21.60 ± 4.74, 66.42 ± 8.09, and
267.70± 10.45 GAE mg/g extract (Figure 3A), respectively, while the total flavonoid content
values reported in the same order were 9.88± 2.76, 11.29± 1.43, and 21.99 ± 0.75 QE mg/g
extract (Figure 3B), respectively. Differently, the amount of phenols and flavonoids in
essential oil and n-hexane and chloroform extracts could not be measured.
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including the ethanol extract (EthE), obtained with the method used in traditional Brazilian medicine,
and the ethyl acetate and methanol extracts (EtAE and MetE), obtained with sequential extraction.
For essential oil (EO), n-hexane, and chloroform extracts, the quantity of phenols and flavonoids was
not measurable. The data are the mean ± SEM of 5–6 experiments. GAE: gallic acid equivalents;
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2.4. Radical Scavenging Activity of Pterodon emarginatus Extracts, Caryophyllene, and Farnesol

In light of the good presence of phenolic compounds, antiradical activity was deter-
mined using two types of assays that have different antiradical molecular mechanisms.
In detail, antioxidant activity with the single electron transfer (SET) mechanism was esti-
mated with the DPPH assay [28], while hydrogen atom donor ability was detected with an
HAT-based method named the ORAC assay [28]. The results of the DPPH test are shown in
Figure 4A. Although ascorbic acid, the standard antioxidant (positive control), has excellent
scavenger capacity, it is important to note that most extracts can achieve the maximum
amount of antiradical activity. The IC50 values were 111.3 µg/mL (MetE), 179.5 µg/mL
(EO), 336.3 µg/mL (EtAE), 476.5 µg/mL (ChlE), and 629.4 µg/mL (EthE), while the values
for the hexane extract and the compounds β-caryophyllene and farnesol were not obtained
because they had very low activity (<15% inhibition). Thus, the order of potency obtained
is: methanol extract > essential oil > ethyl acetate extract > chloroform extract > ethanol
extract >>> hexane extract ≥ caryophyllene ≥ farnesol. These findings indicate that the
free radical scavenging activity of the isolated constituents β-caryophyllene and farnesol is
lower than that of the Pterodon emarginatus extracts, suggesting that the activity is due to
other compounds or that there may be a synergistic effect between the extract components.
The synergy between various types of extracts containing phenols and specific compounds
has been explored by several authors, highlighting various degrees of cooperation in an-
tioxidant activity [29–31]. The ORAC assay is used to measure the ability of antioxidants
to break down the radical chain by monitoring the inhibition of peroxyl radical-induced
oxidation. It is important to note that peroxyl radicals are the predominant radicals in
lipid oxidation in human organisms. The ORAC test confirmed the significant scavenging
activity of the methanol extract (12,624 ± 987 µmol TE/g) compared to other extracts such
as EthE (8796 ± 1038 µmol TE/g), EtAE (7380 ± 568 µmol TE/g), HexE (6590 ± 785 µmol
TE/g), EO (5790 ± 390 µmol TE/g), ChlE (5625 ± 675 µmol TE/g), or β-caryo-plyllene
(1656 ± 527), and farnesol (1901 ± 152 µmol TE/g), in part in agreement with the results
of the DPPH test (Figure 4B). Therefore, the strength of the scavenging activity detected
by the ORAC assay is the following: methanol extract >> ethanol extract > ethyl acetate
extract > hexane extract > EO ≥ chloroform extract >> farnesol ≥ caryophyllene.
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Figure 4. Radical scavenging activity of essential oil (EO), ethanol extract (EthE), hexane extract
(HexE), chloroform extract (ChlE), ethyl acetate extract (EtAE), and methanol extract (MetE) of
Pterodon emarginatus seeds, and of β-caryophyllene and farnesol detected by DPPH (A) and ORAC
(B) assays. Ascorbic acid was the positive control for antiradical activity. Undisclosed SEM fall within
the respective symbols (A). The ORAC values are expressed as TEAC (Trolox Equivalent Antioxidant
Capacity), µmol of Trolox equivalents per gram of each extract or compound. **: p < 0.01 methanol
extract versus each extract or compound; ◦◦: p < 0.01 β-caryophyllene or farnesol versus ascorbic
acid and versus each extract; ◦: p < 0.05 EthE versus ascorbic acid; ◦◦◦◦: p < 0.0001 MetE versus
ascorbic acid.

These results can be explained by considering the synergistic effect of extracts contain-
ing multiple constituents compared to the activity of a single component [32]. Other authors
reported synergism among the phenolics of cranberry with other bioactive substances such
as ellagic acid and rosmarinic acid in redox modulation, increasing the antimutagenic
effectiveness of the plant extract [29,33]. Another case is the synergism between phenolic
compounds (i.e., rutin) and carotenoids (i.e., lutein or lycopene), which protects against
LDL oxidation [34]. The possibility of synergistic antiradical activity due to caryophyllene
and/or farnesol with other constituents of Pterodon emarginatus extracts may be of interest
and explored in future investigations.
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2.5. HT-29 Cell Viability

The MTT assay was used to assess the potential safety of compounds and extracts
by investigating their effect on cell viability [35]. Four extracts of Pterodon emarginatus,
caryo-phyllene, and farnesol were investigated in the concentration range of 0.01 µg/mL
to 50 µg/mL to determine their effects on HT-29 cell proliferation. Figure 5 shows that the
isolated compounds and extracts do not exhibit any cytotoxic activity up to 10 µg/mL. In
fact, only at the higher concentration of 50 µg/mL, corresponding for β-caryophyllene and
farnesol at about 250 µM, significant cytotoxic effects were observed. It is interesting to note
that methanol and ethanol extracts have a lower impact on cell proliferation compared to
other extracts or isolated compounds. Consistent with current data, other authors reported
that β-caryophyllene and farnesol did not exhibit any cytotoxic effects up to 10 µg/mL
when tested on African green monkey kidney cells (RC-37 cells) [36].
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Figure 5. The effects of essential oil (EO), ethanol extract (EthE), hexane extract (HexE), and methanol
extract (MetE) of Pterodon emarginatus seeds, and caryophyllene and farnesol on HT-29 cell viability
were detected by the MTT assay. **: p < 0.01, and ***: p < 0.001 versus control (not treated cells).
Chloroform and ethyl acetate extracts were not tested due to problems with their solubility in cell
medium and the low quantity obtained during the extraction process (EtAE).

2.6. In Silico Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Profile

By studying the pharmacokinetic parameters of pharmacological agents in silico, it is
possible to accelerate and identify the best candidates for drug development [37]. Therefore,
both compounds, β-caryophyllene and farnesol, were evaluated using the ADMETlab web
tool [38–40]. Table 3 shows the ADMET profiles of both sesquiterpenes, which show
elevated intestinal absorption and a high volume of distribution with moderate blood–
brain barrier permeability. Both compounds, especially β-caryophyllene, are substrates of
various cytochromes P450, making them susceptible to metabolism and interaction with
other co-administrated drugs (Table 3). The short half-life could be challenging for long-
term treatments, but appropriate drug delivery methods can overcome this characteristic.
The toxicity profiles for both compounds can be considered adequate for human use,
although farnesol has a warning about possible hepatotoxicity (Table 3).

β-Caryophyllene and farnesol are found in various aromatic plants used in food
preparation and are therefore sometimes introduced in small amounts into the human or-
ganism [41,42]. Generally, they are considered safe, at least at the concentrations commonly
found in the spices used as ingredients in foods [43].
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Table 3. In silico ADMET parameters of β-caryophyllene and farnesol.

Compounds MW
g/mol LogP BBBp Pgp CYPs

Substrate HIA PPB
%

VD
L/kg

CL
mL/min/kg T1/2 Toxicity

β-Caryophyllene
cyclic
sesquiterpene

204.190 5.906 Moderate Non-
substrate

CYP1A2,
CYP2C19,
CYP2C9,
and
CYP2D6

Elevate 95.28 4.138 9.94 Low Eye irritant

Farnesol
acyclic
sesquiterpene

222.200 5.979 Low

Non-
substrate,
moderate
inhibitor

CYP1A2
inhibitor Elevate 89.06 5.62 14.24 Low

H-HT, skin
sensitizer,
and eye
irritant

ADMET: adsorption, distribution, metabolism, excretion, toxicity; MW: molecular weight; LogP: logarithmic
of the octanol/water partition coefficient; BBBp: human blood–brain barrier permeability; Pgp: P-glycoprotein
(MDR1 or 2 ABCB1); CYPs: cytochrome P450 (CYP) enzymes; HIA: human intestinal absorption (>30%); PPB:
human plasma protein binding; VD: human volume of distribution; CL: clearance; T1/2: half-life (low < 3 h); H-HT:
human hepatic toxicity. The pharmacokinetic parameters were obtained using the ADMETlab platform [44].

3. Materials and Methods
3.1. Chemical Reagents

Aluminium chloride, 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH), Folin-
Ciocalteu phenol reagent, fluorescein, gallic acid, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-
2H-tetrazolium bromide, and 1,3,5-triisopropylbenzene were purchased from Merck KGaA
(Darmstadt, Germany). Acetic acid, dimethylsulfoxide, methanol, n-hexane, chloroform,
ethyl acetate, and phosphate-buffered saline were acquired from Merck (Milan, Italy).
Water purified was obtained with a MilliQ water purification system (Millipore, Burlington,
MA, USA). The purity of the reference standards was ≥98%.

3.2. Pterodon emarginatus: Plant Material

The seeds from mature fruits were collected from May to August 2020, near the
city of Goiás, Bahia State, Brazil. The samples were confirmed by Dr. Fabricio Mendes
Miranda (Southwest Bahia State University, UESB, Brazil) according to the deposited
voucher specimens (PE 0015). A reference drug sample (PE0015 A) is deposited at DPPS,
University of Padova (Italy). The air-dried seeds were 1.8 to 2.2 cm in length, with an
average weight of 0.707 ± 0.023.

The EO of Pterodon emarginatus was obtained by steam distillation with a Clevenger
apparatus (Buchi distillation unit K-314, Cornaredo, Italy) from chopped air-dried seeds
(30 g) for 2 h in triplicate, with a yield of 1.5% w/w. To facilitate the separation of com-
ponents from the water, diethyl ether was used, which was then removed in a stream
of nitrogen. Finally, the EO was stored at a temperature of 4 ◦C, away from light, in a
glass container. An ethanol preparation was prepared as described in traditional Brazilian
medicine [6]. In detail, it was obtained from chopped air-dried seeds (10 g) by performing
an extraction with 96% ethanol (50 mL) for 24 h; the solvent was removed by a stream
of nitrogen, obtaining a yield of 40.9% w/w. The ethanol extract (EthE) was then stored
at a temperature of 4 ◦C, away from light, in a glass container. Furthermore, sequential
extraction was chosen to assess the polarity of the compounds present within the air-dried
seeds of Pterodon emarginatus, to assess the possibility of separating certain categories of
compounds from the total constituents, and also to study the activity in relation to that
of the total extract used in traditional medicine (EthE). Thus, four solvents with different
polarities (n-hexane, chloroform, ethyl acetate, and methanol) were used sequentially to
extract the seeds (10 g). The extraction was carried out for 24 h with each solvent (50 mL),
and the extracts obtained were dried in nitrogen current. The yields (w/w) were 16.9% in
hexane, 16.7% in chloroform, 1.4% in ethyl acetate, and 2.0% in methanol, with a residual
plant matrix of 63.0%. The extracts were then stored at a temperature of 4 ◦C, away from
light, in glass containers.
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3.3. GC Chromatography Analysis

The chromatographic analysis of the extracts was performed with a gas chromatograph
(Thermo Trace DSQ, Waltham, MA, USA) equipped with a DB5 column (Thermo, Waltham,
MA, USA) coupled with a quadrupole mass detector. For the GC qualitative analysis,
the oven was programmed from 70 to 120 ◦C at 5 ◦C/min rate, held at 120 ◦C for 8 min,
followed by a 2 ◦C/min ramp from 120 to 150 ◦C, held for 1 min at 150 ◦C, followed
by a third ramp from 150 to 200 ◦C at 10 ◦C/min, and finally, held for 1 min. The inlet
temperature was kept at 250 ◦C. The electron ionization source temperature was set at
240 ◦C. Identification was performed by comparing their mass spectra with those from
the NIST Mass Spectral Database [45]. The match and reverse match exceeded 890 in
all samples for all detected compounds. Methanol was used to dissolve all extracts at
a concentration of 5 mg/mL, while essential oil was solubilized at 5 mg/L. A precise
aliquot of 1,3,5-triisopropylbenzene, a volatile compound that is certainly not present
in the natural extracts, is added to the samples to be injected as an internal standard
(IS) [46,47]. β-Caryophyllene and farnesol were quantified by calibration curves, which
were experimentally constructed with correlation coefficients close to unity.

3.4. TPC and TFC Assays

Total phenolic content (TPC) was determined using the Folin-Ciocalteu phenol
reagent [48]. The reaction mixture containing the sample solution, Folin-Ciocalteu reagent,
and sodium carbonate (22% v/v) was kept in the dark at room temperature for 2 h. The
absorbance was measured at 760 nm (Beckman Coulter model DU 800, Fullerton, CA, USA).
Gallic acid (GA) was used to obtain the standard curve. TPC was expressed as milligrams
of GA equivalents per g of extract (GAE mg/g). Total flavonoid content (TFC) was detected
using the aluminum chloride colorimetric method [49]. The sample solution was added
to aluminum chloride (25% w/v) and incubated for 15 min at room temperature. The
absorbance was detected at 425 nm with a Beckman Coulter DU 800 instrument (Fullerton,
CA, USA). Quercetin was used to obtain the standard curve. Data were expressed as mg of
quercetin equivalents per g of substance (QE mg/g).

3.5. Free Radical Scavenging Assays

The DPPH scavenging assay was performed according to the previously reported
method [50]. Aliquots of DPPH (70 µM) were subdivided into vials, and then sample
solutions (0.1 µg/mL–10 mg/mL) were added. Subsequently, the vials were incubated for
60 min in the dark at 25 ◦C. Finally, the samples were detected spectrophotometrically at
517 nm (Beckman Coulter DU 800, Fullerton, CA, USA). The oxygen radical absorbance
capacity (ORAC) assay allows for evaluating the ability of substances to interfere with ox-
idative reactions induced by peroxidic radicals [51]. Briefly, aliquots of 0.08 µM fluorescein
were mixed with each sample solution (10–50 µg/mL) or PBS (blank) or 6-hydroxy-2,5,7,8-
tetramethylchroman-2-carboxylic acid solution (6.25–50 µM trolox). The samples were then
incubated at 37 ◦C for 10 min. Successively, the oxidative reaction was started with 0.15 M
2,2′-azobis(2-amidinopropane)-dihydrochloride (AAPH), and the decrease in fluorescence
was recorded for 60 min at 37 ◦C (Victor Nivo Multimode microplate reader, Waltham, MA,
USA). The ORAC values were expressed as TEAC (Trolox Equivalent Antioxidant Capacity,
µmol TE/g of substance).

3.6. Measurement of Cell Viability

Cell viability was assessed with an MTT assay [52]. Human Caucasian colon adeno-
carcinoma (HT-29) cells were grown in RPMI 1640 medium containing 10% fetal bovine
serum (Merck, Darmstadt, Germany) and maintained in sterile flasks, placed in an incu-
bator at 37 ◦C (5% CO2 atmosphere). Cells were seeded in 96-well plates at a density of
5000 and allowed to grow for 24 h. Subsequently, cells were treated with each compound
or extract or with medium (control). After 24 h of incubation, cells were washed with
RPMI 1640 medium to avoid any interference with the assay and subsequently treated for
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4 h with a 0.05 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide
solution [36]. During incubation, viable cells react with MTT to produce purple formazan
crystals, which can be solubilized with 2-propanol. Chloroform and ethyl acetate extracts
were not tested due to problems of solubility in the cell incubation medium and the low
quantity obtained during the extraction process; this was mainly for EtAE. The absorbance
was measured using a Victor Nivo multimode microplate reader (Waltham, MA, USA) at a
wavelength of 570 nm.

3.7. Prediction of ADMET Properties

In silico estimated characteristics of absorption, distribution, metabolism, excretion,
and toxicity (ADMET) of the two sesquiterpenes were achieved with the pharmacokinetic
web tool ADMETlab [44]. The parameters considered were the logarithmic ratio of the
partition coefficient (LogP), the ability to cross the human blood–brain barrier (BBBp), the
interactions with the P-glycoprotein (MDR1 or 2 ABCB1) and cytochrome P450 enzymes,
the passage through human intestinal absorption, the human oral bioavailability, the
binding to plasma human proteins, the human volume of distribution, the clearance, and
the half-life of the compounds considered. Data on the prediction of human toxicity are
also reported in Table 2.

3.8. Statistical Analysis

Each value is reported as the mean ± SEM of 3–8 independent experiments. The
results were analyzed with Microsoft Excel for Windows 10, while sigmoid curve fitting and
statistical evaluations were performed using GraphPad Prism 8 (San Diego, CA, USA). The
half-maximum inhibitory concentration (IC50) was calculated by nonlinear regression [50].
The statistical significance between the control and each treatment was evaluated using
the Student’s t-test, while comparisons among three or more groups were performed with
ANOVA, followed by Tukey’s multiple comparison test. The level of significance was
established at p < 0.05.

4. Conclusions

The extracts of Pterodon emarginatus contain various volatile components, including
α-copaene, β-caryophyllene, germacrene, spathulenol, and farnesol. Thus, sesquiterpenes
constitute the most characteristic portion of the volatile component found in essential oil
and in ethanol and methanol extracts, as well as in n-hexane, chloroform, and ethyl acetate
extracts. Among Pterodon emarginatus terpenes, β-caryophyllene and farnesol were quanti-
fied in all preparations and evaluated in vitro with respect to their free radical scavenging
activity and cytotoxicity. The results show that the methanol extract exhibited the highest
antiradical activity; indeed, all extracts have appreciable antioxidant activity detected with
DPPH and ORAC assays. The MTT test revealed that Pterodon emarginatus extracts have
no significant cytotoxic activity except at the highest concentration of 50 µg/mL, which is
similar to that observed for β-caryophyllene and farnesol. This observation is in agreement
with the in silico study, which does not predict relevant tissue toxicity. Furthermore, in
silico investigation shows that β-caryophyllene and farnesol are well absorbed through the
intestinal tract but may have a high first-pass effect that can reduce their bioavailability.
Passing through the blood–brain barrier is also predictable. Importantly, the half-life is
short, indicating a short persistence in the human body after a single administration, which
could be a limitation in chronic treatments. The Italian Health Ministry’s list of herbal
substances that are allowed or not in food supplements does not include this Brazilian plant;
therefore, Pterodon emarginatus has the potential to be a new botanical remedy. In general,
the set of data obtained in this investigation supports the interest in Pterodon emarginatus
seed extracts and their traditional use, mainly as ethanol preparations. The antiradical
activity can be explained by the substantial presence of phenolic compounds, such as
flavonoids and sesquiterpenes, which are higher in methanol and ethanol extracts. The
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relevance of a more thorough clinical evaluation is suggested by the antioxidant activity of
the different extracts, together with their very low cytotoxicity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28227494/s1. Figures S1–S5: Gas chromatograms of Pterodon
emarginatus seed extracts; Figures S6–S12: Comparing the mass spectral data of compounds detected in
Pterodon emarginatus samples to that reported in the NIST database.
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