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Abstract: Olive quick decline syndrome (OQDS) is a disease that has been seriously affecting olive
trees in southern Italy since around 2009. During the disease, caused by Xylella fastidiosa subsp. pauca
sequence type ST53 (Xf ), the flow of water and nutrients within the trees is significantly compromised.
Initially, infected trees may not show any symptoms, making early detection challenging. In this
study, young artificially infected plants of the susceptible cultivar Cellina di Nardò were grown in a
controlled environment and co-inoculated with additional xylem-inhabiting fungi. Asymptomatic
leaves of olive plants at an early stage of infection were collected and analyzed using nuclear
magnetic resonance (NMR), hyperspectral reflectance (HSR), and chemometrics. The application
of a spectranomic approach contributed to shedding light on the relationship between the presence
of specific hydrosoluble metabolites and the optical properties of both asymptomatic Xf -infected
and non-infected olive leaves. Significant correlations between wavebands located in the range of
530–560 nm and 1380–1470 nm, and the following metabolites were found to be indicative of Xf
infection: malic acid, fructose, sucrose, oleuropein derivatives, and formic acid. This information
is the key to the development of HSR-based sensors capable of early detection of Xf infections in
olive trees.

Keywords: xylem-inhabiting fungi; plant stress; nuclear magnetic resonance (NMR); hyperspectral
reflectance (HSR); metabolomics; chemometrics; olive quick decline syndrome (OQDS); fingerprint;
non-targeted

1. Introduction

Olive quick decline syndrome (OQDS) is a disease that started to develop in the
Salento peninsula (Apulia, southern Italy) in the early 2000s and subsequently rapidly
spread throughout the region, causing millions of trees to die with major losses in olive
groves and landscapes [1]. The causal agent of the disease was identified as Xylella fastidiosa
subsp. pauca, sequence type ST53 (Xf ), which is known as the “De Donno” strain [2,3].
This was the first report of an outbreak of this detrimental plant pathogen in the European
continent and the Mediterranean Basin [4], where the pathogen is regulated as a quarantine
pest, and more recently included in the list of the top 20 priority pests for the EU. As

Molecules 2023, 28, 7512. https://doi.org/10.3390/molecules28227512 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/article/10.3390/molecules28227512?type=check_update&version=1
https://doi.org/10.3390/molecules28227512
https://doi.org/10.3390/molecules28227512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-6247-7769
https://orcid.org/0000-0001-7799-5155
https://orcid.org/0000-0001-7863-3105
https://orcid.org/0000-0001-8841-458X
https://orcid.org/0000-0003-2926-3106
https://orcid.org/0000-0002-8273-0052
https://orcid.org/0000-0003-0793-866X
https://doi.org/10.3390/molecules28227512
https://www.mdpi.com/journal/molecules


Molecules 2023, 28, 7512 2 of 18

regulated pests, mandatory actions are in place to limit the expansion of the outbreaks or
the epidemics currently affecting several European and Mediterranean countries, as well
as to avoid further inadvertent introductions. At the European and Mediterranean Plant
Protection Organization (EPPO), such a strain was then transferred from the EPPO A1 list
(the list of pests recommended for regulation as quarantine pests that are absent from the
EPPO region) to the EPPO A2 list (pests that are locally present in the EPPO region).

So far, about 11 million olive trees over an area of about 50,000 ha have succumbed to
the infection, with significant losses for the olive and oil industry in the Apulia region [5]
and an estimated economic impact of more than EUR 5 billion over the next 50 years [6].

The tolerance of olive cultivars to Xf has been correlated with the ability of the
host plant to reduce the bacterium colonization as well as dysbiosis [7]. Among the olive
cultivars, Cellina di Nardò was found to be one of the most susceptible to Xf, with infections
leading rapidly to severe phenomena of OQDS [8,9]. Xf host colonization mainly affects
the water movement within the plant by hindering the transporting of nutrients and
signals through the xylem vessels [5]. Because Xf is notoriously a slow-growing bacterium,
upon infection, trees often remain asymptomatic for years, hampering the detection of the
disease in infected plants. Following the onset of the symptoms (wilting, shoot dieback,
and desiccation), a rapid decline occurs in the plants, as a consequence of the widespread
colonization in the xylem system. So far, the main strategy adopted to control the spread
of infection is to eradicate infected plants when they are symptomatic. [10]. Hence, the
efficient early detection of Xf infection would offer an advantage against the spread of the
disease, enabling the timely implementation of preventive actions to protect olive growing
and the related agroeconomic sector.

Over the course of the disease, from infection to the decline of the plant, the olive tree
undergoes fluctuations in its morphological traits and metabolic profile. Thus, studying
the metabolome changes in infected plants may offer the opportunity to develop suitable
analytical methods for the early detection of the disease. Metabolomics aims to determine
the metabolic profile of a sample by defining the chemical composition of small molecules
(<1500 Da) [11]. In the context of spectroscopy-based metabolomics, nuclear magnetic
resonance (NMR) offers a non-destructive strategy to detect metabolic fluctuations due
to different stages of the disease [12,13]. Thus, a range of detectable chemical compounds
could then be identified, and, finally, possible OQDS-associated metabolites could be ex-
ploited as biomarkers for the early detection of the disease [14]. Plant diseases generally
show symptoms that are the combination of certain physiological and morphological al-
terations of the host plants. At the very early stage of the disease, visual alterations are
rarely observed, and host plants appear asymptomatic. Leaf spectroscopy is one of the
techniques able to display physiological, biochemical, and anatomical changes that occur in
tissues as a result of such infections. Consequently, the spectral reflectance profile of both
asymptomatic and healthy trees would be very similar. Nevertheless, HSR could offer a
technical advantage by capturing very narrow bands of spectral reflectance (1 nm) as well
as capturing the reflectance beyond the range of 400–800 nm of visible light, thus allowing
for the possible early detection of plant diseases. Therefore, hyperspectral reflectance (HSR)
offers a non-destructive way to record electromagnetic waves reflected by the plant and to
identify specific spectral bands that can be used as signatures to detect infections before
the development of symptoms [15]. Spectral signatures are related to a series of chemicals
in plants, and the specificity of plant chemical fingerprints is reported to be strongly in-
fluenced by several factors [16,17]. On that foundation, the combined use of spectroscopy
with physiochemistry and taxonomy is defined as spectranomics [18–20]. Recently, spectra-
nomics was applied to link leaf secondary metabolites and spectral reflectance to a diverse
genus of Amazonian trees [21], as well as for the early detection of Rapid
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Rapid ‘Ōhiʻa Death (ROD) using repeat laser-guided imaging spectroscopy (LGIS) with 
different derived foliar trait indices to identify susceptible trees [22]. 

Progress has been made in our laboratory to employ the non-targeted NMR approach 
[23–27] to reveal Xf infection at different levels of severity in cv. Cellina di Nardò olive 
trees. As a consequence of the infection, some crucial variations in the metabolic 
composition of foliar tissue have been observed, particularly in the signals related to malic 
acid, formic acid, mannitol, sucrose, and oleuropein [28]. 

In continuation with these preliminary studies applied on symptomatic leaves 
infected with Xf, we explored the possibility of detecting the infection in leaf tissues 
collected exclusively from plants that had been artificially infected with Xf in the initial 
stage of the infection process, i.e., when no symptoms can be observed during a visual 
inspection. To achieve this challenging task, a combined analytical strategy was explored, 
based on the successful results achieved in previous studies on grape and pear leaves by 
analyzing spectral data generated by different techniques [29,30]. Young trees of the Xf-
susceptible cv. Cellina di Nardò were cultivated for 5 years in a temperature-controlled 
environment, artificially infected with Xf, and co-inoculated with other xylem fungi that 
were initially reported to be involved in OQDS [31,32]. Information derived from 1D 1H 
NMR, hyperspectral reflectance (HSR), and chemometrics were combined to select 
specific wavelengths in the HSR spectrum correlated with metabolites which were 
specifically identified as biomarkers of the Xf infection through the application of a 
chemometric study of the NMR spectral data. In this context, the identification of 
wavelengths specifically related to metabolites indicative of Xf infection in asymptomatic 
olive plants is a keystone for the development of proximal and remote sensing devices 
capable of the early detection of Xf infection in olive trees. 

2. Results 

2.1. Selection of Asymptomatic Leaves and qPCR Assay for Diagnosis of Xylella fastidiosa subsp. 

pauca ST53 

A total number of 280 leaves were sampled from Xf-inoculated plants and non-
inoculated plants, as summarized in Table 1. Each of the 280 leaves was subjected to HSR 
analysis. 

The 146 leaves collected from the Xf-inoculated plants were subjected first to HSR 
analysis and then to qPCR tests to check for the presence of bacterial cells within the plant. 
The qPCR results showed that 69 leaves were positive for Xf infection, whereas the 
remaining 77 leaves were negative. Concerning the NMR analysis, to obtain the sample 
amount suitable for the extraction procedure, the leaves were arranged in groups 
composed of about five members each. The NMR samples derived from the Xf-inoculated 
plants were composed in such a way that the group contained at least one leaf positive for 
Xf infection according to the qPCR test. A total number of 55 NMR samples were obtained, 
of which 27 were from non-inoculated plants and 28 from inoculated ones (Table 1). 

Table 1. List of samples subjected to the HSR and NMR measurements. 

 N° Leaves Negative Positive 
HSR Samples  

(One Leaf) 

NMR Samples 
(~5 Leaves) 

Non-inoculated 134 134 0 134 27 

Xf-inoculated 146 77 69 146 28 

2.2. Metabolic Profile from NMR Spectral Analysis 

The aqueous extracts of the olive leaves were subjected to a 1D 1H NOESY (nuclear 
Overhauser effect spectroscopy) analysis to obtain insights into the main changes in the 
profile of hydrosoluble compounds during the earliest phase of Xf infection. 

Ōhi
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consequence of the infection, some crucial variations in the metabolic composition of foliar
tissue have been observed, particularly in the signals related to malic acid, formic acid,
mannitol, sucrose, and oleuropein [28].

In continuation with these preliminary studies applied on symptomatic leaves in-
fected with Xf, we explored the possibility of detecting the infection in leaf tissues collected
exclusively from plants that had been artificially infected with Xf in the initial stage of
the infection process, i.e., when no symptoms can be observed during a visual inspection.
To achieve this challenging task, a combined analytical strategy was explored, based on
the successful results achieved in previous studies on grape and pear leaves by analyzing
spectral data generated by different techniques [29,30]. Young trees of the Xf -susceptible cv.
Cellina di Nardò were cultivated for 5 years in a temperature-controlled environment, artifi-
cially infected with Xf, and co-inoculated with other xylem fungi that were initially reported
to be involved in OQDS [31,32]. Information derived from 1D 1H NMR, hyperspectral
reflectance (HSR), and chemometrics were combined to select specific wavelengths in the
HSR spectrum correlated with metabolites which were specifically identified as biomarkers
of the Xf infection through the application of a chemometric study of the NMR spectral
data. In this context, the identification of wavelengths specifically related to metabolites
indicative of Xf infection in asymptomatic olive plants is a keystone for the development
of proximal and remote sensing devices capable of the early detection of Xf infection in
olive trees.

2. Results
2.1. Selection of Asymptomatic Leaves and qPCR Assay for Diagnosis of Xylella fastidiosa subsp.
pauca ST53

A total number of 280 leaves were sampled from Xf-inoculated plants and non-inoculated
plants, as summarized in Table 1. Each of the 280 leaves was subjected to HSR analysis.

Table 1. List of samples subjected to the HSR and NMR measurements.

N◦ Leaves Negative Positive HSR Samples
(One Leaf)

NMR Samples
(~5 Leaves)

Non-inoculated 134 134 0 134 27

Xf -inoculated 146 77 69 146 28

The 146 leaves collected from the Xf -inoculated plants were subjected first to HSR
analysis and then to qPCR tests to check for the presence of bacterial cells within the
plant. The qPCR results showed that 69 leaves were positive for Xf infection, whereas the
remaining 77 leaves were negative. Concerning the NMR analysis, to obtain the sample
amount suitable for the extraction procedure, the leaves were arranged in groups composed
of about five members each. The NMR samples derived from the Xf -inoculated plants were
composed in such a way that the group contained at least one leaf positive for Xf infection
according to the qPCR test. A total number of 55 NMR samples were obtained, of which
27 were from non-inoculated plants and 28 from inoculated ones (Table 1).

2.2. Metabolic Profile from NMR Spectral Analysis

The aqueous extracts of the olive leaves were subjected to a 1D 1H NOESY (nuclear
Overhauser effect spectroscopy) analysis to obtain insights into the main changes in the
profile of hydrosoluble compounds during the earliest phase of Xf infection.

The NMR spectra were analyzed through a non-targeted approach. In principle,
this approach does not consider a comprehensive identification of predefined metabolites
but rather aims to obtain accurate metabolic fingerprints [33,34]. In a subsequent step, it
considers the overall changes in the metabolic profile and allows for biomarker discovery.
The main classes of water-soluble metabolites were identified via a comparison with
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reference compounds. A typical 1D 1H NOESY spectrum of the aqueous extract of the olive
leaf is shown in Figure 1.
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Figure 1. A typical 1D 1H NOESY spectrum of an aqueous extract of an olive leaf sample. The
main classes of metabolites identified via comparison with reference compounds are indicated by
increasing numbering. The full chemical shift assignment is reported in Table 2. “W” refers to the
residual water signal. The chemical shift scale is referenced to the TSP-d4 singlet at 0 ppm. The
metabolites’ assignment is in agreement with data reported in the literature [28,35].

Table 2. List of metabolites contained in the aqueous extracts of leaf samples and identified via 1D
1H NOESY measurements.

Compound ID Compound δ (ppm) Multiplicity J (Hz)

Alcohols

1 Ethanol
1.18 t 6.5

3.65 q 6.5

2 Methanol 3.33 s

Organic acids

3 Lactic acid
1.34 d 6.9

4.15 q 6.9

4 Citric acid
2.70 d 15.0

2.80 d 15.5

5 Formic acid 8.43 s

6 Malic acid

2.54 dd 15.8, 8.7

2.77 dd 15.8, 3.9

4.35 dd 8.7, 3.9
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Table 2. Cont.

Compound ID Compound δ (ppm) Multiplicity J (Hz)

7 Quinic acid

1.87 dd 13.4, 10.8

1.96 m

2.07 m

3.56 dd 9.3; 3.3

4.04 m

4.14 q 3.5

Carbohydrates

8 Glucose

3.24 dd 9.2, 7.9

3.43 m

3.48 m

3.53 dd 9.8, 3.8

3.75 m

3.83 m

3.87 qd 11.8, 2.4

4.65 d 7.9

5.23 d 3.7

9 Mannitol

3.68 dd 11.6; 6.2

3.77 m

3.81 d 8.6

3.88 dd 11.6; 2.5

10 Fructose

3.57 m

3.71 dd overlapped

3.79 m overlapped

3.90 dd overlapped

4.00 m

4.03 m

4.11 m

11 Sucrose

3.48 t 9.2

3.57 dd 9.9; 3.7

3.67 s

3.78 t 9

3.83 m

3.87 m

3.91 dd 6.2; 3.5

4.05 t 8.5

4.22 d 8.7

5.42 d 3.8

Amino Acids

12 Alanine
1.49 d 7.3

3.80 q 7.3

13 Glycine 3.53 s
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Table 2. Cont.

Compound ID Compound δ (ppm) Multiplicity J (Hz)

Phenolic compounds

14 Oleuropein
derivatives

1.85 dd (methylenic
proton of

derivatives)1.91

6.67 multiplets
(aromatic
protons of

derivatives)

6.79

7.5

8.95

dd (aldehydic
protons of the

aglycone forms)

9.02

9.20

9.21

9.25

15 Tyrosol
derivatives

2.78 t overlapped

3.78 t overlapped

6.94 m

6.75 m

7.12 m

7.14 m

Quaternary ammonium compounds

16 Choline

3.20 s

3.50 dd overlapped

4.05 m

As listed in Table 2, the main classes of metabolites detected in the samples under
investigation include alcohols (methanol and ethanol), organic acids (lactic, citric, formic,
malic, and quinic acids), carbohydrates (sucrose, glucose, fructose, and mannitol), amino
acids (alanine and glycine), phenolic (oleuropein and tyrosol derivatives), and quaternary
ammonium compounds (choline).

2.3. HSR Analysis

The HSR spectra obtained from both the Xf -infected and non-infected leaves had an
overall similar spectral shape. Contrarily to typical symptoms of a severe stage of OQDS,
asymptomatic leaves show no apparent morphological alterations neither in the color nor
in the water content, as appears in the visual (400–800) and NIR (800–1830) wavelength
regions, respectively. On the one hand, the spectral reflection peaks for the olive leaves
were located at five regions of 560 nm, 850 nm, 1150 nm, 1280 nm, and 1650 nm. On the
other hand, the spectral absorption valleys were located at five regions of 400–520 nm,
590–690 nm, 950–1050 nm, 1150–1250 nm, and 1350–1650 nm. The red edge of 700–780 nm
had a positive slope (Figure 2).
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Figure 2. Hyperspectral reflectance (HSR) spectra of the analyzed samples with a wavelength in the
range of 400–1830 nm and with a spectral resolution of 1 nm (interpolated). For each sample, the
spectrum is indicated with a different color.

2.4. Chemometric Analysis of NMR Data

A preliminary principal component analysis (PCA) was carried out on the NMR
spectral data obtained from the 1D 1H NOESY measurements of the aqueous extracts of
the 55 NMR samples to frame the distribution of the samples with no prior knowledge of
their belonging class. The samples were distributed mainly along the first two components,
PC1 and PC2, accounting for 7.3% and 5.6% of the variance, respectively (Figure 3a).
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To gain information about possible variations in metabolic composition related to
Xf infection, a PLS-DA was applied to the NMR spectral data. A clear separation of the
samples into two main groups was observed in the scores plot (Figure 3b). The generated
PLS-DA model was validated by a 10-fold cross-validation method, which computed the
following values for the first component: accuracy (0.77), R2 (0.77), and Q2 (0.28). The best
values were computed for the second component with an accuracy of 0.89, R2 of 1.00, and
Q2 of 0.49 (Figure 3c).

The predictive variable importance in the projection (VIP) plot (Figure 3d) was in-
spected to identify the first 15 variables, i.e., the buckets of the NMR spectra, which
contributed more predominantly to the observed clustering of the Xf -infected (Xf ) and
non-infected (A) samples in the PLS-DA score plot along Component 1 (Figure 3b). The
metabolites contained in the selected spectral regions were identified as depicted in
Figure 3d. An analysis of the VIP graph revealed that samples obtained from uninfected
plants showed relatively higher levels than the infected counterpart of the following metabo-
lites: sugars, such as sucrose and glucose; organic acids, such as malic and formic acids;
and phenolic compounds, including derivatives of tyrosol and oleuropein.

Correlation of NMR Diagnostics Signals to HSR

To identify the NMR signals correlating to HSR wavelengths concerning Xf infec-
tion, the 15 NMR signals reported in Figure 1 were correlated to the corresponding HSR
spectra of 10 nm averaged intervals (wavebands). Significant correlations were found
for the diagnostic NMR buckets of 2.58 and 4.38 ppm (malic acid), 3.42 and 3.82 ppm
(fructose), 3.98 ppm (sucrose), 7.62 ppm (oleuropein derivatives), 8.42 ppm (formic acid),
and 9.30 ppm (oleuropein aglycone), which in turn corresponded to wavelengths at both
the visual and near-infrared regions of 510–630 nm (12 wavebands), 670–730 nm (six wave-
bands), 1170–1180 nm (one waveband), 1190–1210 nm (two wavebands), and 1310–1830 nm
(52 wavebands). Interestingly, the wavebands located in the ranges of 530–560 nm and
1380–1470 nm had the highest amount of overlapping NMR correlations (Figure 4).
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3. Discussion

A spectranomic study of Xf infection in olive trees in the very early stage of infection
was attempted by searching for the relationship between the foliar spectral reflectance and
the foliar metabolic profile.

In the first part of this study, the variations at the metabolic level of aqueous extracts of
leaves collected from Xf -infected plants versus non-infected ones were deeply investigated.
Such a metabolomic study was performed through a non-targeted NMR-based approach,
following which a decrease in malic acid, sucrose, formic acid, oleuropein derivatives,
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tyrosol derivatives, and glucose was observed in the infected leaves. The same samples
showed an increase in fructose and oleuropein aglycone. Such variations at the metabolic
level are reported as a result of the plant–microbe interaction [36–38]. This is manifested
as a parasitic symbiosis between Xf and the susceptible olive cultivar, Cellina di Nardò,
where the bacterium benefits while the olive tree suffers harmful outcomes [39]. In that
case, the plant metabolome succumbs to a breakdown by enzymes produced by Xf that
serve to degrade the pit membrane of the plant xylem, which leads to impairments in plant
physiological properties such as photosynthesis [40].

Oleuropein represents the main phenolic secoiridoid metabolite present in olive leaves
and fruit [41]. A pool of molecules is reported to originate from oleuropein, from which
are the aglycone form of oleuropein, the secoiridoid compounds derived from the elenolic
acid ring opening with different terminal rearrangements, the aldehydic forms of elenolic
acid, and some phenolic compounds [42], such as hydroxytyrosol and tyrosol [43]. The
different derivatives of oleuropein were rather decreased in extracts of the leaves collected
from the Xf -infected plants. Interestingly, the aqueous leaf extracts collected from the
Xf -infected plants were characterized by a higher content of oleuropein in the aglycone
and fructose form. Such compounds may arise from the breakdown of glycosidic bonds
within oleuropein and sucrose, respectively.

Furthermore, other phenolic metabolites that are typically present in olive leaves,
including tyrosol derivatives, were also found to be less abundant in Xf -infected plants.
The lower content of phenolic derivatives in the leaves of plants inoculated with Xf could be
explained by the fact that, as reported in the literature, phenolic compounds are particularly
sensitive to biotic and abiotic stress conditions. Phenolic compounds, such as flavonoids,
secoiridoids, and hydroxycinnamic acid derivatives, act as antioxidants and are involved
in plant defense by counteracting plant oxidative stress [44–47]. On the other hand, the
aqueous extracts of leaves harvested from the Xf -infected plants showed a relatively higher
content of oleuropein aglycone derivatives. Such compounds are most likely produced
during the metabolism of oleuropein [48].

Fructose, glucose, and sucrose were also reported to play an important role in Xf
infection. Coherently to the data reported in the literature, a relatively higher amount of
fructose was associated with Xf infection. Moreover, a decrease in sucrose and glucose
contents was also reported in Xf infection. On the other side, an increase in fructose was
observed in other studies reported in the literature related to the Xf infection of olive trees,
where it was observed that, regardless of the cultivar under investigation, the levels of this
sugar were higher in the infected plants [49]. The levels of sugars in plant cells as well
as their transport, utilization, and storage are regulated and strongly dependent on cell
physiological activity, and thus directly correlate to the plant response to stress, including
pathogen infection. Numerous studies have also shown that sugars play a key role in plant
defense responses to various abiotic and biotic stress factors [50,51]. It is well documented
that sugars are not only the main substrates utilized in respiration processes, supplying
energy for cellular defense responses against pathogens but also provide the carbon source
for the synthesis of defense compounds [52,53]. In addition, sugars represent metabolic
signaling molecules in host plant cells, which induce the expression of many defense
genes [54,55]. The observed decrease in sucrose may be due to a degradation process of
sucrose to fructose and glucose by enzymes, such as β-fructafuranosidase. The relatively
lower content of glucose in aqueous leaf extracts from Xf -infected plants compared to
that from non-infected plants may be explained by the fact that glucose, in addition to
being a universal source of carbon, also acts as a signaling molecule by modulating various
metabolic processes in plants. Glucose is involved in the regulation of the production of
antioxidants and compounds similar to those of the photosynthetic fixation of CO2, which
act as osmoprotectants by reducing membrane permeability during stress [56]. The higher
amount of fructose relative to Xf infection was suggested to not be directly involved in the
osmoprotection that generally occurs in the plant during infection [51]. Rather, this might
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be simply due to the hydrolysis of sucrose into glucose and fructose by Xf, with fructose
not being the preferred carbon source for Xf when sucrose and glucose are present [57,58].

Furthermore, a lower malic acid content was observed in the infected samples com-
pared to the non-infected counterparts. Malic acid is a key metabolite in the biosynthesis
of amino acids and fatty acids and is involved in the citric acid cycle [59]. In a previous
NMR-based metabolomics study, a decrease in malate content was observed in symp-
tomatic Huanglongbing (HLB) leaf extracts [60]. The levels of this metabolite in plant cells
have been reported to undergo significant variations under physical (cold, heat, drought),
chemical (herbicides, pesticides, pollutants), and pathogenic stress [61,62]. Malic acid levels
are often associated with the activity of the NADP-malic enzyme (NADP-ME), responsible
for the decarboxylation of this organic acid with the production of pyruvic acid [63].

In the second stage of this study, the HSR spectral data were correlated to the fifteen
most significant NMR spectral regions according to the VIP plot of the PLS-DA model.
Since the spectral reflectance data, such as HSR, contains overlapping signals from both
the chemical composition of the sample and physical effects, such as light scattering, as
well as artifacts such as illumination/shadows [64], it is usually necessary to separate
the physical information from chemical information [65,66]. However, to model the addi-
tive/multiplicative effects in the sample, it is required to use the whole spectrum, which is
not feasible for spectral data acquired using instruments such as drones, which are typically
equipped with few wavebands, usually around six to twelve channels [67]. Furthermore,
some studies reported the early detection of plant diseases using HSR [22,68,69]. Nev-
ertheless, such studies did not unmix the overlapping signals in the spectral reflectance
data. In this study, the HSR was also not unmixed but was rather derived from the NMR
signals that are diagnostic for Xf. Thus, the HSR is only selected based on a chemical
(metabolic) fingerprint.

As a result, strong correlations were found between some wavebands of the HSR
spectra and the following metabolites: oleuropein derivatives, oleuropein aglycone, sucrose,
fructose, and malic acid. Specifically, the wavebands located in the ranges of 530–560 nm
and 1380–1470 nm showed the highest amount of overlapping NMR correlations.

The significantly correlating wavebands found in this study were in agreement with
results found in a recent study, in which a PLS regression model was applied for predicting
the DNA content of Xf in leaves using HSR [40]. In that study, four wavebands at ranges
of 360–520 nm, 550–620 nm, 690–860 nm, and 1390–1490 nm had the highest VIP score for
predicting the DNA content. All these ranges, except the first one, were correlated for the
diagnostic NMR signals, which is expected to be similar, since, in that study, the HSR data
were pre-processed via multiplicative scatter correction (MSC), which removes additive
and multiplicative components that result from physical effects, e.g., light scattering. Nev-
ertheless, the use of MSC on HSR cannot extend to reduce the number of wavebands for
use in an instrument equipped with few waveband channels, since MSC depends on the
use of the whole spectrum [70,71].

Malic acid, as well as oleuropein derivatives, were significantly positively correlated
to the green color waveband at around 550 nm. It is reported in the literature that the
wavebands at 500–700 nm are related to plant pigments, which are in turn related to photo-
synthesis and chlorophyll activity [69]. Such a waveband was beneficial in differentiating
between healthy tomato leaves and those with tomato yellow leaf curl disease caused by
tomato yellow leaf curl virus (TYCLV) [72]. Furthermore, this waveband was also exploited
to estimate moisture content in Miscanthus along with other wavebands in a MicaSense
RedEdge-Mx multispectral camera [73].

The waveband at around 1400 nm is associated with water absorption, which inter-
estingly plays a major role in OQDS [74]. In the xylem vessels, Xf grows and multiplies
by forming a biofilm that, over time, hinders the regular water movement through the
xylem vessels [75]. Moreover, this waveband was also associated with diagnostic NMR
signals for pear leaves infected with Erwinia amylovora [29]. Specifically, the wavebands at
1391 nm and 1455 nm were found to be indicative of water stress in olive leaves [76]. On
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the one hand, these wavelength regions were found to be significantly negatively correlated
to both fructose and oleuropein aglycone, which indicates a higher absorbance for those
wavebands. On the other hand, they were significantly positively correlated to sucrose,
denoting lower absorbance for those wavebands by Xf -infected leaves.

In conclusion, the feasibility of a spectranomic approach to reveal OQDS-related
diagnostic wavebands at the very early stages of the infection process of olive leaves
with Xylella fastidiosa subsp. pauca ST5 (Xf ) was explored. Hyperspectral reflectance
wavebands (average 10 nm spectral ranges) were correlated with NMR spectral regions
(0.04 ppm buckets) which, based on PLS-DA, were found to be diagnostic of the presence
of Xf infection.

Both positive and negative correlations were obtained between specific band waves,
mainly in the 510–630 nm and 1310–1830 nm regions, with a pool of metabolites, includ-
ing fructose, sucrose, malic acid, and oleuropein derivatives. The information collected
during this study paves the way for the development of HSR-based sensors, which can be
appropriately adapted to selectively reveal even subtle optical changes on the surface of
asymptomatic infected leaves, enabling the early detection of Xf infection in olive trees.

4. Materials and Methods
4.1. Cultivation of Bacteria and Fungi

A suspension was prepared from the “De Donno” strain (database name: CIRM-CFBP
French Collection for Plant Associated Bacteria; accession number: CFBP 8402) of Xf [77]
taken from an 8–10-day old buffered charcoal yeast extract agar (BCYE) culture medium
grown at 28 ◦C, resuspended in a phosphate-buffered saline solution (PBS, 0.05 M, pH 7.2),
and adjusted to 0.5–0.6 absorbance at an optical density of 600 (OD600), which corresponds
to a concentration of 109 colony forming units (CFUs)/mL [78]. A sterile PBS solution was
used as a control.

The employed mycelial plugs (4 mm) consisted of five selected fungal isolates, i.e.,
Phaeoacremonium aleophilum (B1a), Phaeoacremonium rubrigenum (N20), Pseudophaeomoniella
oleae (Fv84), Pseudophaeomoniella oleicola (M24), and Pseudophaeomoniella oleicola (M51). The
mycelial plugs of each fungal isolate were obtained from two-week-old potato dextrose
agar (PDA) culture media grown at 23 ◦C. The sterile PDA plugs were used as a control.

4.2. Cultivation and Artificial Infection of the Olive Plants

Olive plants (Olea europaea L. cv. Cellina di Nardò) were cultivated in a quarantined
greenhouse under a controlled environment of 23–24 ◦C in winter and 25–30 ◦C in summer
under >80% relative humidity at the CNR research area of Bari (Italy). After two years, the
plants were inoculated with Xf and fungi according to a reported procedure [4]. Table 3
summarizes the adopted experimental design.

Table 3. The experimental design describing the combination of different fungal isolates with Xf -
infected and non-infected plants.

Fungi Isolate
Code

Non-Infected Plants (A) Xf -Infected Plants (Xf )

Label N Samples Label N Samples

Control - A-A 5 Xf -A 7

Phaeoacremonium aleophilum B1a A-F1 4 Xf -F1 5

Phaeoacremonium rubrigenum N20 A-F2 5 Xf -F2 4

Pseudophaeomoniella oleae Fv84 A-F3 4 Xf -F3 4

Pseudophaeomoniella oleicola M24 A-F4 3 Xf -F4 5

Pseudophaeomoniella oleicola M51 A-F5 6 Xf -F5 3

Total 6 27 6 28
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Artificial infection with Xf was performed via pinprick inoculation [4,79–81]. Specif-
ically, aliquots of 10 µL of the PBS suspension containing Xf, prepared according to the
procedure described above, were punched with sterile entomological pins 5–6 times. For
each plant, the 9–12 inoculation sites were carried out on three consecutive leaf nodes of
3 to 4 twigs placed 40–50 cm from the ground.

Four weeks after the artificial infection with Xf, the fungal isolates and the PDA
samples were inoculated. To perform the inoculation, the bark of the main trunk at
40–50 cm from the soil was cut (5 mm area in diameter) and removed using a sterile
cork-borer. The removed bark was replaced with the mycelial plug or the PDA in the case
of the control sample. Then, sterile wet cotton was wrapped around the inoculation site
and further wrapped with Parafilm to ensure normal hydration.

All sampled leaves were visually inspected for OQDS symptoms, assuring that
all of them belonged to the severity levels of 0 and 1, which were regarded as asymp-
tomatic/having early symptoms of OQDS, respectively [8].

4.3. Diagnosis of Xylella fastidiosa subsp. pauca ST5 (Xf) in Inoculated Plants using qPCR Assay

DNA was extracted from leaves using a CTAB (cetyltrimethylammonium bromide)-
based method [82]. Pieces of midveins and petioles (ca. 0.5 g) were hammer-smashed in
sterilized plastic bags. Then, 5 mL of CTAB buffer (2%, 0.1 M Tris-HCl pH 8, 20 mM EDTA,
and 1.4 M NaCl) was added, followed by homogenization through a Homex 6 homogenizer
(Bioreba, Reinach, Switzerland). Aliquots of the resulting homogenized suspension (1 mL)
were transferred into 2 mL microcentrifuge tubes containing 1 mL of chloroform, followed
by incubation at 65 ◦C for 30 min using a water bath. Finally, the aqueous phase was sepa-
rated and treated with 0.7 volumes of cold isopropanol, inducing the DNA precipitation,
which was, subsequently, used for qPCR analysis [83].

Quantitative real-time polymerase chain reactions (qPCRs) were performed using
20 µL reaction volumes containing 10 µL of 2 X qPCR Supermix-UDG (Invitrogen; Thermo
Fisher Scientific Inc., Waltham, MA, USA), reaching a final concentration of 4 mM of
MgCl2, 300 nM of Xf forward XF-F: 5′-CACGGCTGGTAACGGAAGA-3′ and reverse
XF-R: 5′-GGGTTGCGTGGTGAAATCAAG-3′ primers, 100 nM of dual-labeled fluorescent
probe XF-P: 5′-TCGCATCCCGTGGCTCAGTCC-3′ labeled with 5′-Fluorescein/Black Hole
Quencher 1 (6-FAM/BHQ-1), bovine serum albumin (BSA) at 300 ng/µL (Sigma-Aldrich,
Milan, Italy), and 2 µL of the DNA template [84].

The thermocycling conditions were 50 ◦C for 2 min, 94 ◦C for 2 min, then 40 cycles of
94 ◦C for 10 s and 62 ◦C for 40 s. All samples were amplified in triplicates. Threshold values
were applied automatically through the CFX Manager V1.6 software (Bio-Rad Laboratories,
Hercules, CA, USA).

4.4. Hyperspectral Reflectance (HSR)

HSR was acquired through a hyperspectral acquisition system. This system consisted
of a FieldSpec®3 spectroradiometer (Analytical Spectral Device (ASD), Boulder, CO, USA)
linked via an optical fiber cable to a leaf probe (ASD) and a leaf clip holder (ASD) in
addition to an instrument controller (laptop) to display and save the data. The plant probe
was of a 10 mm spot size, with internal illumination from a halogen bulb of 2901 K ± 10%
color temperature. The HSR data were in the range of 350–1830 nm, with spectral sampling
intervals of 1.4 nm and 2 nm at spectral ranges of 350–1050 nm (full width at half maximum,
FWHM: 3 nm) and 1000–1830 nm (FWHM: 10 nm), respectively.

The acquisition system (plant probe, optical fiber, and spectroradiometer) was fixed
to a firm workbench to avoid noise generation due to optical fiber motion during acqui-
sition. The leaves were collected from plants and the upper surface was subjected to
HSR analysis. The raw spectral signatures acquired through the RS3™ software v.3 (ASD)
were pre-processed using the ViewSpec Pro 6.0.10 software (ASD). To acquire high-quality
spectra, the spectroradiometer was turned on and left heating for 45 min, and the optical
fiber cable was immobilized using sticky tape to prevent noises caused by its movement.
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Moreover, for each measurement, the device performed an automatic procedure of calibra-
tion and light optimization using a white reference (Spectralon, Labsphere, North Sutton,
NH, USA). Next, the leaf clip of a 10 mm spot size was placed in the middle of the leaf,
beside the midrib, to collect uniform measurements, and the integration time was set to
68 ms during measurements. Eight to ten leaves from each studied plant were used for
hyperspectral data acquisition, and in each observed leaf, five reflectance measurements
were taken and averaged.

The final resolution of 1 nm was obtained via the subsampling and interpolation of
the spectral channels and recorded as relative reflectance values using the RS3™ software
v.3 (ASD). All the acquired raw HSR spectra were stored in a “.asd” format, while the
pre-processed raw data were stored in a “.ref” format and then exported in a “.txt” format
(American Standard Code for Information Interchange, ASCII) and imported in a MATLAB
R2021a routine (The MathWorks Inc., Natick, MA, USA) developed by the authors for
further filtering. First, a Savitzky–Golay filter [85,86] with a frame size of 15 data points
(second-degree polynomial) was applied. Then, the UV region from 350 nm to 400 nm
was truncated, and the interval ranging between 400 nm and 1830 nm was considered for
further analysis. The pre-processed spectra were exported in comma-separated values in a
“.csv” format.

4.5. NMR Sample Preparation and Spectra Acquisition

For the NMR sample preparation, 3-(trimethylsilyl)-2,2,3,3-tetradeutero-propionic acid,
sodium salt (TSP-d4, CAS N. 24493-21-8, 99% D, Armar Chemicals, Döttingen, Switzerland),
hydrochloric acid (HCl, 37%, CAS N. 7647-01-0; ≥99.5%, Sigma-Aldrich, Milan, Italy),
sodium oxalate (Na2C2O4, CAS N. 62-76-0; ≥99.5%, Sigma-Aldrich, Milan, Italy), sodium
azide (NaN3, CAS N. 26628-22-8; ≥99.5%, Sigma-Aldrich, Milan, Italy), deuterium oxide
(D2O, CAS. N. 7789-20-0, 99.86% D, Eurisotop, Saclay, France), and 509-UP 7 NMR tubes
(Norell, Landisville, NJ, USA) were used.

After HSR acquisition, the collected olive leaves were lyophilized at 223 K under
0.180 mbar for 72 h in a Christ Alpha 1–4 LSC lyophilizer (Martin-Christ Gefriertrock-
nungsanlagen GmbH, Osterode am Harz, Germany). The dried samples were then ground
in a blender, sieved through a mesh of 0.5 mm pores, and stored at 253 K. For the prepara-
tion of each NMR sample, an amount of 50 mg of olive leaf powder and 1.5 mL of oxalate
buffer (Na2C2O4 (0.25 M), NaN3 (2.5 mM)) at pH 4.2 (adjusted via the addition of HCl
(37%)) were mixed and sonicated at 40 kHz for 10 min. Next, the samples were vortexed at
2500 rpm for 5 min (Advanced Vortex Mixer ZX3, VELP Scientifica Srl, Usmate, Italy), then
centrifuged at 4700× g for 15 min (ROTOFIX 32 A, Hettich, Italy). After centrifugation, an
automated system for liquid handling (SamplePro Tube, Bruker BioSpin GmbH, Rheinstet-
ten, Germany) transferred 630 µL of the supernatant solutions into NMR tubes containing
70 µL of 0.20% of sodium salt of the 3-trimethylsilyl-2,2,3,3-tetradeuteropropionic acid
(TSP-d4) solution in D2O.

The 1D 1H NOESY spectra were recorded using a Bruker Avance I 400 MHz spectrom-
eter equipped with an autosampler and a 5 mm inverse probe (Bruker BioSpin GmbH).
The 1D 1H NOESY spectra were acquired using the pulse program (noesygppr1d). The
following parameters were applied: number of scans: 128; data points: 64 K; spectral width:
8013 Hz; 90◦ pulse angle: 8.16 µs; acquisition time: 4.09 s; mixing time: 10 ms; recycle
delay: 6 s. Each spectrum was acquired using the Topspin 2.1 software (Bruker BioSpin
GmbH) under an automatic process that lasted around 22 min and included sample loading,
temperature stabilization for 5 min at 298.2 K, tuning, matching, and shimming. The NMR
raw data (Free Induction Decays, FIDs) were processed using the software MestReNova
11.0 (Mestrelab Research SL, Santiago de Compostela, Spain). The FIDs were zero-filled to
128 K number of points and then underwent a Fourier transformation through the applica-
tion of an exponential multiplication function with a line broadening of 0.1 Hz. The phase
and baseline were automatically corrected, and the TSP-d4 singlet signal set at δ = 0.00 ppm
was used as a chemical shift reference.
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4.6. Chemometric Analysis

The 1D 1H NOESY spectra related to the 55 aqueous extracts of olive leaves were seg-
mented into buckets of 0.04 ppm intervals in the range of [10, 0.50] ppm using MestReNova
11.0 (Mestrelab Research SL, Santiago de Compostela, Spain). The underlying area of each
bucket was normalized to the total intensity. The buckets in the region [5.10, 4.60] ppm,
corresponding to the residual water signal, were set to 0.

The obtained data matrix was imported into MetaboAnalyst 5.0 [87], and buckets
were subjected to mean-centering and divided by the standard deviation of each variable
(unit variance scaling). The NMR spectra constituted the observations, while the buckets
constituted the x-variables. Initially, the unsupervised method of principal component
analysis (PCA) was performed to obtain an overview of the data. Then, the supervised
partial least square–discriminant analysis (PLS-DA) was used as a supervised method that
uses multivariate regression techniques to extract the information that can predict the class
membership (Y) via a linear combination of original variables (X). The two classes, namely
Xf -infected (Xf ) and non-infected (A), counted for 27 and 28 observations, respectively.

The performance of the PLS-DA model was evaluated based on the R2 (goodness-of-fit)
and Q2 (goodness-of-prediction) parameters. Q2 is an estimate of the predictive ability of
the model and is calculated via 10-fold cross-validation (CV). In each CV, the predicted data
are compared with the original data, and the sum of squared errors is calculated. Good
predictions will have a high Q2 [88].

The relationship between the diagnostic NMR signals and HSR spectra was deter-
mined using a correlation-based approach [89,90]. To obtain a homogenous sample size
between both techniques, the 280 HSR spectra were conformed to the 55 NMR samples by
taking the median of each corresponding group of leaves, achieving ca. five HSR spectra
for each NMR spectrum. The HSR and the NMR data were correlated using Kendall’s
correlation. This non-parametric correlation method was chosen based on the mecha-
nistic representation of the nature of the NMR signals and HSR wavebands. While the
1D 1H NOESY spectra linearly correspond to the concentration of the metabolites in the
sample [91], the HSR spectra respond on a non-linear scale to the chemical effects of light
absorption (involving photochemical and thermal effects) at various wavelengths [92]. In
such circumstances, in principle, measuring the ranks between the HSR and NMR data
through Kendall’s correlation would be more suitable than using a product-moment-based
correlation such as Pearson’s correlation test. Furthermore, Kendall’s correlation method
was chosen rather than Spearman’s one as the former is generally less prone to biases
caused by outliers and/or slight variations in the variables under investigation.

It was assumed that if there was an association between the NMR and HSR profiles,
the correlation matrix would show a strong negative or positive correlation (slope of the
line), with maximum values of the correlation coefficient equal to −1 and 1, respectively.
On the other hand, if there was no relationship, the correlation would have values near
zero [21]. Importantly, the p-value determines how well this slope fits the data points,
where a p-value of <0.05 is considered to be significant. The calculation and visualization of
the correlation matrices were performed in RStudio IDE of the R programming language,
using core packages as well as the tidyverse metapackage [93–95].
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50. Jeandet, P.; Formela-Luboińska, M.; Labudda, M.; Morkunas, I. The Role of Sugars in Plant Responses to Stress and Their

Regulatory Function during Development. Int. J. Mol. Sci. 2022, 23, 5161. [CrossRef]
51. Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble sugars-metabolism, sensing and

abiotic stress a complex network in the life of plants. Plant Signal. Behav. 2009, 4, 388–393. [CrossRef]
52. Nabavi, S.M.; Šamec, D.; Tomczyk, M.; Milella, L.; Russo, D.; Habtemariam, S.; Suntar, I.; Rastrelli, L.; Daglia, M.; Xiao, J.;

et al. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnol. Adv. 2020, 38, 107316.
[CrossRef]

53. Jeandet, P.; Vannozzi, A.; Sobarzo-Sánchez, E.; Uddin, M.S.; Bru, R.; Martínez-Márquez, A.; Clément, C.; Cordelier, S.; Manayi, A.;
Nabavi, S.F.; et al. Phytostilbenes as agrochemicals: Biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat. Prod.
Rep. 2021, 38, 1282–1329. [CrossRef] [PubMed]

54. Morkunas, I.; Marczak, Ł.; Stachowiak, J.; Stobiecki, M. Sucrose-induced lupine defense against Fusarium oxysporum: Sucrose-
stimulated accumulation of isoflavonoids as a defense response of lupine to Fusarium oxysporum. Plant Physiol. Biochem. 2005,
43, 363–373. [CrossRef]

55. Morkunas, I.; Narona, D.; Nowak, W.; Samardakiewicz, S.; Remlein-Starosta, D. Cross-talk interactions of sucrose and Fusarium
oxysporum in the phenylpropanoid pathway and the accumulation and localization of flavonoids in embryo axes of yellow lupine.
J. Plant Physiol. 2011, 168, 424–433. [CrossRef]

56. Siddiqui, H.; Sami, F.; Hayat, S. Glucose: Sweet or bitter effects in plants-a review on current and future perspective. Carbohydr.
Res. 2020, 487, 107884. [CrossRef]

57. Lemos, E.G.D.M.; Alves, L.M.C.; Campanharo, J.C. Genomics-based design of defined growth media for the plant pathogen
Xylella fastidiosa. FEMS Microbiol. Lett. 2003, 219, 39–45. [CrossRef]

58. Wulff, N.A.; Mariano, A.G.; Gaurivaud, P.; De Almeida Souza, L.C.; Virgílio, A.C.D.; Monteiro, P.B. Influence of culture medium
pH on growth, aggregation, and biofilm formation of Xylella fastidiosa. Curr. Microbiol. 2008, 57, 127–132. [CrossRef]

59. Skodra, C.; Michailidis, M.; Dasenaki, M.; Ganopoulos, I.; Thomaidis, N.S.; Tanou, G.; Molassiotis, A. Unraveling salt-responsive
tissue-specific metabolic pathways in olive tree. Physiol. Plant. 2021, 173, 1643–1656. [CrossRef]

60. Freitas, D.D.S.; Carlos, E.F.; Gil, M.C.S.D.S.; Vieira, L.G.E.; Alcantara, G.B. NMR-Based Metabolomic Analysis of Huanglongbing-
Asymptomatic and -Symptomatic Citrus Trees. J. Agric. Food Chem. 2015, 63, 7582–7588. [CrossRef]

61. Huang, X.Y.; Wang, C.K.; Zhao, Y.W.; Sun, C.H.; Hu, D.G. Mechanisms and regulation of organic acid accumulation in plant
vacuoles. Hortic. Res. 2021, 8, 227. [CrossRef]

62. Girelli, C.R.; Angilè, F.; Del Coco, L.; Migoni, D.; Zampella, L.; Marcelletti, S.; Cristella, N.; Marangi, P.; Scortichini, M.; Fanizzi,
F.P. 1H-NMR metabolite fingerprinting analysis reveals a disease biomarker and a field treatment response in xylella fastidiosa
subsp. Pauca-infected olive trees. Plants 2019, 8, 115. [CrossRef]

63. Sun, X.; Han, G.; Meng, Z.; Lin, L.; Sui, N. Roles of malic enzymes in plant development and stress responses. Plant Signal. Behav.
2019, 14, e1644596. [CrossRef] [PubMed]

64. Martens, H. Quantitative Big Data: Where chemometrics can contribute. J. Chemom. 2015, 29, 563–581. [CrossRef]
65. Martens, H. Interpretable machine learning with an eye for the physics: Hyperspectral Vis/NIR “video” of drying wood analyzed

by hybrid subspace modeling. NIR News 2021, 32, 24–32. [CrossRef]
66. Martens, H. Causality, machine learning and human insight. Anal. Chim. Acta 2023, 1277, 341585. [CrossRef] [PubMed]
67. Sibanda, M.; Mutanga, O.; Chimonyo, V.G.P.; Clulow, A.D.; Shoko, C.; Mazvimavi, D.; Dube, T.; Mabhaudhi, T. Application of

drone technologies in surface water resources monitoring and assessment: A systematic review of progress, challenges, and
opportunities in the global south. Drones 2021, 5, 84. [CrossRef]

68. Calderón, R.; Navas-Cortés, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution airborne hyperspectral and thermal imagery
for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices. Remote Sens.
Environ. 2013, 139, 231–245. [CrossRef]

69. Poblete, T.; Camino, C.; Beck, P.S.A.; Hornero, A.; Kattenborn, T.; Saponari, M.; Boscia, D.; Navas-Cortes, J.A.; Zarco-Tejada, P.J.
Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction
performance from hyperspectral analysis. ISPRS J. Photogramm. Remote Sens. 2020, 162, 27–40. [CrossRef]

70. Chen, Y.C.; Thennadil, S.N. Insights into information contained in multiplicative scatter correction parameters and the potential
for estimating particle size from these parameters. Anal. Chim. Acta 2012, 746, 37–46. [CrossRef] [PubMed]

71. Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra.
TrAC-Trends Anal. Chem. 2009, 28, 1201–1222. [CrossRef]

72. Lu, J.; Zhou, M.; Gao, Y.; Jiang, H. Using hyperspectral imaging to discriminate yellow leaf curl disease in tomato leaves. Precis.
Agric. 2018, 19, 379–394. [CrossRef]

https://doi.org/10.1016/j.tplants.2020.09.011
https://www.ncbi.nlm.nih.gov/pubmed/33036915
https://doi.org/10.1080/14786410410001696147
https://www.ncbi.nlm.nih.gov/pubmed/15715252
https://doi.org/10.3390/biology11010112
https://www.ncbi.nlm.nih.gov/pubmed/35053110
https://doi.org/10.3390/ijms23095161
https://doi.org/10.4161/psb.4.5.8294
https://doi.org/10.1016/j.biotechadv.2018.11.005
https://doi.org/10.1039/D0NP00030B
https://www.ncbi.nlm.nih.gov/pubmed/33351014
https://doi.org/10.1016/j.plaphy.2005.02.011
https://doi.org/10.1016/j.jplph.2010.08.017
https://doi.org/10.1016/j.carres.2019.107884
https://doi.org/10.1016/S0378-1097(02)01189-8
https://doi.org/10.1007/s00284-008-9164-2
https://doi.org/10.1111/ppl.13565
https://doi.org/10.1021/acs.jafc.5b03598
https://doi.org/10.1038/s41438-021-00702-z
https://doi.org/10.3390/plants8050115
https://doi.org/10.1080/15592324.2019.1644596
https://www.ncbi.nlm.nih.gov/pubmed/31322479
https://doi.org/10.1002/cem.2740
https://doi.org/10.1177/09603360211062706
https://doi.org/10.1016/j.aca.2023.341585
https://www.ncbi.nlm.nih.gov/pubmed/37604606
https://doi.org/10.3390/drones5030084
https://doi.org/10.1016/j.rse.2013.07.031
https://doi.org/10.1016/j.isprsjprs.2020.02.010
https://doi.org/10.1016/j.aca.2012.08.006
https://www.ncbi.nlm.nih.gov/pubmed/22975178
https://doi.org/10.1016/j.trac.2009.07.007
https://doi.org/10.1007/s11119-017-9524-7


Molecules 2023, 28, 7512 18 of 18

73. Impollonia, G.; Croci, M.; Martani, E.; Ferrarini, A.; Kam, J.; Trindade, L.M.; Clifton-Brown, J.; Amaducci, S. Moisture content
estimation and senescence phenotyping of novel Miscanthus hybrids combining UAV-based remote sensing and machine learning.
GCB Bioenergy 2022, 14, 639–656. [CrossRef]

74. Danson, F.M.; Steven, M.D.; Malthus, T.J.; Clark, J.A. High-spectral resolution data for determining leaf water content. Int. J.
Remote Sens. 1992, 13, 461–470. [CrossRef]

75. Scortichini, M. The multi-millennial olive agroecosystem of salento (Apulia, Italy) threatened by Xylella fastidiosa subsp. Pauca: A
working possibility of restoration. Sustainability 2020, 12, 6700. [CrossRef]

76. Sun, P.; Grignetti, A.; Liu, S.; Casacchia, R.; Salvatori, R.; Pietrini, F.; Loreto, F.; Centritto, M. Associated changes in physiological
parameters and spectral reflectance indices in olive (Olea europaea L.) leaves in response to different levels of water stress. Int. J.
Remote Sens. 2008, 29, 1725–1743. [CrossRef]

77. Wells, J.M.; Raju, B.C.; Hung, H.; Weisburg, W.G.; Mandelco-paul, L.; Brenner, D.O.N.J. Limited, Fastidious Plant Bacteria Related
to Xanthomonas spp. Int. J. Syst. Bacteriol. 1987, 37, 136–143. [CrossRef]

78. Koch, A.L. Turbidity measurements of bacterial cultures in some available commercial instruments. Anal. Biochem. 1970,
38, 252–259. [CrossRef] [PubMed]

79. Saponari, M.; Boscia, D.; Altamura, G.; D’Attoma, G.; Cavalieri, V.; Zicca, S.; Morelli, M.; Tavano, D.; Loconsole, G.; Susca, L.; et al.
Pilot project on Xylella fastidiosa to reduce risk assessment uncertainties. EFSA Support. Publ. 2016, 13, 1013E. [CrossRef]

80. Hill, B.L.; Purcell, A.H. Acquisition and retention of Xylella fastidiosa by an efficient vector, Graphocephala atropunctata. Phytopathol-
ogy 1995, 85, 209–212. [CrossRef]

81. OEPP/EPPO. PM 7/24 (4) Xylella fastidiosa. Bull. OEPP/EPPO Bull. 2019, 49, 175–227. [CrossRef]
82. Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326.

[CrossRef]
83. Loconsole, G.; Potere, O.; Boscia, D.; Altamura, G.; Djelouah, K.; Elbeaino, T.; Frasheri, D.; Lorusso, D.; Palmisano, F.; Pollastro, P.;

et al. Detection of Xylella fastidiosa in olive trees by molecular and serological methods. J. Plant Pathol. 2014, 96, 7–14. [CrossRef]
84. Harper, S.J.; Ward, L.I.; Clover, G.R.G. Development of LAMP and Real-Time PCR Methods for the Rapid Detection of Xylella

fastidiosa for Quarantine and Field Applications. Phytopathology 2010, 100, 1282–1288. [CrossRef] [PubMed]
85. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964,

36, 1627–1639. [CrossRef]
86. Nevius, T.A.; Pardue, H.L. Development and Preliminary Evaluation of Modified Savitzky-Golay Smoothing Functions. Anal.

Chem. 1984, 56, 2249–2251. [CrossRef]
87. Pang, Z.; Chong, J.; Zhou, G.; De Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst

5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [CrossRef]
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