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Abstract: Paclitaxel, a natural secondary metabolite isolated and purified from the bark of the Taxus
tree, is considered one of the most successful natural anticancer drugs due to its low toxicity, high
potency and broad-spectrum anticancer activity. Taxus trees are scarce and slow-growing, and with
extremely low paclitaxel content, the contradiction between supply and demand in the market is
becoming more and more intense. Therefore, researchers have tried to obtain paclitaxel by various
methods such as chemical synthesis, artificial culture, microbial fermentation and tissue cell culture to
meet the clinical demand for this drug. This paper provides a comprehensive overview of paclitaxel
extraction, combination therapy, total synthesis, semi-synthesis and biosynthesis in recent years and
provides an outlook, aiming to provide a theoretical basis and reference for further research on the
production and application of paclitaxel in the future.

Keywords: paclitaxel; anticancer mechanism; total synthesis; semi-synthesis; biosynthesis

1. Introduction

Nature has been the source of medicinal products for thousands of years, with many
drugs derived from plants. As a model for drug discovery from natural products, paclitaxel
(registered as Taxol® by BMS (New York, NY, USA)) is one of the most successful anticancer
drugs of the past 50 years. The global paclitaxel market was valued at US$4.51 billion
in 2021 and is expected to reach over US$11.16 billion by 2030 [1]. Paclitaxel was first
isolated and purified from the bark of Taxus brevifolia, which is a rare and slow-growing
evergreen found in the old-growth forests of the Pacific Northwest (also known as the yew
tree), and its structure was characterized by Wani et al. in 1971 [2]. Paclitaxel possesses a
highly oxygenated tetracyclic skeleton with a bridged bicyclo [5.3.1] undecane ring system
(Figure 1). The anti-tumor activity of paclitaxel is mainly due to the C13 side chain, A ring,
oxetane ring and C2 benzoyl group [3]. Paclitaxel exists in the form of a white crystalline
powder that is highly lipophilic and thus very insoluble in water.

The anticancer activity of paclitaxel was demonstrated in the mouse melanoma B16
model in 1976 [4]. Subsequently, Horwitz et al. found that paclitaxel inhibited cancer cell
proliferation by stabilizing microtubules, especially in melanoma cells and ovarian cancer
cells [5]. Paclitaxel was initially approved by the U.S. Food and Drug Administration (FDA)
in 1992 for the treatment of ovarian cancer and in 1994 for the treatment of metastatic breast
cancer [6]. In subsequent years, it has also been approved to treat non-small cell lung
carcinoma, AIDS-related Kaposi’s sarcoma and cancers of the lung, bladder, esophagus,

Molecules 2023, 28, 7517. https://doi.org/10.3390/molecules28227517 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules28227517
https://doi.org/10.3390/molecules28227517
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0009-0008-5516-2900
https://doi.org/10.3390/molecules28227517
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules28227517?type=check_update&version=1


Molecules 2023, 28, 7517 2 of 29

prostate and pancreas, either alone or in combination with other anticancer drugs [7,8]. It
has been clinically proven that paclitaxel has good anti-tumor effects, especially for ovarian
cancer, uterine cancer and breast cancer, which have a high incidence of occurrence [9].
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Acquiring adequate supply has been a major challenge throughout the development
of paclitaxel. Economically synthesizing paclitaxel is very complex, and isolating it from
natural sources is cumbersome. According to a report from CEC China Pharmaceuticals
Ltd. (Shanghai, China), 10,000 kg of leaves and bark from Taxus chinensis are required to
isolate 1 kg of paclitaxel. Even in the most productive species, Taxus brevifolia, the paclitaxel
content is only 0.01–0.05% [10]. Therefore, direct extraction methods cannot support the
large-scale production of paclitaxel and have raised considerable environmental concerns.
With ongoing efforts dedicated to paclitaxel production, at least two promising approaches
have been developed to address supply and ecological challenges. The first large-scale
approach involves the semi-synthesis of paclitaxel. The method was derived to extract
10-deacetylbaccatin III (10-DAB) or baccatin III from renewable twigs of Taxus species,
which is subsequently converted to paclitaxel [11]. Another method for large-scale produc-
tion of paclitaxel is cell fermentation using Taxus cell suspension cultures. At the moment,
Python Biotech is the largest producer of paclitaxel by this method [1]. Although many
advances have been made in the production of paclitaxel over the years, there are still
several drawbacks to the current approaches, and the problems of supply shortages and
high costs of production still cannot be ignored.

In recent years, synthetic biology technology has brought a green and sustainable
strategy for the large-scale production of structurally complex and rare natural products
through artificially building and optimizing biosynthetic pathways of target compounds
in microbial chassis cells. Therefore, analyzing the biosynthetic pathway of paclitaxel and
constructing this biosynthetic pathway in microorganisms using synthetic biology methods
may be a new route to overcome the paclitaxel supply problem. Despite some progress in
this field [12], there are still gaps in our understanding of paclitaxel biosynthesis pathway
and its regulatory mechanisms that hinder paclitaxel production using biology methods.
Our goal in writing this review was to provide a comprehensive review of paclitaxel
extraction, total synthesis, semi-synthesis and biosynthesis methods. We have emphasized
the evolution of each approach and highlighted the merits and demerits of each. Ultimately,
we hope to provide a theoretical basis and reference for further research on the production
and utilization of paclitaxel.
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2. Anticancer Mechanism and Clinical Applications

Unlike traditional anticancer drugs, paclitaxel neither affects the synthesis of DNA
and RNA in cancer cells nor damages DNA molecules, and its mechanism of action is
mainly to promote the polymerization of tubulin [13,14]. Tubulin, the basic structural
unit of intracellular microtubules, is a heterodimer formed by the polymerization of α-
tubulin and β-tubulin molecules. Paclitaxel selectively binds to β-tubulin and promotes
the polymerization and assembly of tubulin, which depletes intracellular tubulin, prevents
spindle formation, leads to mitotic arrest in G2/M phase, terminates cell division and
ultimately leads to cancer cell death (Figure 2) [15].
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Paclitaxel also induces the expression of genes and cytokines that inhibit tumor cell
growth and apoptosis. Paclitaxel inhibits regulatory cells (Tregs) and tumor-associated
macrophages (TAMs), stimulates anti-tumor immunity and leads to the release of pro-
apoptotic molecules such as Fas L, TNF-related apoptosis-inducing ligand (TRAIL) and
cytokines such as TNF-α and IFN-γ [16,17]. It can also induce apoptosis by activating
signaling pathways. Paclitaxel activates phosphatase and tensin homologs deleted on chro-
mosome ten (PTEN) and inhibits PI3K/Akt expression and phosphorylation by generating
an excess of ROS and promoting miR-22 overexpression [18]. Another study showed that
paclitaxel could upregulate miR-145 and directly inhibit the expression of Akt, thereby
inducing apoptosis [19,20].

Paclitaxel may inhibit tumor cell growth by inducing autophagy, but this effect is
dependent on the type of cells and the concentration of paclitaxel. One study found
that the treatment of MDA-MB-231 cells with paclitaxel (24 µM) induced autophagy but
showed no significant inhibition, and combined treatment of cancer cells with paclitaxel
and Bridgestone induced the significant inhibition of cancer cells [21]. Other anti-tumor
mechanisms of paclitaxel are cellular pyroptosis, senescence and ferroptosis [22–27].

The main paclitaxel-like compounds currently in clinical use are paclitaxel, docetaxel
(registered as Taxotere® by Sanofi-Aventis (Paris, France)) and cabazitaxel (registered as
JEVTANA® by Sanofi-Aventis) (Figure 3) [28]. Docetaxel is structurally similar to paclitaxel,
with the difference being that the C10 position is a hydroxyl group instead of an acetyl
group and the C3′ position is a Boc group instead of a benzoyl group. In 1996, docetaxel
was marketed for the treatment of breast cancer, colon cancer and NSCLC [29]. It binds
microtubulin better than paclitaxel and exhibits better solubility, bioavailability and anti-
tumor activity. Cabazitaxel, another paclitaxel-based anti-tumor agent, was approved
by the FDA in 2010 for the treatment of advanced prostate cancer and can be used in
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combination with prednisone to treat hormone-refractory metastatic prostate cancer [30,31].
In addition, the new drug larotaxel has completed phase III clinical evaluation for breast
cancer alone, and the ternary ring in its structure is thought to minimize P-glycoprotein
recognition, potentially overcoming multidrug resistance mechanisms and crossing the
blood–brain barrier [32]. Conmotaxel is an access to the paclitaxel structure to inhibit
NOD2-mediated inflammatory signaling pathway, which can enhance the therapeutic
effect of paclitaxel and inhibit tumor metastasis and has received clinical approval [33]
(Figure 3).
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Paclitaxel-based antineoplastic drugs are mostly used as first-line anticancer drugs,
often in combination with other anticancer drugs (Tables 1 and 2). Numerous clinical
evaluations have found that the combination of paclitaxel and platinum-based drugs for
the treatment of advanced solid tumors has the advantages of high survival rate and
good tolerance, safety and efficacy for esophageal, ovarian epithelial, cervical and gastric
cancers [34–36]. In addition to its combination with chemotherapeutic drugs, paclitaxel
is often used as a radiotherapy sensitizer in the treatment of squamous cell carcinomas
such as intermediate-to-advanced head and neck cancer and nasopharyngeal carcinoma,
and it participates in radiotherapy to minimize the duration of treatment with acceptable
tolerability and good local control [37,38].

Table 1. Clinical combinations of paclitaxel.

Condition or Disease Partner Drugs Condition or Disease Partner Drugs

Lung cancer Cisplatinum

Lymphoma

Cisplatinum

Gastric cancer
Tegafur Adriamycin

Capecitabine Capecitabine
Head and neck tumors Cisplatinum Gemcitabine

Esophageal cancer Cisplatinum Adriamycin + cyclophosphamide
Capecitabine Pancreatic Gemcitabine
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Table 2. Ongoing clinical trials of paclitaxel in combination with other drugs.

Partner Drugs Condition or Disease Phase Clinical Trial Identifier

Gemcitabine Refractory solid tumors I NCT03507491
Raltitrexed Advanced pancreatic cancer II NCT04581876

Apatinib and camrelizumab Advanced gastric cancer I/II NCT04286711
AZD2014 Advanced cancer I NCT02193633

Fostamatinib Ovarian cancer I NCT03246074

Tilelizumab
High-risk non-muscle-invasive urothelial

bladder carcinoma that is
not completely resectable

II NCT04730232

LDE225 Recurrent ovarian cancer I NCT02195973
Camrelizumab Non-small cell lung cancer II NCT04167774

Gemcitabine and ficlatuzumab Pancreatic cancer I NCT03316599
Durvalumab Squamous cell carcinoma of the head and neck II NCT03723967
fruquintinib Gastric cancer III NCT03223376
Chiauranib Ovarian cancer III NCT04921527
Lovastatin Ovarian cancer II NCT00585052

Capibasertib Locally advanced (inoperable) or metastatic
triple-negative breast cancer III NCT03997123

Pembrolizumab and carboplatin Recurrent/metastatic head and neck squamous
cell carcinoma IV NCT04489888

This data was obtained from the International Center for Clinical Trials Research (https://clinicaltrials.gov/,
accessed on 22 May 2023).

In recent years, paclitaxel has also also often used in combination with other natural
drugs, as in the case of co-administration with resveratrol against hepatocellular carcinoma,
laryngeal carcinoma and gastric carcinoma, which can improve the anti-tumor activity of
the drugs used alone and reduce the dosage and side effects of the two drugs alone [39]. It
was shown that paclitaxel elevated the expression of caspase-3, caspase-8, Bax (Bcl-2 assaci-
ated X protein), p53, Fas (factor associated suicide), Fas L (factor associated suicide ligand),
cIAP-2 (cIap, cellular inhibitor of apoptosis), NF-кB and epidermal growth factor receptor
(EGFR) mRNAs and proteins in HepG2 human liver cancer cells, and resveratrol enhanced
the changes in the expression of these mRNAs [40]. The combination of paclitaxel and cur-
cumin reversed multidrug resistance of paclitaxel and inhibited cancer cell growth [41,42].
Furthermore, combination therapy with the two improved the anti-glioma efficacy and
helped reduce the side effects of cytotoxic treatment [43]. Curcumin can enhance the anti-
cancer effect of paclitaxel in ovarian cancer by modulating the miR-9-5p/BRCA1 axis [44].
When used in combination for the treatment of lung cancer, curcumin enhanced the growth
inhibition of lung cancer H1299 cells and showed a significantly lower IC50 value than that
of paclitaxel alone [45].

3. Sources and Production Methods of Paclitaxel
3.1. Extraction from Taxus Plants

Direct extraction of paclitaxel from Taxus plants has always been the main method
for paclitaxel preparation. However, it is not realistic to supply paclitaxel by extraction
from wild natural resources due to its extremely low concentration and the slow growth of
yew trees. To meet the increased demand for clinical use and to preserve the wild Taxus
species, artificial cultivation has been utilized to alleviate the shortage of paclitaxel. For
example, two seedling bases were established in Sichuan Province, China, including the
Bei-chuan and Hong-ya bases. The yew seedlings from Bei-chuan and Hong-ya bases have
been introduced to other provinces in China. To date, more than 150 yew forest farms have
been established in various provinces of China, some of which can provide suitable active
pharmaceutical ingredients [28].

Typically, for the extraction of paclitaxel or its precursor 10-deacetylbaccatin III
(10-DAB), the branches and/or needles are harvested to keep the plant alive. This method
can prevent the destruction of wild resources and achieve the sustainable use of resources.

https://clinicaltrials.gov/
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Paclitaxel is easily soluble in organic solvents, so ethanol, methanol, chloroform, ethyl
acetate-acetone and ionic liquids can be used to extract paclitaxel from the plant. In re-
cent years, microwave-assisted solvent extraction (MASE), ultrasound-assisted extraction
(USAE), supercritical CO2 extraction and pressurized solvent extraction (PLE) have been
widely used for the extraction of paclitaxel [46–51]. These methods can reduce the amount
of solvent and operating time required and increase the purity and yield of paclitaxel
compared to that achieved with conventional extraction methods. For example, Min et al.
utilized the synergistic effect of ultrasound and negative pressure cavitation extraction
(NPCE) to achieve more than 99% extraction of paclitaxel at an ultrasound power of 380 W
and a vacuum of 260 mm Hg, with an extraction time of only 3 min [52].

Currently, artificial propagation of Taxus seedlings is considered one of the most
efficient methods for obtaining paclitaxel and its chemical semi-synthetic precursors. Mean-
while, the extraction technology for paclitaxel is improving. However, these do not fully
address the inadequate supply of paclitaxel.

3.2. Total Synthesis

Total synthesis is ideal for addressing the clinical supply of paclitaxel. However, the
complex structure is a major obstacle to total synthesis of paclitaxel. Paclitaxel possesses a
highly oxygenated [6-8-6-4] core with 11 stereocenters. Moreover, the unique bicyclo [5.3.1]
undecane ring system, densely aligned oxygen functionalities and four flanking acyl groups
all contribute to heightening the challenge of its chemical construction. In 1994, Nicolaou
et al. and Holton et al. reported the first total synthesis of paclitaxel, and subsequently,
various total synthesis methods were reported [53–55]. So far, eleven total syntheses and
three formal syntheses, as well as over 60 synthetic model studies of paclitaxel, have been
completed by more than 60 research groups worldwide [56,57]. The eight-membered ring
synthetic strategy for each total synthesis is summarized in Figure 4, and the starting
materials, key steps and total steps for each total synthesis are summarized in Table 3. In
the synthesis of paclitaxel (Figure 4), bonding to close the required eight-membered ring
usually takes place at the top of the planar structure of the molecule. In particular, the
top C9–C10 bond disconnections (Nicolaou, Kuwajima and Takaihashi) and the C10–C11
bond disconnections (Danishefsky, Kishi, Chida and Nakada) are the most used (7 out of
14 syntheses). It is noteworthy that both Holton and Wender used Grob-type fragmentation
to construct the A and B rings; Mukaiyama’s total synthetic approach was based on an
intramolecular aldol cyclization employing SmI2 to synthesize the eight-membered ring at
the C3–C8 site; Baran utilized the type II IMDA reaction to form the A and B rings through
the formation of C1–C15 and C13–C14 bonds; and Li and Inoue utilized SmI2–pinacol
coupling to form the eight-membered ring through the formation of C1–C2 bonds. These
successful methods for the total synthesis of paclitaxel are landmarks in the field of organic
chemistry. In general, the pathway of the full chemical synthesis method for paclitaxel is
too long and there are too many synthetic steps. Not only are expensive chemical reagents
required, but the reaction conditions are also difficult to control and the yield is low
(e.g., the overall yield of Li’s 21-step synthetic route was 0.118%), which is not suitable for
industrial production. Further efforts are needed to reduce the synthesis steps and improve
the yield of paclitaxel total synthesis.
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Table 3. Summary of the total synthetic route of paclitaxel.

Research
Groups Year Synthetic Strategy Starting Materials Total Steps Refs.

Nicolaou et al. 1994

(1) Coupling of the A and C rings by
Shapiro reaction at the C1–C2 positions;
(2) formation of the B ring by McMurry

coupling at the C9–C10 positions; (3) and
finally, formation of the side chain,

selective oxidation of the C13 position
and formation of the D ring.

Ethyl 4-hydroxy-2-
methylbut-2-enoate

and
3-hydroxy-2-pyrone

51 [53]

Holton et al. 1994

(1) Formation of AB ring by epoxy
alcohol cleavage; (2) formation of the C

ring by Dieckmann condensation; (3)
formation of the D ring based on

intramolecular SN2 cyclization; (4)
introduction of the C9 oxygen functional

group and side chain.

Camphor 41 [54,55]

Danishefsky
et al. 1996

(1) Coupling of A and CD rings at the
C1–C2 sites via 1,2-addition reactions; (2)
generation of B rings via Heck coupling

at the C9–C10 sites; (3) selective
oxidation of C9 and C13 and formation of

side chains.

2-Methyl-1,3-
cyclohexandione 47 [58]
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Table 3. Cont.

Research
Groups Year Synthetic Strategy Starting Materials Total Steps Refs.

Wender et al. 1997

(1) Formation of the AB ring by
Grob-type fragmentation; (2) formation

of the C ring by aldol cyclization reaction;
(3) formation of the D ring based on
intramolecular SN2 cyclization and

introduction of the side chain.

Verbenone 37 [59,60]

Kuwajima et al. 1998

(1) Coupling of the A ring and C ring at
the C1–C2 site by 1,2-addition reaction;

(2) generation of the B ring at the C9–C10
site by Vinylogous Mukaiyama aldol

reaction; (3) formation of the D ring and
C13 side chain by introducing

C19-methyl and the C3 standing center.

2-(Prop-2-yn-1-
yloxy)tetrahydro-2H-

pyran
47 [61]

Mukaiyama et al. 1999

(1) Formation of octacycles at the C3–C8
sites by intramolecular aldol cyclization
of SmI2; (2) formation of C rings at the
C7–C8 sites based on Michael addition

and intramolecular hydroxyl aldol
cyclization; (3) formation of A rings at

the C11–C12 sites based on pinacol
coupling cyclization; (4) final selective

oxidation of C13 as well as the formation
of D rings and side chains.

Methyl 3-hydroxy-2,2-
dimethylpropanoate 38 [62]

Kishi et al. 2000

(1) Introduction of a C8 all-carbon
quaternary center by [2,3] rearrangement;

(2) Coupling of A and C rings at the
C1–C2 sites by 1,2-addition reaction; (3)

generation of the B ring by NHK coupling
at C9–C10 sites; (4) formation of the D ring

and side chain, oxidation of C13.

3-Methylcyclohex-2-
en-1-ol 45 [56]

Takahashi et al. 2006

(1) Coupling of the A ring and CD ring at
the C1–C2 sites by 1,2-addition reaction;

(2) generation of the B ring by
microwave-assisted alkylation at the

C9–C10 sites; (3) selective oxidation of C9
and formation of the D ring.

Geraniol 47 [63]

Nakada et al. 2015

(1) Coupling of the A and C rings at the
C1–C2 sites based on 1,2-addition

reactions; (2) generation of the B ring by
palladium-catalyzed alkenylation at the
C9–C10 sites; (3) formation of the D ring

by SN2 cyclization.

Acetal aldehyde and
vinyl iodide 37 [64]

Chida et al. 2015

(1) Linking the A and C rings by
1,2-addition at the C1–C2 site; (2)

forming the B ring by
palladium-catalyzed alkenylation at the

C10–C11 bond; (3) constructing the D
ring of oxetane by SN2 cyclization.

Tri-O-acethl-D-glucal
and

1,3-cyclohexanedione
42 [65,66]
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Table 3. Cont.

Research
Groups Year Synthetic Strategy Starting Materials Total Steps Refs.

Baran et al. 2020

(1) Type II intramolecular Diels–Alder
reaction to form the ABC framework; (2)
stereoselective oxidation to C13, C5, C10
and C9 sites; (3) dioxane-mediated C–H
oxidation to produce bridging tertiary
alcohols at the C1 site; (4) formation of

the D ring and side chain.

2,3-Dimethylbut-2-
ene;

3-ethoxy-2-
cyclohexen-1-one;

CHBr3; acrylaldehyde

24 [67]

Li et al. 2021

(1) Asymmetric synthesis to form the AC
ring; (2) SmI2-mediated pinacol coupling
reaction to form the B ring; (3) generation

of C3 stereocenters by the
Hutchins–Kabalka method; (4) formation
of the D ring as well as the introduction

of the C13 side chain.

(2R,
3S)-2-Allyl-3-hydroxy-
2-methylcyclohexan-1-

one

21 [68]

Chida et al. 2022

(1) Linking the A and C rings by
1,2-addition at the C1–C2 site; (2) forming

the B ring by palladium-catalyzed
allylation at the C10–C11 bond; (3)

forming the C13 and C5 hydroxyl groups
by Rubottom oxidation; and (4) forming

the D ring by a novel sliver-promoted
cyclization method.

Tri-O-acethl-D-glucal 22 [69]

Inoue et al. 2023

(1) Intermolecular and intramolecular
radical coupling processes to link and
cyclize the A- and C-ring fragments,

respectively; (2) efficient decoration of
the A- and C-ring functional groups

using newly discovered chemo-, regio-
and stereoselective processes; (3) finally,
D ring formation and conjugation with

amino-acid-delivered taxol.

2,2-
Dimethylcyclohexane-

1,3-dione
34 [70]

3.3. Semi-Synthesis

From the 1960s to the 1980s, paclitaxel could only be isolated from the bark of the yew
tree in very low yields. In 1988, Dr. Denis first obtained 10-deacetylbaccation III (10-DAB)
from yew needles and used it for the semi-synthesis of paclitaxel with a 53% yield [71].
Subsequently, Prof. Holton and Prof. Potier patented the semi-synthesis of paclitaxel from
baccatin III. The US Bristol Myers Squibb (BMS) company received approval from the FDA
to produce paclitaxel using Prof. Holton’s patent for the semi-synthesis of paclitaxel from
baccatin III and decided to discontinue the extraction of paclitaxel from the bark of the yew
tree at the end of 1994.

The chemical semi-synthesis of paclitaxel is the main source of paclitaxel in the current
market, accounting for approximately 80% of the market share. Because of the relatively
high content of 10-DAB and baccatin III in the needles and twigs of Taxus, studies on the
semi-synthesis of paclitaxel mainly focus on these two substances. More than twenty routes
for the semi-synthesis of paclitaxel have been reported [72], and three different types of side
chains, including linear phenylisoserine, β-lactam tetracyclic and oxazolidine pentacyclic,
are primarily utilized to react with 7-triethylsilyl baccatin III (7-TES-baccatin III), which is
then deprotected to produce paclitaxel. It should be noted that the side chain C2′-OH is
prone to epimerization during chemical synthesis, which not only greatly affects the yield of
paclitaxel but also directly pushes up the production cost of paclitaxel. The semi-synthesis
method of paclitaxel by BMS [73], common types of paclitaxel semi-synthetic side chains
and advantages and disadvantages of different side-chain syntheses are shown in Figure 5.
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In addition, Borah et al. comprehensively summarized the methods for the synthesis
of C-13 chiral side chains in 2007, including asymmetric epoxidation routes, enol–imine
condensation, the Diels–Alder reaction, β-lactams and the use of asymmetric catalysts
(Figures 6–8) [74,75].
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In addition to 10-DAB and baccatin III, which are the two commonly used semi-
synthetic raw materials, other natural precursors such as 10-deacetyl-7-xylosyltaxanes
and 10-deacetyl paclitaxel-7-xyloside have also been reported to be converted to pacli-
taxel. In the cultivated Taxus, 10-deacetyl-7-xylosyltaxanes (a mixture of 10-deacetyl-7-
xylosyltaxols A, B and C), which is 10–30 times more abundant than paclitaxel, is usually
transformed to 10-DAB or discarded as waste [76]. In 2020, Xue et al. found that these
compounds can be converted to paclitaxel through a three-step reaction of redox, acety-
lation and deacetylation with a purity of 99.52% with 67.6% total yield (Figure 9a). This
synthetic process circumvented the use of 10-DAB precursors and expensive chiral side
chains, resulting in lower costs, fewer reaction steps and significantly higher yields [77].
10-Deacetyl paclitaxel-7-xyloside (XDT) was isolated from the bark of Taxus brevifolia and
has a structure similar to that of paclitaxel. After hydrolysis of the xylose moiety at the
C-7 site, paclitaxel can be obtained by a three-step reaction of TES protection, acetylation
and deprotection of TES (Figure 9b) [78]. Compared to 10-DAB or baccatin III precursors
for semi-synthetic methods, this precursor contains a C-13 side chain and has a simple
synthesis procedure.

3.4. Tissue and Cell Culture

Plant cells are totipotent, and the induction and regulation of paclitaxel synthesis in
yew cells is a current research hotspot for paclitaxel drug development. Plant cell culture
can completely alleviate the dependence on the Taxus plant and mitigate the effects of
survival conditions such as temperature on paclitaxel yield. Moreover, it not only avoids
the complex transgenic manipulations but also avoids the introduction of exogenous genes
that produce cytotoxicity. Currently, two companies, Phyton Biotech (U.S.) and Samyang
Genex (Korea), supply paclitaxel extracted from cultured plant cells, accounting for about
10% of the paclitaxel market share.

Christen et al. first discovered that the cell cultures of Taxus brevifolia could produce
paclitaxel in 1989, a finding that was patented two years later [79]. The production of
paclitaxel can reach 1–3 mg/L within 2 to 4 weeks. Currently, more than ten Taxus species
or variants have been found to produce paclitaxel and paclitaxel-like compounds. How-
ever, paclitaxel was found in low and often unstable yields in cultured Taxus cells, which
hampered large-scale production. Therefore, various factors affecting cell suspension cul-
ture such as Taxus species, culture conditions, phytohormones and inducers have been
widely studied [1,80–82]. For example, significantly increased amounts of paclitaxel (28 to
110 mg/L) were observed in cell cultures of Taxus species by adding methyl jasmonate [83].
Wang et al. screened three stable, high-yielding cell lines from Taxus cuspidate, and they are
promising candidate sources for the large-scale production of paclitaxel [84].
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In addition to different Taxus species, other natural sources for paclitaxel production
have also been explored, such as Corylus avellana, the hazelnut tree. Although the concen-
tration of paclitaxel in C. avellana is 10 times lower than that in yews [85], C. avellana cells
grow faster, and the paclitaxel content of cell suspension cultures of C. avellana as well as
the excretion of paclitaxel in the culture medium could be increased by treatments with
inducers such as methyl jasmonate. Gallego et al. found that treatment of C. avellana cells
with methyl jasmonate (100 µM) and coronarin (1 µM) exciton increased the paclitaxel
content in cell suspension cultures 3-fold and 27-fold, respectively [86]. The cell wall of
C. palmarum was the most effective fungal inducer of paclitaxel synthesis in C. avellana
cell medium. The combination of the cell wall of C. palmarum and methyl-β-cyclodextrin
(50 mM) as an inducer increased the total production of paclitaxel in C. avellana cell medium
5.8-fold (402.4 µg/L), of which 78.6% (316.5 µg/L) was secreted into the medium [87].

3.5. Paclitaxel-Producing Endophytic Fungi

Endophytic fungi are present in plants and co-evolve with their host plants. They
produce biologically active secondary metabolites that are identical or similar to those
made by the host plants. Thus, endophytic fungi of plants can be a new platform for the
commercial production of bioactive metabolites. In 1993, the endophytic fungus Taxomyces
andreanae from T. brevifolia was discovered by Stierle et al. to produce paclitaxel in vitro [88].
Since then, more and more researchers have been engaged in isolating and characterizing
paclitaxel-producing endophytic fungi [89–91]. To date, more than 20 genera of endophytic
fungi have been identified in Taxus species and non-Taxus species such as sycamore and
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ginkgo (Table 4) [92–141]. In addition to plants, paclitaxel-producing endophytic fungi
can also be isolated from animals. In 2015, Gu et al. first isolated Pestalotiopsis hannanensis
from the scalp of Ailuropoda melanoleuca, a giant panda with skin disease, which produced
paclitaxel at a yield of 1466.87 µg/L [142]. The production of paclitaxel from endophytic
fungi by microbial fermentation is a sustainable way of obtaining paclitaxel. This method
is characterized by simple medium formulation, controlled fermentation conditions and
mature technology for large-scale production. However, the content of paclitaxel obtained
in this way is generally low. Therefore, there is still a long way to go for the industrial
production of paclitaxel using endophytic fungi in the future.

Table 4. Endophytic fungi producing paclitaxel from different hosts and their yields.

Family Fungus Host Strain Yield (µg/L) Reference

Taxaceae

Alternaria alternata T. hicksii Tbp-9 0.13 [92]
Alternaria alternata T. hicksii - 332–512 [89]
Alternaria alternata T. chinensis var mairei TPF6 84.5 [93]

Alternaria sp. T. cuspidata Ja-69 0.16 [94]
Alternaria alternata T. cuspidata F3 195.4 [95]

Anthina Fr. T. yunnanensis Tax-15 6.23 [96]
Aspergillus candidus Taxus media MD2 112 [97]
Aspergillus candidus T. media MD3 73 [98]
Aspergillus fumigatus Taxus sp. TPF-06 1590.00 [99]

Aspergillus niger T. cuspidata HD86-9 273.46 [100]
Aspergillus niger Taxus yunnanensis IBFC-Z3S 1000 [101]

Aspergillus niger var taxi T. cuspidata - 91 [102]
Bionectria sp. T. chinensis var mairei XH004 33.90–430.46 [103]

Botryodiplodia theobromae T. baccata BT115 280.5 [104]
Botrytis sp. T. cuspidata HD181-23 206.34 [105]
Botrytis sp. T. chinensis var mairei XT-2 161.24 [106]
Botrytis taxi T. cuspidata HD104 - [107]

Cephalosporium sp. T. yunnanensis Tax-36 3.781 [96]
Chaetomium sp. T. yunnanensis Tax-60 21.1 [96]

Cladosporium
cladosporioides T. media MD2 80 [97]

Didymostilbe sp. T. chinensis var mairei DF110 - [108]
Dimemasporium sp. T. yunnanensis Tax-35 3.34 [96]

Ectostroma sp. T. chinensis var mairei XT 5 276.75 [106]
Ectostroma sp. T. yunnanensis Tax-16 4.092 [96]
Ectostroma sp. T. yunnanensis Tax-25 2.16 [96]

Fusarium anthrosporioides T. cuspidata F-40 131 [109]
Fusarium lateritium T. baccata Tbp-9 0.13 [94]

Fusarium mairei T. chinensis - 78 [110]
Fusarium mairei Taxus × media UH23 20 [111]

Fusarium redolens T. baccata TBPJ-B 66 [112]
Fusarium solani T. chinensis Tax-3 164 [113]

Fusarium sp. T. chinensis var mairei D62 148.95 [114]
Fusarium sp. T. chinensis var mairei Y1117 2.70 [115]

Gliocladium sp. T. baccata - 90 [110]
Gonatobotrys sp. T. yunnanensis Tax-13 4.092 [96]

Guignardia mangiferae Taxus × media HAA 11, HBA 29 - [116]
Hypocrea sp. T. media Z58 2.50–3.00 [117]

Metarhizium anisopliae T. chinensis H-27 846.10 [118]
Monochaetia sp. T. baccata Tbp-2 0.1 [92]
Mucor rouxianus T. chinensis DA10 30 [119]

Mucor sp. T. yunnanensis Tax-56 1.08 [96]
Mucor sp. T. media 060B1 2.50–3.00 [120]
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Table 4. Cont.

Family Fungus Host Strain Yield (µg/L) Reference

Nodulisporium sylviforme T. cuspidata HQD33,
HQD48 51.06–125.70 [121]

Nodulisporium sylviforme T. cuspidata NCEU-1 314 [121]

Nodulisporium sylviforme T. cuspidata UV40-19,
UL50-6 392 [121]

Nodulisporium sylviforme T. cuspidata HDF68 468.62 [122]
Nodulisporium sylviforme T. cuspidata - 450 [89]
Nodulisporium sylviforme T. cuspidata HDFS4-26 516.37 [105]

Ozonium sp. T. chinensis var mairei BT 2 4–18 [123]
Papulaspora sp. T. chinensis var mairei XT17 10.25 [106]
Penicillium sp. T. yunnanensis Tax-20 8.24 [96]
Pestalotia bicilia T. baccata Tbx-2 1.08 [92]

Pestalotiopsis microspora T. walichiana Ne-32 50.00 [92]
Pestalotiopsis microspora T. cuspidata Ja-73 0.27 [92]

Pestalotiopsis sp. T. yunnanensis YN6 120–140 [124]
Pestalotiopsis terminaliae T. arjuna TAP 15 211.10 [125]

Phoma sp. T. yunnanensis Tax-26 18.56 [96]
Phoma sp. T. yunnanensis Tax-47 47.302 [96]

Phomopsis sp. T. cuspidata BKH27 418 [126]
Pithomyces sp. T. sumatrana P-96 0.095 [92]
Placodium sp. T. yunnanensis Tax-24 13.63 [96]
Placodium sp. T. yunnanensis Tax-49 31.06 [96]
Placodium sp. T. yunnanensis Tax-55 0.46 [96]
Placodium sp. T. yunnanensis Tax-63 3.11 [96]
Placodium sp. T. yunnanensis Tax-65 6.27 [96]
Rhizoctonia sp. T. yunnanensis Tax-1 1.43 [96]

Rhizopus T. media M57 45.00–50.00 [127]
Stemphylium sedicola T. baccata SBU-16 6.90 [128]
Taxomyces andreanae T. brevifolia Tbp-2 0.02–0.05 [129]

Trichoderma sp. T. yunnanensis Tax-23 19.59 [96]
Tubercularia sp. T. chinensis var mairei TF-5 185.40 [130]

Rhizosphere

Alternaria sp. Rhizosphere - 4.2 [110]
Aspergillus flavipes Rhizosphere - 185–850 [110]
Aspergillus flavus Rhizosphere - 2.8 [110]
Aspergillus oryzae Rhizosphere - 3.2 [110]

Penicillium chrysogenum Rhizosphere - 85 [110]
Pestalotiopsis malicola Rhizosphere - 186 [131]

Bromeliaceae

Fusarium proliferatum Tillandsia usneoides - 165 [110]
Pestalotiopsis humus 133 Tillandsia usneoides - 6.1 [110]
Pestalotiopsis humus 154 Tillandsia usneoides - 5.7 [110]

Pestalotiopsis sp. 118 Tillandsia usneoides - 8.9 [110]
Pestalotiopsis sp. 107 Tillandsia usneoides - 89 [110]
Pestalotiopsis sp. 155 Tillandsia usneoides - 4.3 [110]
Pestalotiopsis sp. 163 Tillandsia usneoides - 4.0 [110]

Phomopsis sp. 116 Tillandsia usneoides - 22 [110]

Araucariaceae

Pestalotiopsis guepinii Wollemia nobilis w-1, f-2 0.49 [132]
Pestalotiopsis sp. Wollemia nobilis w-x-3 0.13 [132]
Pestalotiopsis sp. Wollemia nobilis w-1, f-1 0.17 [132]

Phomopsis sp. Wollemia nobilis - 170 [129]

Cupressaceae Fusarium mairei Taxodium distichum UH23 20.00 [111]
Pestalotiopsis microspora Taxodium distichum Cp-4 0.01–1.49 [133]

Rutaceae Bartalinia robillardoides Aegle mamelos - 187.6 [134]
Phyllosticta citricarpa Citrus media - 265.00 [110]

Ginkgoaceae Phoma betae Ginkgo biloba SBU-16 795.00 [135]
Phomopsis sp. Ginkgo biloba - 372 [136]

Rubiaceae Juss. Lasiodiplodia theobromae Morinda citrifolia - 120 [110]
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Table 4. Cont.

Family Fungus Host Strain Yield (µg/L) Reference

Pestalotiopsis microspora Maguireothamnus
speciosus - 0.11 [92]

Podocarpaceae Aspergillus fumigatus Podocarpus sp. EPTP-1 560.00 [137]

Sapindaceae Juss. Pestalotiopsis pauciseta Cardiospermum
helicacabum CHP-11 113.30 [138]

Combretaceae R. Br. Pestalotiopsis terminaliae Terminalia arjuna TAP-15 211.10 [139]

Apocynaceae Juss. Phyllosticta
tabernaemontanae Wrightia tinctoria - 461.00 [140]

Sterculiaceae Phyllostica melochiae Melochia corchorifolia - 478 [110]
Malvaceae Juss. Phyllosticta dioscorea Hibiscus rosa-sinensis - 298 [136]
Moringa Adans. Cladosporium oxysporum Moringa oleifera - 550 [141]

Betulaceae Gray Penicillium
aurantiogriseum Corylus avellana NRRL 62431 70 [134]

In recent years, optimization of the fermentation culture is one of the important ways
to increase paclitaxel production by endophytic fungi through complementation with a
variety of substances including carbon sources, nitrogen sources, precursors, elicitors and
metabolic bypass inhibitors.

Garyali et al. isolated the endophytic fungus Fusarium redolens from Himalayan yew
plants and demonstrated its ability to produce paclitaxel. The results showed that sucrose
and NH4NO3 were the best carbon and nitrogen sources for paclitaxel production. The
yield of paclitaxel synthesized by Fusarium redolens increased from 66 to 198 µg/L with
the addition of NH4NO3 (6.25 g/L), MgSO4·7H2O (0.63 g/L) and NaOAc (1.25 g/L) to the
medium, which was three times higher than the yield in unoptimized medium [112,143].
Furthermore, addition of early precursors (isopentenyl pyrophosphate (IPP) and geranyl-
geranylpyrophosphate (GGPP)) of the terpene pathway to cell cultures of the endophytic
fungus Paraconiothyrium SSM001 plants stimulated terpene production, with a 3-fold and
5-fold increase in the production of paclitaxel compared to controls [144]. Qiao et al. iso-
lated a strain of A. aculeatinus from Taxus bark and confirmed that the endophytic fungus
A. aculeatinus Tax-6 was able to produce paclitaxel in potato dextrose agar liquid medium.
Since sodium acetate is an important precursor of paclitaxel, Cu2+ can enhance the ac-
tivity of oxidase, thereby catalyzing the formation of paclitaxel, and salicylic acid can
act as an induction signal. The introduction of Cu2+ (0.1 mg/L), salicylic acid (10 mg/L)
and NaOAc (8 g/L) to the medium increased the yield of paclitaxel from 334.92 µg/L to
1337.56 µg/L g/L [145].

In addition, co-culture of B. subtilis and A. flavipes can regulate paclitaxel biosynthesis
in A. flavipes by modulating chromatin remodeling, resulting in an approximately 1.6-fold
increase in paclitaxel production [146]. When fluconazole (1.0 µg/mL) was co-cultured
with A. flavipes, paclitaxel production was increased 5-fold [110,147]. When salicylic acid
and P. microspora were co-cultured, the yield of paclitaxel was 625.47 µg/L, which was
45 times higher than that of the control group. This is due to the fact that salicylic acid
enhances the lipid peroxidation reaction in P. microspora mycelia, and the production of
peroxides stimulates oxidative stress, which induces the activation of 3-hydroxy-3-methyl
glutaryl coenzyme A reductase (HMGR) proteins by regulatory proteins and eventually
triggers the expression of GGPSG to stimulate the isoprenoid biosynthetic pathway, leading
to improved biosynthesis in P. microspora [148].

The pH of the culture medium also has an effect on the yield of paclitaxel. El-Sayed
et al. isolated Penicillium chrysogenum strains from the inter-root region of Glycine max, a
legume that can produce paclitaxel, and investigated the effect of initial pH on the growth
and paclitaxel production of P. chrysogenum. The results showed that paclitaxel production
reached a maximum of 200–220 µg/L at a pH of 7–8 at a temperature of 30 ◦C and an
agitation rate of 120 rpm [149]. Yang et al. isolated and characterized Alternaria alternata
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MF5 to produce paclitaxel. The results showed that the production of paclitaxel started
at 12 h (1.193 mg/L, pH = 6.21) and reached a maximum value at 60 h (pH = 4.96), and
the production gradually decreased after 60 h. A pH of 4.8–5.2 is the optimal pH for rpm
production [150]. However, Abdel-Fatah et al. optimized the yield of paclitaxel production
from Aspergillus flavus by CCD design and found that the maximum yield of paclitaxel
(302.72 µg/L) was achieved at pH 6.0 when other conditions were the same [151].

Temperature also effects fungal growth and paclitaxel synthesis. For example, the
maximum radial growth of Fusarium solani was achieved at 30 ◦C [152]. The yield of
paclitaxel is also influenced by light. Under natural conditions, plant tissues provide
protection to endophytic fungi, so the fungi do not need to produce pigments and instead
use their metabolic resources to produce paclitaxel against fungal pathogens of the host
plant. However, once the fungus is released and exposed to light, the endophytic fungus
shifts its metabolic resources from the synthetic paclitaxel pathway to the production of
defensive pigments. Thus, paclitaxel production by endophytic fungi increases when plant
host conditions are simulated [153,154].

4. Synthetic Biology Studies of Paclitaxel

In recent years, with the successful application of synthetic biology in the synthesis of
natural products, synthetic biology research on paclitaxel has also attracted much attention,
and the work in this area mainly focuses on the analysis of the biosynthetic pathways of
paclitaxel and the construction and optimization of the precursor cell factory of paclitaxel.

4.1. Biosynthetic Pathways

Paclitaxel has a complex molecular structure, and its biosynthetic pathway is equally
complicated. Until today, the biosynthetic pathway of paclitaxel is not yet fully understood,
as several steps remain undetermined and several enzymes remain unknown. The pathway
is postulated to involve 19 steps and is divided into three parts: (1) synthesis of pacli-
taxel precursor 10-DAB or baccatin III from GGPP, a precursor of diterpene compounds;
(2) synthesis of the phenyl-isoserine side chain; (3) acylation linkage of the side chain and
the C-13 position of baccatin III to form paclitaxel by hydroxylation and benzoylation
(Figure 10) [155].

There is a large number and variety of enzymes involved in the first stage, which is
key to the formation of paclitaxel. Taxadiene synthase (TS) catalyzes the first and com-
mitted step to cyclize GGPPS to taxa-4(5),11(12)-diene (taxadiene). After the formation
of the backbone, further hydroxylation at the C1, C2, C5, C7, C9, C10 and C13 sites is
followed by acylation, carbonylation, epoxidation and benzoylation, ultimately result-
ing in the formation of baccatin III, the precursor compound of paclitaxel. Among the
enzymes, five CYP450s [taxane 5α-hydroxylase (T5αH), taxane 2α-hydroxylase (T2αH), tax-
ane 7β-hydroxylase (T7βH), taxane 10β-hydroxylase (T10βH) and taxane 13α-hydroxylase
(T13αH)] responsible for catalyzing the hydroxylation of C-2, C-5, C-7, C-10 and C-13 sites
have been cloned and identified. Enzymes that remain unidentified are the CYP450s taxane
1β-hydroxylase (T1βH), taxane 9α-hydroxylase (T9αH), taxane 9α-oxidase (T9αO) and
C4,5 epoxidase.

The synthesis of the C13 side chain is a key factor in ensuring the anticancer activity of
paclitaxel [13] and is accomplished through a two-step reaction: α-phenylalanine isomer-
izes to form β-phenylalanine catalyzed by phenylalanine aminomutase (PAM), and then
β-phenylalanine-CoA forms with acetyl coenzyme A in the presence of phenylalanine-CoA
ligase (PCL) [156].

Subsequently, β-phenylalanyl-CoA is catalyzed by C-13 phenylpropanoyl-CoA trans-
ferase (BAPT) to form β-phenylalanyl baccatin III. The latter is further hydroxylated to
form 3′-N-debenzoyltaxol by the action of taxane 2′α-hydroxylase (T2′αH), which was
recently isolated from mining the T. baccata transcriptome [157]. Finally, paclitaxel was
obtained by the benzoylation of the nitrogen atom at the C3′ site of the side chain under
the catalysis of debenzoyl taxol N-benzoyl transferase (DBTNBT).
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4.2. Ab Initio Biosynthesis of Paclitaxel by Heterologous Systems

The production of paclitaxel in more amenable, fast-growing, heterologous hosts is a
truly sustainable green pathway, as there is no dependence on Taxus species at all. In recent
years, significant advances were conducted to develop heterologous systems for paclitaxel
biosynthesis, leading to the accumulation of paclitaxel intermediates. Recent achievements
in different hosts are summarized in Table 5.
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Table 5. Heterologous production of taxane metabolites in different platforms.

Products Concentration Host Reference

Taxadiene 1.0 g/L E. coli [158]
Oxygenated taxanes 570 mg/L E. coli [159]

Taxadiene 1.3 mg/L E. coli [160]
Oxygenated taxanes 33 mg/L E. coli and S. cerevisiae [161]

Taxadiene 1.98 mg/L Bacillus subtilis [162]
Taxadiene and taxadiene-5α-ol 1.0 mg/L and~25 µg/L S. cerevisiae [163]

Taxadiene 8.7 mg/L S. cerevisiae [164]
Taxadiene 72.8 mg/L S. cerevisiae [165]
Taxadiene 20 mg/L S. cerevisiae [166]
Taxadiene 129 mg/L S. cerevisiae [167]

Taxadien-5α-yl-acetate
and total oxygenated taxane 3.7 mg/L and 78 mg/L S. cerevisiae [168]

Taxadiene and
taxadien-5α-yl-acetate

71 mg/L and
21 mg/L S. cerevisiae [169]

Taxadiene 600 ng/g DW A. thaliana [170]
Taxadiene 160 mg/kg Tomato fruits [171]

Taxadiene and
5(12)-oxa-(11)-cyclotaxane no yield Tobacco

(Nicotiana sylvestris) [172]

Taxadiene 27 µg/g DW Tobacco (Nicotiana benthamiana) [173]

Taxadiene and taxadiene-5α-ol 56.6 µg/g and 1.3 µg/g FW Tobacco (Nicotiana
benthamiana) [174]

Taxadiene 87.7 µg/g DW Nicotiana tabacum cv. Petit Havana [175]

TS-transgenic ginseng 14.6–15.9
µg/g DW Ginseng (Panax ginseng) roots [176]

Taxadiene 0.05% FW of plant tissue Physcomitrella patens
(moss) [177]

Taxadiene 61.9 µg/L Alternaria alternata
(endophytic fungus) [178]

In 2001, Huang et al. realized the first heterologous synthesis of taxadiene by co-
expression of 1-deoxy-D-xylulose 5-phosphate synthase (DXS), isopentenyl pyrophosphate
isomerase (IDI), geranylgeranyl diphosphate synthase (GGPPS) and TS in a single strain
of E. coli with an unoptimized yield of 1.3 mg per liter of cell culture [160]. In 2010, Ajiku-
mar et al. reported a multivariate modular approach to metabolic pathway engineering
by which the biosynthetic pathway of paclitaxel was divided into two parts: a natural
mevalonate (MEP) pathway leading to IPP and dimethylallyl pyrophosphate (DMAPP),
and a downstream terpene synthesis route. By optimally balancing the two blocks, the
yield of paclitaxel in engineered E. coli was eventually successfully increased 15,000-fold to
~1 g/L. And with the subsequent introduction of T5αH and the Taxus CYP450 reductase,
taxadiene-5α-ol was heterologously synthesized with a yield of 58 mg/L [158]. E. coli is an
excellent host, but P450s are hard to express in E. coli due to the lack of an endomembrane
system. In 2016, Biggs et al. achieved efficient expression of T5αH in E. coli by optimizing
P450 expression, N-terminal modification and reductase chaperone interaction, with an
oxygenated taxane yield of 570 ± 45 mg/L [159].

S. cerevisiae is also a common chassis for the heterologous synthesis of natural products.
S. cerevisiae produces a functional type II P450 monooxygenase with an intact intracellular
membrane system that ensures the co-expression of hydroxylase genes associated with
paclitaxel biosynthesis [179]. Therefore, S. cerevisiae is more suitable and feasible for
paclitaxel intermediate expression. In 2008, Engels et al. efficiently synthesized taxadiene
in S. cerevisiae by establishing an adequate supply of GGPP and significantly increased TS
expression through codon optimization. Finally, taxadiene (8.7 mg/L) and geranyl geraniol
(33.1 mg/L) were obtained, which was the first demonstration of such enhanced taxadiene
levels in S. cerevisiae, indicating that taxadiene levels could be further increased [164].
Ding et al. constructed a pathway for paclitaxel biosynthesis by overexpressing ERG20
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and tHMGR genes in S. cerevisiae and introducing TS genes, and paclitaxel yield reached
72.8 mg/L [165]. Zhou et al. reported a co-culture method for the production of oxygenated
taxanes using E. coli and S. cerevisiae [161]. E. coli was used for taxadiene production,
whereas S. cerevisiae was employed for acetylation and CYP450-oxygenation chemistry.
This study combined the strengths of E. coli and S. cerevisiae and demonstrated the feasibility
of microbial consortia to rebuild the metabolite pathway.

Plant systems are safer and more economical than microbial systems. In 2019, Li et al.
utilized chloroplastic metabolic engineering to express TS, T5αH and cytochrome P450
reductase in Nicotiana benthamiana and successfully obtained taxadiene and taxadiene-5α-ol
with yields of 56.6 µg/g and 1.3 µg/g, respectively [174]. This study shows that tobacco
is a potential heterologous plant platform for the production of paclitaxel and lays the
foundation for further synthesis of oxygenated taxanes. The use of plant systems for the
synthesis of plant-derived natural products has theoretical advantages, such as its ability to
produce secondary metabolites from sunlight and natural carbon dioxide. However, the
superiority of plant systems over microbial systems in terms of culture conditions, difficulty
of genetic manipulation and mass cultivation is not prominent. Therefore, the realization
of heterologous synthesis of paclitaxel or its key precursors in plant chassis remains a long
way to go.

4.3. Semi-Synthesis by Microbial Systems

Paclitaxel analogues are structurally similar to paclitaxel and can be converted to
paclitaxel in just a few steps. Among them, XDT is the most abundant paclitaxel analogue
in the bark of the yew tree. The amount of XDT (0.4% of dry weight) is much higher than
that of paclitaxel. While XDT is not an intermediate in the paclitaxel biosynthetic pathway,
it can be transformed to paclitaxel via deglycosylation and acetylation. However, it is often
discarded in the process of extracting paclitaxel, resulting in the waste of resources and
potential environmental pollution. In 2017, Li et al. improved the catalytic efficiency of
10-deacetylbaccatin III-10-Oacetyltransferase (DBAT) of Taxus by mutagenesis and then
combined DBAT with a β-xylosidase to obtain an in vitro one-pot conversion of XDT to
paclitaxel yielding 0.64 mg/mL paclitaxel in 50 mL at 15 h (Figure 11) [180]. This approach
shows a promising, eco-friendly alternative for paclitaxel production from an abundant
analogue. However, the precursors currently used are still of plant origin, and the paclitaxel
supply issue is essentially not yet fully solved.
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In summary, paclitaxel has been extensively studied in the past decades both from
the biosynthetic and chemosynthetic standpoints. Although these methods continue to
evolve, there are still inevitable problems that limit their capabilities and drive up the price
of paclitaxel (Table 6). Therefore, the development of efficient methods for the production
of paclitaxel is highly desirable.
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Table 6. The production methods of paclitaxel and their advantages and disadvantages.

Methods Advantages Disadvantages

Extraction from plants - original production process
- main source

- long maturity time of the trees
- extraction using organic solvents

Total synthesis
- obtained many paclitaxel analogues
- organic synthesis of paclitaxel has been

greatly enriched

- academic-level pursuits
- large-scale production is

extremely unlikely

Semi-synthesis
- rich raw materials
- high yield
- suitable for industrialized production

- high cost
- relatively complicated synthesis process

Tissue and cell culture

- alleviate the dependence on the plant
- avoids the introduction of exogenous

genes that produce cytotoxicity
- no transgenic manipulations

- instability of cell lines in the long
fermentation periods

- poor yields in the fermenters,
even with elicitors

endophytic fungi method
- simple medium composition
- fast growth rate
- controllable conditions and low cost

- fungal storage
- the decay and loss of productivity caused

by multiple passaging cultures

Synthetic biology method

- easy operation and precise
cellular modification

- avoids unnecessary cellular metabolites

- heterologous synthesis of paclitaxel stops
at the first 2–3 steps

- microbial semi-synthesis still relies upon
plant material

5. Conclusions

As the tumor incidence rate around the world is increasing, malignant tumors such as
lung, breast and ovarian cancers have also become more prevalent, and affected patients
are the main users of paclitaxel. On the other hand, paclitaxel has been found to have other
medical uses beyond anticancer drugs. For instance, paclitaxel gel, a topical formulation
of paclitaxel for the treatment of rheumatoid arthritis, has been developed and marketed
in the United States. In addition, paclitaxel has been used as a coating agent for vascular
stents in medicinal devices. Newly developed uses of paclitaxel have further boosted the
demand for paclitaxel crude drugs on the international market.

Given this information, there has been a worldwide effort to address the availability
of paclitaxel over the past several decades. Although chemical semi-synthesis and direct
extraction of paclitaxel from the nursery cultivation of Taxus species are the main sources
for the clinical supply of paclitaxel, they are still dependent on plant material, and the
problem of paclitaxel supply is not inherently fully solved. Total synthesis research showed
that it was feasible to prepare paclitaxel in the laboratory and laid the foundation for future
approaches to paclitaxel. However, it remained within the realm of academic research.
The isolation of paclitaxel from endophytic fungi by microbial fermentation is considered
a sustainable method for obtaining paclitaxel, but no breakthroughs have been made.
Tissue and cell cultures represent an alternative and environmentally sustainable source
of paclitaxel. To increase paclitaxel yield, efforts have been made to optimize culture
conditions, screen highly productive cell lines and induce secondary metabolite pathways.
Future perspectives should be concentrated on the simultaneous use of empirical and
rational approaches.

Synthetic biology methods have been widely used for biosynthetic research on pacli-
taxel. Currently paclitaxel precursors such as taxadiene have been synthesized heterolo-
gously in microbial and plant systems, but further studies are needed to understand the
missing pathway enzymes and regulatory mechanisms. With the sequencing of the Taxus
genome, as well as progress in enzyme engineering, the biotechnological production of
paclitaxel will no longer be a dream in the near future.
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