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Abstract: Micro-sized chiral-nematic liquid crystal (N* LC) polymer particles have attracted consider-
able interest as versatile reflective colorants with selective circularly polarized light (CPL) properties.
However, challenges in achieving the desired size distribution of N* LC particles have led to an
incomplete understanding of their reflective characteristics. In this study, we successfully synthesized
N* LC particles via dispersion polymerization, enabling precise control over size polydispersity
by manipulating the composition of the polymerization solvent. Our investigation revealed that
monodisperse N* LC particles displayed distinct reflection bands with high CPL selectivity, while
polydisperse particles exhibited broader reflection with lower CPL selectivity. These findings under-
score the potential to synthesize N* LC particles with tailored reflective properties using identical
monomeric compounds. Furthermore, we demonstrated the production of multifunctional reflective
colorants by blending N* LC particles with varying reflection colors. These discoveries hold signifi-
cant promise for advancing the development of reflective colorants and anti-counterfeiting printing
techniques utilizing micro-sized N* LC particles.

Keywords: chiral-nematic liquid crystal; polymer particle; Bragg reflection; reflective coating;
dispersion polymerization; circularly polarized light

1. Introduction

Extensive research has focused on flexible polymer photonic materials with tunable
optical functions, finding applications in optical sensors, displays, reflective coatings, and
anti-counterfeiting printing [1–4]. Among these materials, chiral-nematic liquid crystals
(N* LC) have received considerable attention. N* LC consists of nematic mesogens and
chiral dopants, and in the N* LC phase, the mesogens align helically, resulting in a periodic
distribution of the refractive index [5,6]. Consequently, N* LC materials exhibit tunable
Bragg reflection with wavelength selectivity. The selective reflection wavelength (λ) can be
estimated using the following equation:

λ = n · P sin θ.

Here, n represents the average refractive index of the material, P denotes the helical pitch of
N* LC, and θ corresponds to the incidence angle. By controlling the concentration of chiral
dopants, P can be adjusted, enabling the fabrication of N* LC materials with desired λ,
namely, reflection colors. The helical alignment of mesogens in N* LC materials also leads
to circularly polarized light (CPL) selectivity in their reflection. Exploiting these distinctive
characteristics, reflective coatings and holographic materials have been developed by
precisely manipulating the alignment of mesogens in N* LC materials [7–9].

In recent years, significant progress has been made in fabricating droplets or particles
of N* LCs with controlled mesogenic alignment, unveiling their advanced optical func-
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tions [7,10–22]. The intriguing functionalities drive the development of various sizes of N*
LC particles from sub-micrometer to millimeter scales via the utilization of various particle
formation methods. These droplets or particles with a size of above 10 µm are typically
prepared by suspending N* LCs in water via vortexing or microfluidic techniques, enabling
precise control of their mesogenic alignment through surface interactions [23,24]. When the
mesogens align parallel to the interface, a radial helical axis alignment is formed, leading to
angular-independent Bragg reflection (retro-reflection) [10,22]. This unique optical property
has been investigated in detail for low molecular weight N* LC droplets with a size of more
than several 10 µm [10–20]. By contrast, the smaller micro-sized N* LC droplets or particles
have gained great attention due to exhibiting practical applicability, including dispersibility
in various materials, and the potential for large-area coating towards anti-counterfeiting
inks and micro-sensors. A promising approach for synthesizing such smaller particles
is the utilization of a polymerization technique, including suspension polymerization,
dispersion polymerization, etc. Polymerized N* LC particles, in particular, offer enhanced
thermal stability, ensuring the integrity of their shape and mesogenic alignment. Belmonte
et al. successfully synthesized polydisperse N* LC polymer particles through suspension
polymerization and demonstrated their effectiveness as reflective coatings and optical
sensors [7,21,25–27]. Nevertheless, our current understanding of several-micrometer-sized
N* LC particles and their reflective functions remains limited, with only a few studies
conducted in this area. In particular, the impact of size dispersity on their properties has
yet to be explored.

One of the characteristic reflective functions of N* LC particles is the photonic cross-
communication phenomenon, which is inter-particle reflection [7,28]. The reflected light
from the N* LC particle is further reflected by neighboring particles. Thus, the intensity of
photonic cross-communication should be affected by the size polydispersity of particles.
In this study, our focus was to investigate the impact of particle size polydispersity on the
reflective functions of micro-sized N* LC particles. We recently reported the first successful
synthesis of monodisperse N* LC particles via dispersion polymerization [29]. In this
technique, polymerization takes place in a solution containing monomers, a dispersion
stabilizer, and an initiator within a poor solvent for the produced polymer. As polymer-
ization progresses, the polymer precipitates, resulting in the formation of micro-sized
particles [30–32]. By manipulating the affinity of the polymerization solvent to the pro-
duced polymer, both particle size and polydispersity can be regulated [31]. In this work, we
successfully produced micro-sized N* LC particles with different degrees of size dispersity
through dispersion polymerization. These N* LC particles exhibited varying polydispersity
and corresponding reflection functions. Our findings revealed that the degree of poly-
dispersity had a significant influence on the sharpness of the reflection bands and the
CPL selectivity. This knowledge is of utmost importance for the practical utilization of
micro-sized N* LC particles as coating materials, paving the way for their application in
diverse fields.

2. Results and Discussion
2.1. Synthesis and Characterization of N* LC Polymer Particles

N* LC particles were successfully synthesized via dispersion polymerization, with
a conversion of ~50% (Table 1). We confirmed that the desired copolymer was obtained
by dispersion polymerization (Figure 1a) and the copolymer composition was the same
as the molar ratio of the polymerization mixture. The molecular weight and molecular
weight distribution of the copolymers were determined by the SEC (Figure 1b) and are
summarized in Table 1. In DSC measurements, during the cooling process, we observed
a glass transition at 36 ◦C, accompanied by a phase transition peak at 113 ◦C, with an en-
thalpy change (∆H) of 0.86 kJ/mol (Figure 2c). This ∆H aligns closely with the typical value
reported for the I–N* phase transition of polymer LCs [33]. Identical thermal behavior was
also observed in the heating process of the DSC thermogram. POM observations further
support that the phase transition at 113 ◦C corresponds to the I–N* transition. Thus, we
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concluded that the copolymers synthesized in this study exhibit only the enantiotropic N*
LC phase between 36 and 113 ◦C. SEM observations of the resulting polymer particles re-
vealed the formation of spherical micro-sized particles under all polymerization conditions
(Figure 2). The particle size and CV were determined by analyzing the SEM images and are
summarized in Table 2. Consistent with a previous report [31], both the particle size and CV
increased with higher volume ratios of DMF. For instance, particles synthesized in a solu-
tion with 50 vol% DMF (P1a and P1b) exhibited sizes of 2.5 µm with very small CV values
(CV = 0.04). Conversely, particles obtained in a solution with 57 vol% DMF (P2a and P2b)
displayed sizes of 5.3 µm with relatively larger CV values (CV = 0.3). We expected that
these differences were due to the formation of unstable nuclei with increasing solubility of
the produced polymers. In the mixed solvent system of MeOH and DMF, MeOH acted as a
poor solvent, while DMF served as a rich solvent for the produced polymers. The affinity
between the mixed solvent and the polymer intensified with the increasing DMF content,
rendering the polymers formed at the initial dispersion polymerization stage unstable and
prone to aggregation. This resulted in the formation of polydisperse nuclei, which subse-
quently grow larger during the growth process. Despite the constant amount of polymer
produced in both P1 and P2 systems, irrespective of the solvent used, the particle size in
the P2 series, characterized by a smaller number of nuclei, increased. Additionally, the
polydispersity of the stable nuclei was maintained during the growth process, ultimately
leading to the formation of large polydisperse microparticles in the P2 system. Notably, the
particle size and CV remained independent of the CM ratio in the monomer mixture in all
polymerization conditions.

Table 1. Polymerization conditions for synthesis of N* LC particles.

Particle LCM 1,2 CM 1,2 PVP 1 AIBN 1 Solvents (vol/vol)
Conversion (%) Mn (Mw/Mn)DMF MeOH

P1a 97.6 2.4

130 4.0
50 50

53 15,000 (2.6)
P1b 96.2 3.8 51 15,000 (2.6)
P2a 97.6 2.4

57 43
45 13,000 (2.1)

P2b 96.2 3.8 49 13,000 (2.1)
1 Molar ratio of the materials in the polymerization mixture. 2 Total concentration of monomers in the polymeriza-
tion solution was maintained at 7.3 wt%.
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Figure 1. (a) 1H NMR spectra for monomers and polymer P1a in CDCl3 as a representative example: 
(blue) LCM, (black) CM, and (red) P1a. (b) Size-exclusion chromatogram of P1a. Molecular weight 
was calibrated with standard polystyrene. (c) DSC thermograms of P1a (2nd scan cycle). Scanning 
rate was 10 °C min–1. Abbreviations: G, glassy; N*, chiral nematic; I, isotropic. 

 
Figure 2. (a,c) SEM images and (b,d) histograms depicting the particle size distribution of N* LC 
polymer particles. Scale bars in the SEM images represent 5 µm. 

  

Figure 1. (a) 1H NMR spectra for monomers and polymer P1a in CDCl3 as a representative example:
(blue) LCM, (black) CM, and (red) P1a. (b) Size-exclusion chromatogram of P1a. Molecular weight
was calibrated with standard polystyrene. (c) DSC thermograms of P1a (2nd scan cycle). Scanning
rate was 10 ◦C min–1. Abbreviations: G, glassy; N*, chiral nematic; I, isotropic.
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Figure 2. (a,c) SEM images and (b,d) histograms depicting the particle size distribution of N* LC
polymer particles. Scale bars in the SEM images represent 5 µm.

Table 2. Size, coefficient of variation, and selective reflection wavelength of N* LC polymer particles.

Particle Diameter (µm) CV λ (nm)

P1a 2.5 0.04 700
P1b 2.6 0.04 420
P2a 5.3 0.3 590
P2b 5.3 0.3 440

Abbreviations: CV, coefficient of variation; λ, maximum wavelength of reflection.

2.2. Mesogenic Alignment in N* LC Polymer Particles

To explore mesogenic alignment, we performed polarized optical microscope (POM)
observations of N* LC polymer particles suspended in water (Figure 3). In the aqueous
medium, individual particles could be observed separately, preventing stacking and con-
tacting with each other. This condition allowed for the observation of a clear optical texture
for each particle. POM observation revealed that all particles exhibited a distinct texture
characterized by a cross-shaped dark-field pattern known as the Maltese cross pattern,
indicating a centrosymmetric mesogenic alignment [7,17]. The interference colors observed
around the Maltese cross pattern were dark yellow (P1 series) and bright yellow (P2 series),
suggesting that their retardations were around 100 nm and around 200 nm, respectively.
The color difference might be due to the change in particle size. To further understand
the alignment directions of the mesogens, we performed the POM observations using a
sensitive tint plate with a 530 nm retardation and a one-dimensional slow axis. As depicted
in Figure 3e, the interference color depends on their retardation; thus, we can identify the
optical axis (here, the slow axis along the longer axis in the mesogen) due to the additive or
subtractive effect resulting in higher or lower order interference colors when the slow axes
of the mesogen and a tint plate are parallel or perpendicular, respectively. In the case of P1b,
observed with the tint plate, a subtractive color (orange converted from dark yellow) was
observed in the upper right and lower left areas, while an additive color (blue converted
from dark yellow) was observed in the lower right and upper left areas. These results sug-
gest that the mesogens in the polymer particles are aligned parallel to the interface, and the
helical axis of the N* LC is radially aligned. The ideal mesogenic alignment speculated from
these results is schematically depicted in Figure 3f. These POM observations are consistent
with previous studies on the fabrication of low molecular weight N* LC droplets [7,17].
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Figure 3. POM images of N* LC polymer particles dispersed in water observed without (left) and
with the sensitive tint plate (right): (a) P1a, (b) P1b, (c) P2a, and (d) P2b. Scale bars represent 5 µm.
White arrows show the direction of polarizers and blue arrows show the slow axis of the sensitive tint
plate. (e) The interference color chart for POM observation. (f) Schematic illustrations of mesogenic
alignment (upper) and helical axis alignment (lower) derived from POM results.

2.3. Reflection Properties of N* LC Polymer Particles

The reflection spectra of N* LC polymer particles deposited onto carbon tape were
measured using an integration sphere (Figure 4). All samples exhibited a distinct reflec-
tion band at a specific wavelength determined by the CM concentration. We examined
the impact of size polydispersity on the selective reflection behavior. Particles P1a and
P1b displayed well-defined and sharp reflection bands (Figure 4a). In contrast, particles
P2a and P2b exhibited reflection peaks in a similar wavelength range as the P1 series,
but their reflection bands appeared broader (Figure 4b). We attributed this broadening to
photonic cross-communication [7,28]. We depict the schematic illustration of photonic cross-
communication in Figure 4c,d. Due to the tilted alignment of the helical axis contributing
to this phenomenon, the wavelength of photonic cross-communication is shorter than that
of retro-reflection. In the case of monodispersed particles, uniaxial inter-particle reflections
occur only when the helical axis is tilted by 45◦, resulting in an exceedingly limited effective
reflection area for the photonic cross-communication. Thus, the intensity of inter-particle
reflections diminishes, making it undetectable in reflection spectra. Conversely, in poly-
disperse particle systems, the intensity of photonic cross-communication is higher due to
the increased number of possible combinations of inter-particle reflections. Although P2b
appears to exhibit sharp reflection, we believe that photonic cross-communication predom-
inantly occurs in the ultraviolet region, out of the measurement range of our instrument.

2.4. Circular Polarization Selectivity of Photonic Cross-Communication

To further investigate photonic cross-communication, we examined the reflections
of N* LC polymer particles using epi-illuminated microscopy (Figure 5). Without a CPL
filter, the reflection colors of each particle were consistent with the results obtained from
the reflection spectroscopy. Both P1 and P2 series exhibited reflection colors corresponding
to their respective helical pitches at the center of the particles. However, P2 also showed
reflections of shorter wavelengths at the outer edge of the particles.
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Figure 4. Reflection spectra of N* LC polymer particles: (a) P1 series and (b) P2 series. (c,d) Schematic
illustration of the reflection mechanisms from N* LC polymer particles with radial helical axis
alignment: (c) for monodisperse particles and (d) for polydisperse particles. The red lines in the
particles indicate the direction of the helical axis within the particles. The black arrows represent the
incident white light, the red arrows indicate retro-reflection light originating from the center of the
particles, and the green and blue arrows represent photonic cross-communication.
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Next, we evaluated the CPL characteristics of the reflection light. Previous studies
have shown that CM used in this study induces a right-handed (RH) helical structure
and RH-CPL reflection [34]. Through observation of the reflected light through a RH-CPL
transmission filter, we observed only the reflection color from the center for all particles,
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indicating that these reflections were retro-reflections from the particles. Interestingly, when
using a left-handed (LH)-CPL transmission filter, these retro-reflections in the P1 series
disappeared almost completely, while the P2 series still exhibited a green and deep blue
reflection color at the outer edge, respectively. It has been previously demonstrated that
CPL selectivity of N* LC is reduced under oblique incident light on the helical axis [35].
Via the above discussion regarding photonic cross-communication, which is derived from
the tilted helical axis against the incident light, we concluded that the LH-CPL reflection
in P2 particles contained reflection due to photonic cross-communication. Conversely, the
absence of LH-CPL reflection in the P1 particles indicated no photonic cross-communication.
These discussions are strongly supported by the results obtained from the reflection spectra.

Our findings indicate that reflection properties, such as reflection bandwidth and CPL
selectivity, can be controlled by adjusting the polydispersity of N* LC particles. Monodis-
perse particles (P1 series) exhibit sharp reflection bands and high CPL selectivity, making
them suitable for applications in reflective colorants, sensors, and holographic coatings. On
the other hand, polydisperse particles (P2 series) display multiple reflection bands with
varying CPL selectivity which can be utilized in advanced anti-counterfeiting printing.

2.5. Mixing N* LC Polymer Particles with Different Reflection Colors

To further demonstrate the capabilities of N* LC polymer particles in achieving ad-
vanced reflective functions, we conducted experiments to mix particles with different
reflection colors. Aqueous dispersions of the particles were simply mixed in equal vol-
umes. The mixture of P1a and P1b on carbon tape exhibited reflection spectra that were
an addition of the spectra from each particle (Figure 6a). Microscopic examination under
epi-illumination confirmed the homogeneous mixing of the particles, which independently
reflected only the color corresponding to their helical pitches (Figure 6c). Importantly,
this reflection originated solely from the center of the particles and exhibited pure RH-
CPL. These results indicated that monodisperse N* LC particles did not display photonic
cross-communication even when mixed with different reflection colors. Consequently, the
reflection color of monodisperse particles can be easily modulated as a simple addition
of colors.

On the other hand, the mixture of P2a and P2b demonstrated a more broadened reflec-
tion band (Figure 6b). Unlike the monodisperse particles, the spectral shape of this mixture
did not simply result from the linear summation of individual particle spectra; instead, the
reflection bands within the mixture exhibited asymmetrical broadening predominantly in
the shorter wavelength region (400 to 550 nm). Epi-illumination microscopy revealed that
this mixture exhibited the reflection colors at both the center and the edge of the particles
(Figure 6d). Under CPL filters, the mixture reflected not only RH-CPL at the center but also
LH-CPL at the edge. Specifically, a green reflection color was observed at the edge of P2a,
while the edge of P2b exhibited a blue to deep blue reflection color. As mentioned, these
observations were attributed to photonic cross-communication. Specifically, the occurrence
of photonic cross-communication between P2a and P2b was accompanied by an increased
intensity in a wider wavelength range compared to the individual cases of these particles.
This suggests that P2b efficiently reflected light from P2a, thereby enhancing photonic
cross-communication and increasing the reflectance in the shorter wavelength region.

These results clearly demonstrate that size dispersity can modulate the reflection
color and CPL selectivity when mixing N* LC particles with different reflection colors.
These findings open up new possibilities for creating advanced reflective coatings using
N* LC particles. For instance, by combining LH- and RH-CPL reflective N* LC particles,
holographic images can be achieved when viewed through circularly polarizing glasses.
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Figure 6. (a,b) Reflection spectra of N* LC polymer particles and their mixtures: (a) P1a (red), P1b
(blue), and P1a + P1b (green); (b) P2a (red), P2b (blue), and P2a + P2b (green). (c,d) Epi-illuminated
micrographs of the mixtures captured without a filter (left), with RH-CPL transmission filter (middle),
and with LH-CPL transmission filter (right): (c) P1a + P1b and (d) P2a + P2b. Scale bars represent 5 µm.

3. Materials and Methods
3.1. Materials

The molecular structures of monomers and dispersion stabilizers are shown in Scheme 1.
The base liquid crystal monomer (LCM) was kindly provided by Osaka Organic Chemi-
cal Industry Ltd. (Osaka, Japan) and recrystallized from methanol (MeOH) prior to use.
LCM usually shows a nematic liquid crystal phase in the polymer state [36]. The syn-
thesis and purification of a chiral monomer (CM) have been previously reported [37].
The dispersion stabilizer, polyvinylpyrrolidone (PVP), and polymerization initiator, 2,2′-
azobis(isobutyronitrile) (AIBN), were obtained from commercial suppliers and used as
received. All solvents and other reagents used in this study were of reagent grade, com-
mercially available, and used without further purification unless otherwise stated.
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3.2. Preparation of N* LC Particles

LCM, CM, PVP, and AIBN were dissolved in a mixed solvent of N,N-dimethylformamide
(DMF) and MeOH in a 30 mL Schlenk flask. The composition of the polymerization mixture is
listed in Table 1. The solution was degassed by several freeze–pump–thaw cycles, backfilled
with Ar gas, and stirred at 55 ◦C for 20 h. The resulting N* LC particles were isolated via
filtration through a membrane filter (ADVANTEC T080A025A) with a pore size of 0.8 µm
and washed with MeOH to remove the residual monomers, initiators, and excess amount of
stabilizer to obtain the desired N* LC polymer particles in around 50% conversion.

3.3. Characterization of N* LC Particles
1H NMR spectra were recorded on a ECS-400 spectrometer (400 MHz, JEOL, Tokyo,

Japan) in CDCl3. Chemical shifts were reported in parts per million (ppm), using the
residual proton in the NMR solvent. Size-exclusion chromatography (SEC) was performed
using LC-20AD (Shimadzu, Kyoto, Japan) equipped with a Shodex KF805 column and
UV-vis detector (254 nm) at 40 ◦C, using THF as an eluent at a flow rate of 1 mL min–1.
The molecular weights were calibrated using a polystyrene standard. The thermodynamic
property was determined using differential scanning calorimetry (DSC, X-DSC7000, SII,
Tokyo, Japan) at heating and cooling rates of 10 ◦C min−1. All analytical data confirmed
that the desired polymers were obtained.

A suspension of N* LC polymer particles (1.0 mg mL−1, 0.2 mL) in water was deposited
onto a pre-cleaned glass substrate (15 mm × 13 mm) and allowed to slowly evaporate at
5 ◦C overnight. The resulting polymer particles on the substrate were then transferred
onto carbon tape for examination using a scanning electron microscope (SEM) (VE-8800,
KEYENCE, Tokyo, Japan). SEM image analysis was conducted using image processing
software (ImageJ 1.54f) to determine the average particle size and coefficient of variation
(CV) [38]. A total of 200 particles were analyzed in the image analysis.

The reflection spectra were acquired using a UV-vis spectrometer (V-550, Jasco, Tokyo,
Japan) equipped with an integration sphere (ISV-469, Jasco, Tokyo, Japan). A standard
white plate (RS50, StellarNet, Tampa, FL, USA) was employed as a reference. Polarized
optical microscopy and epi-illuminated microscopy were conducted using a BX51 micro-
scope (Olympus, Tokyo, Japan) equipped with an epi-illumination source and a CPL filter
(CP42HE, Edmund Optics Japan, Tokyo, Japan).

4. Conclusions

In this study, we successfully prepared micro-sized N* LC particles with controlled size
dispersity through dispersion polymerization and systematically investigated their reflec-
tion properties. By precisely controlling the size dispersity using different polymerization
solvents, we elucidated the significant influence of size dispersity on reflection characteris-
tics. Our findings revealed that monodisperse particles exhibit distinct behavior devoid of
photonic cross-communication, displaying sharp reflection bands with high CPL selectiv-
ity. In contrast, polydisperse particles exhibit pronounced photonic cross-communication,
resulting in broader reflection bands with diverse CPL selectivity. Furthermore, we demon-
strated the impact of polydispersity on reflection color and CPL selectivity by mixing N*
LC particles of different colors. These discoveries not only enhance our understanding of
N* LC particle systems but also hold significant implications for their practical applica-
tions in reflective colorants, anti-counterfeiting printings, micro-sensors, and other related
fields. The development of our N* LC particles contributes to the advancement of tunable
reflective colorant technologies.

5. Patents

The methodology for generating N* LC particles outlined in this paper has been
filed as following patents by Ritsumeikan University: JP 2020-139135A (2020) and
PCT/JP2022/019448 (2022).
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