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Abstract: Lipid membrane nanodomains or lipid rafts are 10–200 nm diameter size cholesterol- and
sphingolipid-enriched domains of the plasma membrane, gathering many proteins with different
roles. Isolation and characterization of plasma membrane proteins by differential centrifugation and
proteomic studies have revealed a remarkable diversity of proteins in these domains. The limited size
of the lipid membrane nanodomain challenges the simple possibility that all of them can coexist within
the same lipid membrane domain. As caveolin-1, flotillin isoforms and gangliosides are currently
used as neuronal lipid membrane nanodomain markers, we first analyzed the structural features of
these components forming nanodomains at the plasma membrane since they are relevant for building
supramolecular complexes constituted by these molecular signatures. Among the proteins associated
with neuronal lipid membrane nanodomains, there are a large number of proteins that play major
roles in calcium signaling, such as ionotropic and metabotropic receptors for neurotransmitters,
calcium channels, and calcium pumps. This review highlights a large variation between the calcium
signaling proteins that have been reported to be associated with isolated caveolin-1 and flotillin-lipid
membrane nanodomains. Since these calcium signaling proteins are scattered in different locations of
the neuronal plasma membrane, i.e., in presynapses, postsynapses, axonal or dendritic trees, or in the
neuronal soma, our analysis suggests that different lipid membrane-domain subtypes should exist in
neurons. Furthermore, we conclude that classification of lipid membrane domains by their content in
calcium signaling proteins sheds light on the roles of these domains for neuronal activities that are
dependent upon the intracellular calcium concentration. Some examples described in this review
include the synaptic and metabolic activity, secretion of neurotransmitters and neuromodulators,
neuronal excitability (long-term potentiation and long-term depression), axonal and dendritic growth
but also neuronal cell survival and death.

Keywords: flotillin; caveolin; ganglioside; lipid rafts; lipid membrane domains; calcium channel;
NMDA; PMCA; P2XR; membrane domains; neuron; brain

1. Lipid Membrane Nanodomains Organization in the Neuronal Plasma Membrane

The classical model of the plasma membrane, named the fluid mosaic model, de-
scribed by Jonathan Singer and Garth Nicolson in 1972, is excessively reductionist for
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properly accounting for the well-organized plasma membrane domains. Lipid rafts are
plasma membrane large areas of 10 and 200 nm diameter in size enriched in cholesterol
and sphingolipids [1]. The existence lipid rafts was initially a subject of debate between
physical chemists and histologists due to difficulties in visualizing them and their ill-
defined molecular composition [1,2]. In the last two decades, a number of new techniques
such as single-molecule spectroscopy, super-resolution microscopy, fluorescence recovery
after photobleaching, stimulated emission depletion, Förster resonance energy transfer
(FRET), total internal reflection fluorescence, and fluorescence correlation spectroscopy
techniques allowed to estimate the lower limit of lipid rafts in <20 nm [3–6]. Plasma
membrane domains of 26 ± 13 nm radius have been observed in living cells diffusing
as one entity for minutes [7]. Further work using stimulated emission depletion (STED)
far-field fluorescence nanoscopy revealed spots sized 70-fold below the diffraction barrier
transiently trapped between 10 and 20 ms, in cholesterol-mediated molecular complexes
dwelling within <20-nm diameter areas [3]. The diffraction limit of visible light impedes
domains smaller than 1 µm to be directly visualized and indeed large micrometer-sized
lipid rafts domains are readily observed in artificial membranes [3]. Also, associated pro-
teins can mask the direct observation of lipid rafts in living cells. A tentative attempt to
determine analogous domains in living cells has been made based on homo-FRET effi-
ciencies obtained through the rate of fluorescence anisotropy loss and using GFP labeled
glycosyl-phosphatidylinositol-anchored proteins which allow an estimation of the upper
size limit of lipid rafts at ~5 nm [8,9]. Yethiraj and Weisshaar have suggested that the spatial
heterogeneity in cell membranes limits the transferability of the conclusion drawn from ar-
tificial membranes to live cells, as integral membrane proteins attached to the cytoskeleton
act as obstacles that limit the size of lipid domains [8]. For all these reasons, we introduce
the concept of lipid membrane domains in this review, arising from the fact that some
membrane proteins form oligomers and clusters in the membranes, which formation is
favored by cholesterol and other lipid species.

Regarding the protein components associated with lipid membrane domains, widely
named in the bibliography as lipid rafts, a proteomic study identified up to 36 integral
membrane proteins associated with lipid membrane domain and flotillin, as a marker
of these membrane domains where identified in the human brain [10]. In another study,
175 membrane-associated proteins were identified by proteomics, including L-type calcium
channels and the plasma membrane calcium ATPase (PMCA), using caveolin-1 (Cav-1) and
flotillin-1 (Flot-1), as biomarkers of lipid membrane domains isolated from brain neonatal
mice [11]. Similarly, a proteomic assessment of proteins present in isolated lipid membrane
domains of adult mouse brains identified 133 proteins, using Flot-1 as a marker of plasma
membrane domains [12]. This study also highlighted the colocalization of this protein with
several calcium channel subunits [12]. In cultured hippocampal neurons, sphingolipid-
cholesterol-enriched microdomains have been localized flotillin 1, Thy-1 cell surface antigen
or CD90, as specific lipid membrane-domain markers, associated with the ganglioside
named monosialotetrahexosylganglioside (GM1) [13]. It is worth to mention at this point
that although GM1 is not a definite lipid membrane-domain marker, its distribution into
lipid membrane domains depends on the concentration. At elevated concentration, GM1
can form its own domains organizing in the plasma membrane in non-lipid membrane-
domain areas located predominantly in the Ld phase [14]. Very recent discoveries regarding
the molecular architecture of lipid membrane nanodomains support their organization in
planar tightly packed nanodisks of Cav-1, with a 140Å external diameter size [15]. It is
also probable that a similar size supramolecular complex based on flotillin might exist,
based on the observed structural conformations of stomatin, prohibitin, flotillin, and the
modulator for HflB protease specific for phage lambda cII repressor (HflK/C) domains
(SPFH domain) [16]. Also, some studies have reported the isolation of up to 4 types of
domains in the plasma membrane at physiological conditions [17]. Given the existence
of these nanostructures, a question arises regarding how many of the reported protein
molecules in the aforementioned proteomic and non-proteomic studies [10–13] could fit
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within a single of these nanostructures on one neuronal lipid membrane domain. The
quantity of proteins reported in the neuronal lipid membrane domain contrasts with the
number of proteins that could fit within or surrounding a 140Å diameter size nanodisk,
if this type of structure stands alone as the main component of neuronal planar-lipid
membrane domains in the plasma membrane. Neuronal lipid membrane domains are
different from those of the invaginated caveolae in a variety of cell types, which require
the presence of the protein named cavin and higher-order interactions with other pro-
teins [18–20]. Cav-1–cavin interaction seems required to form mature caveolae, which have
a polygonal shape to induce curvature in non-neuronal cells [21–24]. Cavin is absent or
released when conforming planar-non-invaginated lipid membrane domains [20,25–27],
like those described in neuronal lipid membrane domains.

In addition to these studies, more efforts are required to ascertain whether Cav-1
nanodisks independently exist in neuronal cells, either as discrete entities supporting non-
invaginated areas on the plasma membrane or as components of supramolecular structures
analogous to those observed in invaginated caveolae [20]. Since supramolecular structures
with a similar protein composition to that of caveolae do not exist in neurons, the presence of
a high number of proteins located in lipid membrane domains raises questions regarding
the number of proteins that one Cav-1 nanodisk can hold due to steric hindrance. Methods
for lipid membrane-domain isolation based on differential gradient centrifugation cannot
discern the existence of lipid membrane nanodomain subtypes. Particularly, cytochemical
and histochemical studies combined with physicochemical techniques based on quantita-
tive fluorescence energy transfer (FRET) techniques, as those conducted by the research
group led by Prof. Gutierrez-Merino, have provided insights into this matter by identifica-
tion of proteins in clusters complexing with protein markers of lipid membrane domains
(caveolin and flotillin isoforms) at a distance <100 nm in studies performed in neurons and
brain tissue using the appropriate secondary fluorescent antibodies against the primary
antibody of the selected lipid membrane-domain marker (Box 1) [28–36]. As discussed
in these articles, this is a particular case of FRET from one donor to multiple acceptors,
a situation in which the maximum range of FRET distance is significantly expanded, as
analyzed in detail in former studies with purified biological membranes [23,37–39]. These
research findings might support the existence of clusters that could stand alone as indi-
vidual entities, such as Cav-1 nanodisks, with a diverse variety of calcium transporter
elements. The well-recognized and wide distribution of these transporters in neurons,
functioning as partners of lipid membrane-domain markers, strongly suggests the poten-
tial existence of multiple lipid membrane-domain subtypes within neurons. A neuronal
lipid membrane-domain subtype is defined in this work as a plasma membrane, synaptic
or extrasynaptic structure characterized by the presence of a protein biomarker of lipid
membrane nanodomain and a specific calcium transport systems. The existence of these
subdomains might correlate with the function of calcium gradients associated with cytoso-
lic calcium microcompartments, near the plasma membrane [33,40], and such patterns may
arise under certain conditions [41–44].

In this context, it is intriguing and controversial whether different types of lipid
membrane domains might exist within a single cell or across different cell types based
on the complex lipid and protein composition of these domains. This issue might be
particularly notorious in tissues such as the brain, where recent findings using single-cell
sequencing and methods to map the spatial location of gene expression have unraveled the
extraordinary cellular diversity existing within this tissue [45]. Strategies for isolating lipid
membrane domains, named rafts in these studies, that utilized membrane tension generate
large observable membrane domains or lipid rafts, that are converted into small ones when
the tension was relieved [17]. This result lends support to the hypothesis that a myriad of
not well-described plasma membrane nanodomains might exist.
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Box 1. FRET from one donor to multiple acceptors.

Labeling of proteins with donor and acceptor secondary fluorescent antibodies forming a
FRET pair is an approach that has been used to identify proteins clustered in lipid raft domains.
This is a particular case of FRET from one donor to multiple acceptors because the density of
labeling of commercial secondary fluorescent antibodies ranges between 2 and 10 dye molecules per
antibody [46–49], and also because in theory, one primary IgG antibody can bind up to 2 secondary
fluorescent IgG antibodies, one in each of the symmetrical domains of the primary antibody.
Therefore, one dye molecule of the donor fluorescent antibody can form a FRET pair with 2–10
and 4–20 acceptor dyes bound to the acceptor secondary antibody for 1:1 and 1:2 stoichiometries
of the primary/secondary antibody complex, respectively. The major advantage of a high density
of labeling of the secondary fluorescent antibody is the amplification of the fluorescence intensity
signal for fluorescence microscopy imaging of cells. In addition, it has another collateral advantage
for FRET distance calculations, namely, that homotransfer between donors located in one fluorescent
secondary antibody and time and space averaging of different orientations of donors and acceptors
bound to different IgG molecules which should lead to a distribution close to a random orientation
between donor and acceptors.

The number of acceptor dyes available to a donor dye bound to a fluorescent antibody for
FRET will be larger when the target protein units form clusters within lipid membrane-domains.
In this case, FRET will extend to acceptor dyes of secondary antibodies bound to the primary
antibodies that stain all neighbor protein targets present in the cluster within the area accessible
to the IgG complex of primary/secondary antibodies plus the effective FRET distance between
the selected donor and acceptor dyes. Each 1:1 complex of primary/secondary IgG antibodies
will reach proteins located up to ≈30 nm from the target protein, taking into account the size of
IgG molecules and their rotational mobility. Therefore, this implies that donor dyes bound to a
primary/secondary IgG/ protein-1 complex can make contacts with acceptor dyes bound to the
primary/secondary IgG complex attached to protein-2 separated up to ≈ 60 nm in the same lipid
membrane-domain. If there is more than one unit of the target protein-2 stained with the secondary
fluorescent antibody labeled with the acceptor dye, the number of acceptors/donor available for
FRET will be proportionally increased.

In addition, the overall rate (kT) of FRET can be written for these cases as the sum of the rate
of FRET between each one of the possible donor/acceptor pairs that can be formed in the system
under study, i.e., kT = Σ ki, see for example [50,51]. Therefore, the overall FRET efficiency is the sum
of the efficiency of energy transfer between all the possible donor/acceptor pairs that can be formed
in the system [50–52]. This further increases the effective FRET distance using donor and acceptor
secondary fluorescent antibodies. A simple calculation can serve to illustrate this point. For FRET
from 1 donor to 10 acceptor molecules located at an equidistant distance, the apparent distance for
50% efficiency of FRET will be ~10 × R0 from the target protein labeled with the donor secondary
fluorescent antibody, where R0 is the value of this distance for a single donor/acceptor pair, which
ranges between 5 and 6 for the most frequently used FRET pairs in fluorescence microscopy. Let
us remind here that the useful donor/acceptor distance range for a single donor/acceptor pair is
approximately up to twice the distance for 50% efficiency of FRET [51,53]. Note that 10 acceptors per
donor can be reached in any of the following cases: (i) 1:2 stoichiometry of the primary/secondary
antibody complex and an average density of labeling of the acceptor fluorescent antibody of 5 dye
molecules per antibody, and only one unit of the target proteins in the lipid membrane-domain;
and (ii) 1:1 stoichiometry of the primary/secondary antibody complex and an average density of
labeling of the acceptor fluorescent antibody of 5 dye molecules per antibody, with two protein units
labeled with the acceptor fluorescent antibody within 60 nm in the same lipid membrane-domain.
In summary, the effective FRET distance range extends to 80–200 nm when donor and acceptor dyes
are bound to secondary fluorescent IgG antibodies directed against different target proteins present
in lipid membrane-domains.

Thus, FRET using donor and acceptor secondary fluorescent antibodies is a suitable approach
to monitor the co-localization of proteins within lipid membrane-domains of 100–200 nm. Also, it
follows from this analysis that when there is only one unit of one of the target proteins within each
lipid membrane-domain, co-localization of proteins within smaller lipid membrane-domains of
40 or 20 nm can be studied with the use of fluorescent primary antibodies or antibody Fab fragments,
respectively, instead of using fluorescent secondary antibodies.

For cells, application of membrane tension resulted in several types of large domains;
one class of domains was identified as a lipid raft, defined here as lipid membrane domain.
Furthermore, the distribution of protein components of lipid domains [54–57] in planar
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non-invaginated regions of the neuronal plasma membrane [20,25–27], may be considered
a robust evidence for the existence of not-so-transient, underlying structures that support
several membrane nanodomains in neurons. This structural arrangement may differ from
that observed in other cell types, where membrane invaginated areas forming caveolae
have been described involved in membrane trafficking, with a transient formation and
elimination of the protein content of these domains.

The objective of this review is to provide a comprehensive exploration and integrative
analysis of information, suggesting the existence of lipid/protein-domain subtypes within
neuronal cells. Several proteins that play major roles in neuronal calcium signaling have
been described as components of lipid membrane domains [58], i.e., neurotransmitter
receptors [59,60] and calcium transport systems [43,61], and they present a differential
subcellular distribution within a single neuron and across different types of neurons, as
shown in this review. The distribution pattern serves as a crucial tool for proposing the
existence of diverse lipid membrane-domain subtypes in neurons.

2. Properties of Caveolin-, Flotillin- or Ganglioside-Containing Lipid
Membrane Domains

Within neuronal lipid membrane domains, at least two classes of protein, named
caveolin and flotillin, can scaffold cholesterol and have been used as biomarkers of these
domains [62–68]. The differential spatial distribution of the caveolin-, flotillin- or some
specific lipid-enriched domains of the neuronal plasma membrane suggests that various
domains co-exist in one neuron. We will call them caveolin- and flotillin-enriched lipid
membrane domains. Their differential association with plasma membrane receptors acting
through calcium signaling, as well as with calcium channels and transport systems might
be useful to classify lipid membrane nanodomains. Other lipids, such as gangliosides have
been associated with both in certain contexts but not always [69–71]. This supports the idea
that their presence might constitute a marker for additional lipid membrane nanodomain
subtypes. The characterization and differentiation between these domains have been
challenged by the limitations and insufficient resolution of the conventional methods for
preparative isolation of lipid domains using a whole brain tissue or cells in culture (Figure 1).
This is a major handicap for a proper classification of lipid membrane-domain subtypes.
A potential dissection through immunohistochemical and immunocytochemical methods
could offer insights of their precise intracellular and intercellular locations. Moreover,
this dissection could contribute to a better comprehension of how key plasma membrane
components in charge of calcium homeostasis are regulated in lipid membrane domains.
The subsequent paragraphs of this review provide a brief account of the actual knowledge
of these nanodomains in neurons.

2.1. Caveolin-Enriched Lipid Membrane Domains in Neurons

Cav-1 is the major component forming caveolae at the plasma membrane [27,72–75].
Several domains are recognized in the linear sequence of this protein related to its function
and its interaction with lipids. Membrane binding, cholesterol recognition, and oligomer-
ization functions have been attributed to the scaffolding domain (SD) of Cav-1 [76–78]. As
part of the SD, a function for the intramembrane domain (IMD; residues 102−134) has been
assigned, forming a unique α-helical hairpin that does not traverse the membrane [79–81].
Proteins associated with caveolin are characterized by the presence of an aromatic-rich cave-
olin binding motif (CBM) with the following compositions (φXφXXXXφ, φXXXXφXXφ or
φXφXXXXφXXφ, where φ is an aromatic and X an unspecified amino acid) [82–84]. Cav-1
also presents a cholesterol recognition/interaction amino acid consensus (CRAC) domain
composed of the amino acid residues VTKYWFYR [85], which allows the interaction of this
protein with cholesterol. It must be highlighted at this point that the presence of a CRAC
domain in proteins is neither necessary nor sufficient for cholesterol binding [86,87]. In
this sense, proteins including CRAC domains can be neutral with respect to cholesterol
binding, and proteins lacking CRAC domain can bind cholesterol which is the case of
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transmembrane protein domains lacking a CRAC, a CARC or a tilted domain, as reviewed
by Fantini and Barrantes [88]. For this reason, cholesterol interaction with caveolin might
be beneficiated by additional interactions with the protein/membrane microenvironment.
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Cav-1 (Figure 2, panel a), which is one of the units required for caveolae forma-
tion, can hetero- or homo-oligomerize in complexes composed of 14–16 monomers
(200–400 kDa) [89,90]. Recently, the typical supramolecular structure of this protein
has been described by cryo-electron microscopy [15]. Cav-1 overexpression in E. coli
formed 8S-like complexes and oligomerize, forming heterologous caveolae (h-caveolae)
and sculpting membranes, which are two of the essential functions of mammalian cells
caveolae [91,92]. Cav-1 can assemble in protomers organized into a tightly packed disc
with a planar membrane-embedded surface [15]. Several Cav-1 protomers (11 protomers)
can oligomerize to form an 8S complex, a type of complex with a proposed biological
role essential for caveolae biogenesis since 8S complexes are known to concentrate in
endoplasmic reticulum (ER) exit sites [93]. Also, they accumulate at the Golgi, where
they lose their diffusional mobility and associate with cholesterol [94,95] and eventually
assemble into 70S complexes [93]. The cholesterol-rich membranes containing 70S Cav1
complexes are then transported to the cell surface. The formation of the 8S complex
occurs in a cooperative process mediated by its oligomerization domain (OD), which is
aided by its SD and signature motif (SM). The crystallography study revealed that the
11 Cav-1 protomers can organize into a disc-shaped complex with a diameter of ~140 Å
and a height of ~34 Å to form the 8S complex [15]. The nanodisk contains an outer “rim”,
a central β-barrel “hub”, and 11 curved α-helical “spokes” with Cav-1 C-terminal ends
oriented towards the hub and N-terminal ends towards the rim (Figure 2, panel b). This
study supports that caveolin complexes may stabilize flat membrane surfaces of polyhe-
dral structures rather than imposing continuous membrane curvature [15]. Although
this structure is formed in an almost cholesterol-depleted environment, since cholesterol
synthesis in E. coli is present in only freshly isolated strains [96,97], this study provides
evidence of the structural dependence that caveolae might have on other proteins but
also cholesterol in the membranes [98]. Interestingly, the location of the cholesterol
interacting domain on the Cav-1 nanodisk surrounding this structure (Figure 2, panel
c and d) is compatible with the “lipid belt” model proposed to mediate the interaction
between some lipids and proteins, including ion channels, some of them described as
Cav-1 protein partners in lipid membrane domains (Figure 2, panel e). This observation
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suggests that Cav-1 nanodisks may be a part of a lipid belt or a “shell” constituting
the immediate perimeter of the protein channel [38,99–101], in those channels where
no cholesterol interacting domain has been described, complexing and conforming a
lipid-protein membrane domain (Figure 2, panel e).
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Figure 2. Molecular architecture of caveolin- and flotillin-enriched domains based on Cav-1 forming
nanodisks based on the PDB model 7SC0 and as reported in the bibliography [15] and similar
proteins to flotillin constituting SPFH domains. Cav-1 constitutes the singular unit for the formation
of these structures. The amino and carboxyl end of the protein are labeled as N- and C-end
(panel (a)). The scaffolding domains (SD, residues 82–101) and the intermembrane domain (IMD,
residues 102–134) formed are shown in respect to the Cav-1 region that faces the membrane as
shown in this panel. Nanodisks as formed by 11 Cav-1 protomers (individually labeled with
different colors) which are tightly packed disks locating in planar membrane-embedded surfaces
(panel (b)). The location of the C-ends oriented to form a central β-barrel “hub” (~28 Å wide), and
N-terminal sides forming an outer “rim” (~23 Å wide) for generation of the nanodisks with a 140 Å
diameter in size is shown in this panel. Representation of the membrane-oriented Cav-1 nanodisk
surface in respect to cholesterol binding site (labeled in red is shown in panel (c). Representation of
the cytoplasmic Cav-1 nanodisk surface in respect to cholesterol binding site (labeled in red is shown



Molecules 2023, 28, 7909 8 of 34

in panel (d)). Location of the cholesterol binding site at the periphery of the nanodisk is compatible
with the “lipid belt” proposed model for the interaction of some lipids with ion channels suggesting
that cholesterol may be a part of a lipid belt or a “shell” constituting the immediate perimeter of
the channel protein with could be mediated by complexation with Cav-1 nanodisks [38,99–101]. An
artistic representation of a Cav-1 nanodisk (PDB: 7SC0, brown-colored backbone) interacting with
voltage-dependent L-type calcium channel subunit α-1S (Cav1.1 subunit, PDB: 5GJW, blue-colored
backbone) in a model membrane of dipalmitoyl phosphatidylcholine (colored in grey) is shown in
panel (e). An artistic representation of the macromolecular structure of a flotillin-enriched domain
based on that reported in the literature [102], (using 7VHP PDB model, light-brown-colored backbone)
complexing with some proteases that might degrade misfolded/damaged membrane proteins or
cytoplasmic proteins (red circles) at the membranes (panel (f)). Hydrophobic tails are represented in
blue and polar heads in red, as described in bacterial membrane microdomains [102].

Regarding caveolin-enriched domains in neurons, certain studies have indicated that
neuronal lipid membrane domains associated with caveolin are flat and do not have the
invaginated appearance described for caveolae [103]. Caveolae curvature has been shown to
be dependent upon cavin, and its release from lipid membrane domains has been associated
with planar non-invaginated surfaces distinct from caveolae [20,25–27]. The crystallographic
studies that provide evidence for the existence of macromolecular structures organized
into Cav-1 nanodisks suggest that neuronal lipid membrane domains might at least be
constituted by this structure, serving as fundamental units responsible for caveolin-enriched
domains present in the plasma membrane of neurons.

Although the best-known endocytic route in cells is dependent upon clathrin and in-
dependent upon lipid membrane domains [104,105], alternative endocytic routes involving
lipid membrane domains mediated by caveolae exist [106,107]. They rely on the protein
named dynamin in some cases on Pacsin-2 and are dependent upon cholesterol, as shown
by its sensitivity to cholesterol depletion [108–110]. They have been involved in the uptake
of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) and opportunistic lig-
ands, including simian virus 40 and cholera toxin (CTx) [111]. Some authors have stated
that distinct mechanisms of clathrin-independent endocytosis have unique sphingolipid
requirements [112], but in many cases a role has been assigned to caveolin as an initiator of
intracellular signaling via protein clustering, the segregation of proteins, and the protein
trafficking to and from the membrane-associated with G proteins [113,114]. These pro-
cesses can generally directly regulate channel permeability for calcium or modulate other
components that regulate intracellular calcium concentration through the channel [82,115].
For example, secreted neurotrophins (including brain-derived neurotrophic factor (BDNF)
and neurotrophic factors (NT): NT3, NT4, and NT5) can exert prolonged effects on presy-
naptic transmitter secretion or postsynaptic responses [116]. Neurotrophins binding to
their receptors (tyrosine kinase (Trk)-A, Trk-B, Trk-C, etc.) occur in discontinuous regions
of neuronal cell membranes associated with membrane lipid membrane domains [117].

Regarding the relevance of caveolin-enriched domains in brain neurons in in vivo
studies, some of them have shown a correlation between Cav-1–knocking down (Cav-1–
KD) and the disruption of Cav-1-enriched membrane domains found in neurodegenerative
diseases, such Alzheimer’s disease where an alteration of signaling processes associated
with lipid membrane domains has been also described [118]. Caveolin has also been
implicated in synaptic vesicle exocytosis impairment ascribed to changes in synaptic
vesicle dynamics driven by Cav-1 palmitoylation using a Cav-1- knock-out animals (Cav-
1-KO) [119]. Oppositely, an increase in caveolin expression was found to improve and
preserve motor and cognitive function after brain trauma using animal models [120]. These
experiments support that Cav-1 levels might enhance cellular survival and growth. Also,
some researchers support its role as a candidate for its level modulation to repair the injured
and neurodegenerative brain [121,122]. The opposite effect has been observed in some
animal models of Huntington’s disease, where a loss or reduction of Cav-1 expression
rescues the phenotype in neurons and significantly delays the onset of motor decline and
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development of neurons. Therefore, aberrant interaction between Huntingtin and Cav-1
leading to altered cholesterol homeostasis in these diseases has been suggested [123].

2.2. Histological and Cytological Distribution of Caveolin-Enriched Lipid Membrane Domains in
Neurons and Their Function in Calcium Signaling

Cav-1 has been identified as a component of lipid membrane domains localized within
cell bodies and dendrites of primary culture of cerebellar granule neurons and Purkinje
cells [33,119,124,125], soma and postsynapses of the anterior cingulate cortex neurons in
tissue [126,127], cell body and puncta localized to areas of cellular outgrowth and synapses
and dendritic spines of primary culture of hippocampal neurons [128–130].

A study has shown that Cav-1 partially colocalize with the N-methyl D-aspartate
receptor subtype 2B (NR2B) subunit of the N-methyl-D-aspartic acid receptor (NMDAR),
which is highly enriched in dendritic shafts and spines of rat cortical neurons at postsynap-
tic terminals [131,132]. NMDARs are glutamate-gated ion channels that mediate excitatory
neurotransmission in the central nervous system (CNS) [133]. The presence of NMDARs at
presynapses or postsynapses has a different function. In the case of presynapses, NMDA
receptors have a function in neurotransmission and plasticity [134], and postsynaptic recep-
tors are needed for spike-timing-dependent long-term depression (LTD) induction [135].
A study of Cav-1 overexpression in neurons showed that Cav-1 mediated expression of
NMDAR subtypes promoting pathways dependent upon the membrane cholesterol as-
sociated with primary neuron arborization events [121]. Two regions on NR2B subunits
(W635AFFAVIF642, and, F1042SFKSDRY1049) have been potentially suggested to interact with
caveolin-binding motifs [84,132]. A disruption of the interaction between Cav-1 and NR2B
has anti-nociceptive effects at the anterior cingulate cortex [126], which correlate with the
observed effect of pain agonists promote a shift of the NR2B subunits of NMDA receptor
subunit to non-lipid membrane-domain areas [132]. Also, an increased amount of caveolin
promotes an enhanced surface level of NR2B in this brain area [126], which leads to an
increase in cytosolic calcium concentration and activation of extracellular-signal-regulated
kinase/cAMP response element (ERK/CREB) signaling pathways [136]. Thus, decreased
caveolin expression in cells disrupts NMDAR signaling events, and reintroducing Cav-1
rescues proper NMDAR signaling. Since NR2B contains the binding site for glutamate [137],
this suggests that caveolin is required for the signal transduction pathway activated by
glutamate release from the presynaptic terminals [132]. It has been suggested that the
regulation of the NR2B subunit by Cav-1 might be attributed to the modulation of proto-
oncogene tyrosine-protein kinase (Src) activity since Cav-1 was observed to be essential for
NMDA-mediated phosphorylation of Src and ERK1/2 activation [132], which is required
for NMDA-mediated signaling (i.e.,: NMDA preconditioning stimuli) [121,132,138].

Src family tyrosine kinases (SFKs) serve as central regulators for the modulation of
NMDAR signaling in normal and ischemic conditions and the induction of long-term poten-
tiation (LTP) [139–141]. This modulation accounts for SFK-mediated tyrosine phosphoryla-
tion of NR2B, a subunit found highly phosphorylated in postsynaptic terminals [140,141].
Head and collaborators proposed that Cav-1, via its ability to scaffold key signaling compo-
nents, mediates in the NMDAR localization to neuronal membrane domains, NMDAR/Src
tyrosine kinase family/ERK signaling, and protection of neurons from ischemic injury and
cell death [132]. Cav-1 promotes NR2B surface levels and has been shown to contribute to
the modulation of chronic neuropathic pain in the anterior cingulate cortex [126].Cellular
stress events (i.e., superoxide anion radical, osmotic stress, and UV exposure) can increase
SFK-mediated phosphorylation of caveolin [142]. In addition, some studies early reported
the existence of a negative regulatory feedback loop in non-neuronal cells in which Y14
phosphorylated Cav-1, would bind and activates C-terminal Src kinase (Csk) and subse-
quently phosphorylates and inactivates Src [143–146]. In neurons, the regulatory role of
Cav-1 phosphorylation/dephosphorylation by Src/Csk has been shown to mediate axonal
outgrowth of motor neurons in Xenopus neuromuscular development [147]. Regarding the
regulation of the system by oxidative stress, it should be noted that indeed it can activate
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both Src-kinases and their negative regulator Csk and induces phosphorylation of Cav-1
as a targeting protein for Csk [145]. These results suggest that caveolin could mediate
in events mediated by NMDAR, such as those associated with neuronal plasticity and
injury that might be associated with oxidative stress [132,148], by regulation of its level
of phosphorylation.

Presynaptic NMDA receptors play pivotal roles in excitatory neurotransmission, con-
tributing to synaptic plasticity and facilitating presynaptic neurotransmitter release, func-
tions that are crucial for synaptic maturation and plasticity during formative periods of
brain development [134,149,150]. It has been reported that presynaptic NMDA receptors
might modulate superoxide anion production by NADPH oxidases (NOXs) [151]. In turn,
NMDA receptors may be modulated by superoxide anion by a similar mechanism in post-
synapses [142], and locations where NR2B subunits have been found at presynapses as the
cerebellum [152] and neocortex [153]. In this case, modulation by superoxide anion might be
associated with superoxide anion producing enzymes of very specific sources, also cluster-
ing within lipid membrane domains [32]. Flavoproteins, such as the enzyme cytochrome b5
reductase (Cb5R), have been established to form complexes within plasma membrane lipid
membrane domains of cerebellar granule neurons, as those described by our laboratory [28].
Cb5R is one of the major sources of superoxide anion in the plasma membrane lipid mem-
brane domains of cerebellar granule neurons [29,31]. This protein holds the potential to
facilitate certain superoxide anion-dependent adjustments of the NMDA receptor at the
presynaptic terminals. The existence of these proteins associated with caveolin [33], might
constitute an alternative form of caveolin-enriched lipid membrane-domain subtype in
respect to those previously commented.

Both Cb5R and neuronal nitric oxide synthases (nNOS), as alternative redox flavopro-
teins located within the neuronal plasma membrane lipid membrane domains, have been
proposed to form complexes associated with caveolin-enriched domains [32,33]. These
complexes have been postulated to function as redox nanotransducers, in charge of con-
trolling calcium transporters such as the L-type calcium channels and NMDA receptors.
These microchip-like structure have been proposed to tightly orchestrate coupling between
calcium and nitric oxide signaling in presynapses of glutamatergic cerebellar granule
neurons (CGNs) [32]. The co-localization of these components agrees with the suggested
effect of glutamate on the activation of NMDA receptors in neuronal terminals containing
nNOS, leading to nitric oxide (NO•) formation and amplifying neurotransmitter release, a
mechanism early hypothesized by Snyder and Dawson [154]. These specialized domains
can promote a localized and transient increase in calcium concentration up to 1 µM within
a nearby microcompartments of 100 nm with low calcium buffering capacity [32]. nNOS is
inactive at low calcium concentrations, but it active when calcium concentration is high
enough to afford a significant saturation of calmodulin (EC50 ≈ 0.2–0.4 µM). The mech-
anism by which nNOS is regulated by caveolin remains unknown. The modulation of
nNOS activity by Cav-1 seems to be distinct from the one observed to regulate endothelial
NOS [155].

In hippocampal and cortical neuron cultures, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR) has been associated with caveolin-enriched
lipid membrane domains [156]. The AMPAR present in lipid membrane domains is
regulated by the activity of NMDAR and NO•-mediated pathways [129,156]. This
regulation might be potentially interconnected with redox nanotransducers described
above in adjacent domains observed in cerebellar granule neurons, particularly in
presynaptic membranes [32]. NO• has a mimicking similar effect to that of NMDA,
leading to the recruitment of AMPARs to the surface since lipid membrane domains
are required for receptor insertion into the membrane [156]. Cholesterol depletion
leads to instability of surface AMPAR, a gradual loss of synapses (both inhibitory and
excitatory), and loss of dendritic spines [129].

Metabotropic glutamate receptors (mGluRs) are responsible for so-called slow synap-
tic transmission associated with the effects of peptide neurotransmitters and non-peptide
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neuromodulators [157,158]. Metabotropic receptors are G-protein-associated receptors
enriched at excitatory synapses [159,160]. There are eight subtypes of mGluRs classified
in presynapses as group I mGluRs (formed by mGluR1/mGluR5 subtypes) selectively
activated by 3,5-dihydroxyphenylglycine and coupled to inositol phospholipid hydrolysis,
group II mGluRs (formed by GluR2/mGluR3 subtypes) and group III mGluRs (formed by
mGluR4/mGluR6/mGluR7/mGluR8 subtypes) [161–163]. Association of metabotropic
mGluR with caveolin has been shown for group I and II [159,164,165], which might
have a wide different location depending on the receptor type [166]. These group I of
metabotropic glutamate receptors are modulated by Cav-1 [128] through the caveolin
binding motif of the mGlu1 receptor (FVTLIFVLY-φXXXXφXXφ). Cav-1 interacts with
mGluR1 through a motif contained within the last segment of the first transmembrane
(TM) domain and the first intracellular loop of the receptor [159]. A second putative
Cav-1 binding motif contained within i3 and the first segment of TM6 is also present
in mGluR1/5 [159]. Localization of mGluR1/5 in lipid-protein membrane domains is
promoted by Cav-1, which controls the rate of constitutive mGluR1 internalization and,
therefore, regulates the expression of the receptor at the cell surface [128,159]. Indeed,
the control of constitutive mGluR internalization rate and the surface level of mGlu1
has been shown to be dependent upon caveolar/lipid membrane-domain-dependent en-
docytosis associated with Cav-1 [159]. In addition, activation of other mGluR induced
through complex to estrogen receptor subunits has been associated with different cave-
olin isoforms, including Cav-3 expression, in different brain areas: striatum, the estrogen
receptor (ER) alpha (Erα)/Cav-1/mGLUR5/Gq GTPases (Gq) complex and the ERα or
ERβ/Cav-3/mGLUR3/Gi/o proteins complex; hippocampus, ERα/Cav-1/mGLUR1a/Gq
complex and the and the ERα or ERβ/Cav3/mGLUR2/Gi/o complex; the arcuate nucleus,
ERα/Cav-1/mGLUR1a/Gq; astrocytes (hypothalamus) ERα/Cav-1/mGLUR1a/Gq; dorsal
root ganglion neurons, ERα/Cav3/mGLUR2/Gi/o [167].

A G-protein-dependent intracellular calcium release by activation of phospholipase C
(PLC), inositol-3-phosphate (IP3) pathway, and the transient receptor potential canonical
channel (TRPC) are components associated with the group I of metabotropic receptors.
These proteins are all present in lipid membrane domains [168–171]. Using dihydrox-
yphenylglycerol, an agonist of the group I mGluR, an increase in the mGluR1α clustering
level to phosphorylated caveolin was found [172]. Other studies have shown that, the
interaction between Cav-1 and group I mGluRs regulates mGluR-dependent phosphory-
lation/activation of MAPKs [159]. Lipid membrane-domain disruption with methyl-β-
cyclodextrin induced a block in the agonist-dependent mGluR1α internalization, being the
implication of caveolin suggested in synaptic plasticity in the cerebellum [173].

L-type calcium channels are known to regulate synaptic activity, contributing to the
initiation of endosome recycling, which regulates the abundance of synaptic molecules
such as AMPA-type glutamate receptors in neuronal dendrites [174]. This function might
support the existence of L-type calcium channels associated with caveolin-enriched do-
main as a lipid membrane nanodomain subtype located at postsynaptic membranes [174].
Some subunits of the L-type calcium channel, such as A2δ-2 subunits, colocalize with
proteins binding to gangliosides in alternative lipid membrane-domain structures to those
described associated with caveolin [175]. Although non-invaginated caveolar structures
have been suggested to exist in neurons, internalization of neurotrophins activated tyrosine
kinases receptors (TrkA) [176] and TrkB [118], at growth cones might be dependent upon
caveolin-associated endocytosis [177,178]. L-type calcium channels are also very sensitive
to oxidative stress, as reported by the NMDA receptor, but in this case, by direct effect
since these complexes present an allosteric thiol-containing “redox switch” that controls
the activity of the L-type calcium channel [179].

Regulation of N-type calcium channel by Cav-1 has been observed in caveolin-enriched
lipid membrane domains of neuroblastoma NG108-15 cell lines [180]. Downregulation
of Cav-1 production in these cells induced a 79% reduction in the N-type current density
without significant changes in the channel’s activation and inactivation time course. The
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regulation of the channel by membrane cholesterol associated with caveolin was observed
to be responsive to this effect rather than induced by direct modulation by caveolin [180]. A
similar modulatory effect was observed for R-type voltage calcium channels and neurokinin
receptors using kidney cell lines, where cholesterol was responsible for its modulation since
intracellular diffusion of Cav-1 scaffolding peptide or overexpression of Cav-1 unaffected
the channel function [180].

Localization of the PMCA has also been found at caveolin-enriched lipid membrane
domains [33]. The cerebellar synaptosome isoform 4 of the PMCA was specifically lo-
calized in this domain with respect to other isoforms locating at non-lipid membrane
domains [181]. Some studies show the stimulation of PMCA by acidic phospholipids
such as phosphatidylserine [182]. This lipid is normally located at the inner leaflet of
plasma membranes and enriched in caveolin-enriched domains in non-neuronal cells [183].
Phosphatidylserine externalization is typical of cell death processes associated with apopto-
sis [184], and this event might modulate PMCA activity and the interaction this lipid [185].

Purinergic receptors (P2X) have been associated with Cav-1-enriched lipid membrane
domains [186–188]. Cooperatively, CaMKIIα and Cav-1 drive ATP-induced membrane
delivery of the P2X3 receptor as reported in dorsal root ganglion neurons [187]. The
NH2-terminus of the P2X3 receptor was identified to interact with caveolin through the
‘T12KSVVVKSWTI22’ motif and the extended motif ‘F6FTYETTKSVVVKSWTI22’ was en-
gaged to CaMKIIα binding [187]. P2X3 receptors are associated with calcium influxes,
which further activate the calcium/calmodulin-dependent protein kinase IIa (CaMKIIa),
and are primarily expressed in primary sensory neurons located in dorsal root ganglion
(DRG) responsible for pain [189,190]. Upon receptor phosphorylation, an increase in P2X3
interaction with Cav-1 has been observed, providing a mechanism for P2X3 receptor sen-
sitization in pain development [187]. It is particularly noteworthy that immunoreactivity
of P2X3 in the plasma membrane was not decreased by the cholesterol depletion with
methyl-β-cyclodextrin and cholesterol sequestering had no effect on P2X3- or P2X2/3-
mediated inward currents [191]. This result support that the P2X3 receptor may be diffusely
distributed in lipid membrane domains and in non-lipid membrane domains in primary
sensory neurons [191].

2.3. Flotillin and Neuronal Lipid Membrane Domains

Domains formed by flotillin in the plasma membrane differ from those in which Cav-1
is present. Furthermore, they are dynamic and bud into the cell [192]. The main protein
components of these domains are the flotillin isoforms, Flot-1 and Flot-2, which share
50% sequence identity [193]. They are in charge of membrane curvature induction in non-
neuronal cells, the formation of plasma-membrane invaginations morphologically similar
to caveolae, and the accumulation of intracellular vesicles [192]. Early studies suggested
flotillin proteins organization into stable tetramers in membrane microdomains [194].
Some studies suggested the possible role of flotillin as a new marker of caveolae [194], and
subsequent studies have shown that flotillin and caveolin do not always co-localize [56].
Nevertheless, it cannot be discarded that a certain amount of flotillin could be enriched
at caveolae [195]. An estimation of the size dimension of flotillin-enriched lipid membrane
domains by immunolabelling suggests the formation of patches ranging 40–200 nm in
neurons [196]. These studies correlate with a description of flotillin protein complexes
as part of a family of proteins named SPFH (stomatin, prohibitin, flotillin, and HflK/C)
forming an operon with NfeD proteins [197]. The ancient origin of SPFH-domain proteins
and the Nodulation efficiency protein D (NfeD) protein and the stomatin operon partner
protein (STOPP) can be traced back to the ancient living cells that diverged and evolved
to Archaea and Bacteria to constitute the main binding region of apolar polyisoprenoids as
well as cholesterol, contributing to lipid membrane-domain formation [197].

SPFH are proteins enriched in the plasma membranes and also in other subcellular
membranes, of prokaryotic and eukaryotic cells [111,198]. Electron microscopy studies have
shown a wide distribution of Flot-1 in cells localizing at the cytoplasmic side of the plasma
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membrane, the cytoplasmic side of primary and secondary lysosome membrane, lipofuscin,
multivesicular bodies, Golgi saccules, the cytoplasmic leaflet of the vesicles associated
with Golgi apparatus and the lumen side of ER of neuronal cells of rat brain [196]. They
have an SPFH domain in common in their structure formed by an N-terminal hydrophobic
region that associates proteins to the membrane [111,198]. Flotillin isoforms contain a
conserved domain C-terminal to the SPFH domain, called the ‘flotillin domain’, although
is not present in the other SPFH domain-containing proteins [193]. SPFHs can form high
ordered structures complexes organized as circular structures comprising homo- or hetero-
oligomers [102,199,200]. Several structural membrane microdomain organizations by SPFH
family proteins have been proposed [102] (Figure 2, panel f). In flotillin structure, two
domains with unclear functions have been shown to be present. The first SPFH domain
contains sites for acylation [201,202]. In contrast, the C-terminal domain mediates the
oligomerization and contains Ala-Glu repeats and phosphorable Tyr residues [203–205],
which are important for flotillin function.

In brain, anatomical and physiological studies have shown that Flot-1 enhances the for-
mation of glutamatergic synapses but not GABAergic synapses, and it has been suggested
that this protein might have a role in neurodevelopmental disorders and axon regenera-
tion and growth [206]. Flotillin is recognized as essential for growth cone elongation and
regeneration in retinal ganglion cells and mouse hippocampal neurons [207,208]. Notably,
when flotillin isoforms are downregulated, and the signaling pathways that govern actin
dynamics are disrupted, axon formation fails to occur [209].

Some studies have demonstrated that flotillin directly regulates the formation of cad-
herin complexes [210,211]. Flotillin-enriched domains have been observed to be required
for the dynamic association, stabilization of cadherins at cell–cell junctions [212], transduc-
ing extracellular signals into intracellular signaling events, and modulating alterations in
the cytoskeleton in response to various external stimuli [213], signal transduction of Trk
receptors, and participates in cellular trafficking pathways [214]. However, the molecular
mechanism of action of this protein in these processes is not well understood [215].

It is known that Flot-1 acylation determines this protein traffic from the endoplas-
mic reticulum toward the plasma membrane [210]. Palmitoylated Flot-1 efflux from the
endoplasmic reticulum also mediates Cav-1 traffic to the plasma membrane, avoiding
the endoplasmic reticulum stress by inhibiting the synthesis of Cav-1 [210]. Once Flot-1
reaches the plasma membrane, it hetero-oligomerizes with Flot-2 and undergoes depalmi-
toylation/repalmitoylation, which evokes prolonged insulin-like growth factor-1 (IGF-1)
signaling [210]. Recently, a role of Flot-1 in mediating the membrane expression and cellular
responses of the transient receptor potential vanilloid type 2 (TRPV2) has been described in
primary neuronal culture of dorsal root ganglion [216]. This suggests a crosstalk between
TRPV2 and lipid membrane-domain components may influence the cellular morphology
and play critical roles in nociception and pain [216]. Also, flotillin depalmitoylation has
been linked to receptor cycling between the plasma membrane and endosomes alone or
with Flot-2 [210].

Although palmitoylation/palmitoylation of flotillins regulate this protein location into
lipid membrane domains, the regulatory role of palmitoylation is not exclusive for this
protein. Cav-1 can be palmitoylated on multiple cysteine residues although palmitoylation
is not necessary for localization of caveolin to caveolae [217]. Palmitoylated Cav-1 has been
involved in signaling molecules assembly in plasma membrane caveolae and in intracel-
lular cholesterol transport [218]. Also, cav-1 palmiltoylation for example, can regulate
synaptic vesicle dynamics events [119], which are processes associated with SNARE ma-
chinery [219] linked with different plasma membrane domains [220]. Some of the proteins
constituting the SNARE complexes might eventually be associated with lipid membrane
domains [221,222]. Therefore, this process should not be directly associated with lipid
membrane domains [223].

Glebov and collaborators have suggested flotillin participation in a third endocytosis
pathway different from those described for clathrin and caveolin [224]. Flot-1 can colocalize
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in endosomes with the fluid-phase marker dextran, the glycosylphosphatidylinositol-
anchored CD59 (GPI-AP CD59), and CTx and is required for a dynamin-independent
endocytic pathway that mediates receptor-independent fluid-phase endocytosis and these
markers [224]. This supports that gangliosides colocalization might be used to track en-
docytosis processes, as also suggested for caveolin-enriched lipid membrane domains.
In neurons, flotillin was initially discovered in caveolin-independent cholesterol- and
glycosphingolipid-enriched membrane microdomains expressed during axon regenera-
tion [212].

2.4. Histological Cytological Distribution of Flotillin-Enriched Lipid Membrane Domains in
Neurons and Function Calcium Signaling

Flotillin isoforms have been widely used as a lipid membrane-domain biomarker.
Flotillin isoforms have been observed to colocalize with calcium channel α1 subunit
CaV2.1, which are subunits of P/Q type calcium channels located presynaptic areas of the
brain [175,225], GPI-enriched areas [226] and small uniform puncta of pre and postsynapse
of hippocampal neurons [206,227], soma and postsynapses of rat cerebral cortex [127].
Flotillin-enriched lipid membrane domains are abundant in the axonal plasma membrane
and are found in less amount in somatodendritic membranes [228]. This correlated with
electrophysiological results using whole-cell patch clamp, showing that Flot-1 increases in
the frequency of miniature excitatory postsynaptic currents but not miniature inhibitory
postsynaptic currents. In contrast, amplitude and decay kinetics of either type of synaptic
current were unaffected, linking these domains with calcium homeostasis [206].

One-third of the NMDAR clusters with flotillin in cultured hippocampal neurons [227].
In hippocampal neurons, both NR2A and NR2B subunits of NMDARs interact with Flot-
1 [227]. Flot-1 has been associated with the NR1 subunit preferentially at synaptic areas
rather than non-synaptic NR1-enriched areas of hippocampal neurons [206]. It has been
suggested that NMDAR interaction with flotillin is involved in recruiting NMDARs into
lipid membrane domains to initiate second messenger signaling cascades linked with
receptor depletion for neuronal protection during NMDAR-induced excitotoxicity [229].
Indeed, some lipoprotein receptor involved in cholesterol traffic from astrocytes to neurons,
such as low-density lipoprotein receptor-related protein 1 (LRP1) [230–232], has been
suggested to influence the composition of postsynaptic protein complexes through NMDA-
induced degradation of the postsynaptic density protein 95 (PSD-95) [233], which might
link this process with cholesterol homeostasis and regulation of lipid membrane domains
enriched on PSD-95. NMDARs can associate with scaffold protein PSD-95 and form
signaling complexes that differ in composition depending on whether they are found in the
postsynaptic density or the presynaptic lipid membrane domains. Recently, enhancement
in the formation of glutamatergic synapses but not gamma-aminobutyric acid-dependent
(GABAergic) synapses has been observed by modulation of Flot-1 level, which suggests
further exploration of Flot-1 effect in neurodevelopmental disorders [206]. The authors
have postulated that flotillin might have a role in the endocytic internalization of the NMDA
receptors after high neuronal stimulation, thereby implicating a subtype of flotillin-enriched
domain in the modulation of this process [227]. Flot-1 acylation determines this protein
traffic from the endoplasmic reticulum toward the plasma membrane and supports the
idea that these domains might be involved with the trafficking of these receptors toward
the membrane [168].

Flot-1 and Flot-2 are associated with Ras-binding family of small GTPase 11A (Rab11A)
and sorting nexin 4 (SNX4) binding proteins that participates in the recycling and co-
transportation of PSD-95, N-cadherin, the glutamate receptors GluA1 and GluN1 to be
delivered to the postsynaptic membrane in spines of hippocampal neurons [234]. The
mechanism of action remains to be determined [234].

The Cav 2.1 subunit (also known as α (1A) subunit) is a component of the P- and
Q-type calcium channels [235], which have different locations and properties than the
L-type calcium channels associated with caveolin domains. The α2δ-2 subunit of P- and
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Q-type calcium channels [236–238], partitions with Cav2.1 subunit into flotillin-enriched
lipid domains isolated from the cerebellum [175].

PMCA has also been found in isolated flotillin-enriched lipid membrane domains from
dissociated cortical and hippocampal primary neurons in culture, and its activity has been
affected by cholesterol depletion [181,239]. The PMCA activity in these domains has been
described to be higher than the PMCA activity excluded from these microdomains [240].
The activity decreased when cholesterol was depleted from these domains [240].

2.5. Gangliosides as a Lipid Membrane-Domain Biomarkers for Some Caveolin- and
Flotillin-Enriched Lipid Membrane Domains

The presence of gangliosides has been observed in both caveolin- and flotillin-enriched
lipid membrane domains [241–243], although they are not specifically localized at the
plasma membrane and their properties are not exclusively dependent on their polar head
group [244]. This type of lipid is strongly abundant in the brain, i.e., in cerebellar gran-
ule neurons, they are 5% of total amphipathic lipids [245]. The resulting ganglioside-
driven membrane organization are reliant on its production pattern, which is tightly
regulated [244]. Not all gangliosides colocalize at the same type of plasma membrane
domains [246]. Some authors have concluded that proteins binding to plasma membrane
gangliosides can be divided into host plasma membrane proteins and extracellular pro-
teins [247]. Some gangliosides such as GM1 are known to be particularly enriched in the
outer leaflet of neuronal lipid membrane domains and exhibit a nearly exclusive pres-
ence within these domains compared to non-lipid membrane domains regions. The lipid
membrane domain/non-lipid membrane domain ratio values range from 10 to 1000 [248].
Recent molecular dynamics simulation data have shown that three different subpopu-
lations of gangliosides such as GM1 can be characterized in the same lipid membrane
domain [14,249], distributed into the central, peripheric and edge areas, which defines
their mobility from less to high [247]. Gangliosides at the edge adopt the typical chalice or
butterfly-like (open wings) dimeric conformation [250], although conformational possibili-
ties might be further extended by the biochemical diversity of gangliosides. Ganglioside
concentration in the same lipid membrane domain creates a large negative electrostatic
surface potential, which is one of the essential properties of lipid membrane domains for
protein, toxin, or pathogenic agents easily binding due to the electropositive potential [247].

Two types of gangliosides binding domains (GBD) have been described in proteins
present in lipid membrane domains:

- Type 1 GBD, or GBD-1, comprises any membrane protein ganglioside-binding do-
main able to form a stoichiometric (1:1, mol:mol) complex with a single ganglioside
molecule [247]. GBD-1 is generally present at the flexible juxta membrane region
interacting with transmembrane glycoproteins [113]. The serotonin 5-HT1A receptor,
the tumor stem cell marker CD133 are candidates the EGF and PDGF receptors and
ion transporters [247]. These membrane proteins are expected to reside at the edge of
a lipid raft.

- Type 2 GBD, or GBD-2 are represented by protein dimeric structures resembling
a flower chalice or the open wings of a butterfly [250,251]. The typical protein
insertion processes have been associated with these domains in which proteins with
a hairpin loop interact with the ganglioside, leading to a conformational change that
implicates a deep interaction with the ganglioside [251]. This type of ganglioside-
dependent insertion process accounts at the edge of a lipid raft or at the periphery
since they need to have sufficient conformational flexibility to accommodate the
loop [251]. Chalice-shaped ganglioside dimers are required for HIV fusion with
host cell membranes [247,252] and the formation of oligomeric calcium permeable
amyloid pores [247,253].

In this organization, it is unclear which proteins present in flotillin and caveolin-
enriched domains, and more specifically in the brain, might contain GBDs. Cav-1 and
Flot 1 have been shown to colocalize with 5-hydroxytryptamine receptor (5-HT1A) [254],
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and CD133 colocalize with Cav-1-enriched lipid membrane domains [255], which present
GBD-1. Caveolin, but no flotillin [256], has been associated with HIV infection and
latency [257,258], and this might correlate with the presence of HIV proteins associated
with GBD-2 domain. Increased GM1 concentrations have been found in cerebrospinal
fluid ganglioside, indicating neuronal involvement in all stages of HIV-1 infection [259].

2.6. Histological Cytological Distribution of Gangliosides-Enriched Lipid Membrane Domains in
Neurons and Function Calcium Signaling

Regarding calcium transport systems, gangliosides are well-known modulators of
calcium homeostasis [260]. PMCA2 and 3 are known to be regulated by endogenous
ganglioside content, such as the asialoGM1 that promotes a decrease in pump activ-
ity [261,262]. This correlates with the identification of PMCA location in caveolin-enriched
lipid membrane domains in cerebellar granule neurons by Marques-da-Silva and Gutiérrez-
Merino [33]. The highest PMCA activity is present in the lipid membrane domains enriched
in cholesterol and gangliosides [263], which correlates with a report showing that neu-
raminidase treatment and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol
(d-PDMP), a used inhibitor of glycosphingolipid biosynthesis, induce a decrease in PMCA
activity [261]. However, the mechanism of PMCA inhibition by GM1 is still under dis-
cussion. Some researchers have suggested that GM1 affects the PMCA interaction via
calmodulin modulation of calcium pump affinity and the Vmax [262]. This contrasts with
the suggestion of modulation based on the interaction with the calmodulin-binding domain
stimulating the phosphatase activity of PMCA by stabilizing E(2) conformer [264,265].
Total lipid membrane domains associated PMCA activity is higher than the PMCA activ-
ity excluded from lipid membrane-microdomains [240]. Depletion of cellular cholesterol
dramatically inhibited the activity of the lipid membrane-domain-associated PMCA with
no effect on the activity of the non-lipid membrane-domain pool [240]. This modulatory
function of gangliosides contrasts with that inducing activation of L-type calcium channels,
as shown in N18 neuroblastoma cells by the same gangliosides [266].

An almost complete colocalization of NMDARs with the lipid membrane-domain
marker ganglioside GM1 has been found in postsynaptic densities close to GM1 [267]. GM1
has been shown to reduce the neurotoxicity of NMDAR, which suggests that receptors
located at this location might differentially response to glutamate in this location. However,
GM1 does not suppress the function of the NMDAR channel directly [268–270]. This
protection might be associated with endocytic internalization of the NMDA receptors
associated with flotillin-enriched lipid membrane domains, as indicate above [227].

By electron microscopy, a subpopulation of synaptic membrane fractions has been
found to be enriched in GM1, and 46 percent of the labeled vesicles are also labeled the
GluR2 subunit of the AMPAR [271]. SFKs has been associated with gangliosides and
caveolin-enriched lipid membrane domains [272]. They are important since they also medi-
ate the phosphorylation of the AMPARs [273], and they can mediate GluA2-binding protein
exchange through endocytosis of GluA2-containing synaptic AMPARs [60]. This might
constitute an additional subtype of lipid membrane domains enriched in gangliosides and
implicated in endocytic processes or the same associated with Src and NMDA receptors
at excitatory synapses. Location studies suggest that AMPAR within PSD are segregated
from NMDA receptor clusters [274,275]. In addition, a study has shown that GM1-bound
to GluR2-containing AMPARs are functionally segregated from the AMPAR-trafficking
complexes (ATCs) containing Thorase, n-ethylmaleimide-sensitive factor attachment pro-
tein gamma (γ-SNAP), N-ethylmaleimide sensitive fusion protein (NSF), and nicalin bind
selectively to trisialoganglioside gt1b (GT1b) [276], which could define alternative AMPAR
domains at the plasma membrane.

GM1 modulation of calcium channels was first described in neurons using N18 neurob-
lastoma cells [266,277,278] and primary neurons [279,280]. Studies with N18 cells showed
that GM1 blocked the intracellular calcium increase sensitive to dihydropyridine block-
ers at a concentration of 5 mM [266], proposing GM1 function as a constitutive inhibitor



Molecules 2023, 28, 7909 17 of 34

of L-type calcium channels [260]. GM1 functions as neuritogenic molecules in neuronal
differentiation phases [278]. Upregulation of this lipid has been found in the plasma and
nuclear membranes during axonogenesis [278]. In the presence of neuraminidase (N’ase),
an enzyme that increases the cell surface content of GM1, a prolific outgrowth of neurites
has been found in Neuro-2a and NG108-15 cells [278]. This effect can be blocked by the
cholera toxin B, a biochemical tool extensively used for labeling lipid membrane domains
using fluorescent conjugates, which potentiated the effect of N’ase in NG108-15 cells [278].

Although cholera toxin binding to ganglioside GM1 supports that this regulation is
mediated by lowering free GM1 concentration in the plasma membrane, it remains to be
known whether cholera toxin can be sequestered the GM1 localizing in lipid membrane do-
mains, which might modulate the L-type calcium channels associated with these domains.
Neurite outgrowth correlated with the influx of extracellular calcium, which correlates
with the reported modulation of calcium channels by gangliosides [260].

Using synaptosomes, the N-type calcium channels has also been found to be activated
by GM1 ganglioside, followed by the P-type, and very weakly influencing other channels
in cerebrocortical synapses [281]. Based on previous indications showing gangliosides
with association with caveolin- and flotillin-enriched lipid membrane domains, it is not
clear if calcium transporter elements modulated by this lipid might constitute a population
implicated in the endocytic process or just be simply subjected to endocytosis.

3. The Summary of the Distribution Map

A wide range of possible complexes enriched in lipid membrane nanodomain subtypes
in the same or different glutamatergic neurons has been described. The organization of
NMDAR, L-P/Q calcium channels, some metabotropic receptors, and PMCA located in the
synapses of glutamatergic neurons are shown in Figure 3.
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Figure 3. Illustration of a variety of caveolin- and flotillin-enriched lipid membrane domains
location complexing with calcium transporter elements (NMDAR, L-P/Q calcium channels, some
metabotropic receptors, and PMCA) in synaptic terminals described to exist in glutamatergic
neuronal cells. Calcium transporter elements have been differentially described to be present
in many neuronal locations, including somas, neurites, axons, dendrites, spines, and synaptic
terminals. In synaptic terminals a variability of subunits may yield specific calcium transporters
for that location (i.e.,: presynaptic and postsynaptic NMDAR might be differentiated by the type
of subunits that configure them in hippocampal neurons [282]) that might differ in configuration
from those distributed in other neuronal locations and vary in respect to the neuronal cell type [135].
In this figure, we are focusing on calcium-transporting elements associated with caveolin- and
flotillin-enriched lipid membrane domains, that should be added to those elements that are not
located in lipid membrane-domain areas (not shown in this figure) and omitted in synaptic terminals
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that comprise areas of 0.5 to 2 µm size [283]. Lipid membrane domains associated with ganglio-
sides are suggested to be involved in endocytic processes in some membranes and have been
omitted from this figure for the sake of clarity. NMDA (1) and L-type calcium channels (2) located
in caveolin-enriched domains might function as redox nanotransducers in charge of the control
of these calcium transporters working as a microchip-like structure for a tighter functional cou-
pling between calcium, nitric oxide and superoxide anion signaling in presynapses [32,154,155]
and postsynapses (3) also sensitive to superoxide anion [132,142], in glutamatergic CGNs. Also,
in associated caveolin-enriched domains at presynapses, we can allocate PMCA (4), which are
susceptible of inhibition by GM1 contained in these subdomains [33,261,262]. PMCA has also
been described to be present in flotillin-enriched lipid membrane domains (5), which are very
sensitive to cholesterol content. The activity in these domains is higher than the one not present
in lipid membrane domains [240]. The differential response to endogenous cholesterol and
gangliosides seems to support that caveolin and flotillin-enriches domains constitute different
lipid membrane nanodomain subtypes in presynaptic terminals. We can also find P/Q-type
calcium channels at presynaptic terminals (6) associated with flotillin-enriched domains and
GPI-enriched areas [175,225,226]. This type of cluster can also be found in postsynaptic terminals
(7) [206], and the physiological behavior has been characterized by the presence of Flot-1 and
has been related to and increases in the frequency of miniature excitatory postsynaptic cur-
rents. Several subunits of metabotropic receptors have been described to colocalize in caveolin-
and flotillin-enriched domains (8) and (9). Subunit interaction with caveolin has been better
described than for flotillin. Several motifs of mGlu subunits have been described to interact
with cav-1 [128,159], which controls the rate of receptor internalization and location at the
surface [128,159]. A function of recruitment of NMDARs into lipid membrane domains at post-
synapses to initiate second messenger signaling cascades linked with receptor depletion for
neuronal protection in NMDAR-induced excitotoxicity has been suggested for NMDAR located
at flotillin-enriched domains (10) [212]. As previously indicated, NMDARs can associate with
scaffold protein PSD-95 and form signaling complexes that differ in their composition. Some
subunits of the AMPAR have also been located in caveolin- (11) and flotillin-enriched domains
(12) at post synaptic terminals associated with PSD-95. NO• has a similar effect mimicking that
of NMDA, recruiting AMPARs to lipid membrane-domain surface which suggest a counterplay
with lipid membrane domains associated with postsynaptic domains (3) or presynaptic (1) and
(2) domains since NO• can reach this location by diffusion from presynaptic sources.

A summary of the components implicated in calcium signaling in neurons and their
association and function with each lipid membrane-domain subtype can be found in the
Table 1.



Molecules 2023, 28, 7909 19 of 34

Table 1. Calcium signaling components and distribution map in lipid raft-domain subtypes.

Type Subunit Neuronal Type Associated with Raft
Component

Main Distribution in Brain and
Subcellular Location Function

L-type Cav1.2
Primary culture of cerebellar

granule neurons and
Purkinje cells [30,279]

Cav-1 and GM1 [30],
GM1 [279]

Neuronal calcium transients in
cell bodies and dendrites,

regulation of enzyme activity,
regulation of transcription [125]

P/Q-type Cav2.1
Cerebellar Purkinje neurons

(tissue [175]; primary culture [284];
brain synaptosomal fraction [225])

Flot-1 [175], GM1 [225,284]
Hippocampus [285], dorsal root

ganglion neurons [286],
presynaptic areas [225,286]

Neurotransmitter release,
dendritic calcium transients [125]

L/P/Q/N-type α2δ-2, α2δ-3 [226] Hippocampal neurons (raft
isolation and microscopy) [226] Flot-1 [226] GPI-enriched areas [226]

NMDA

NR1

Primary cultures of hippocampal
neurons [206]; ganglion cells in rat

retina (tissue) [287,288]; ventral
part of lamina III and in laminae III

and IV [289]

Flot-1 [206]; GM1 [287–289]

Small uniform puncta
throughout the neuron, pre and
postsynapse [206,289]; ganglion

cell dendrites [287], extrasynaptic
plasma membrane [288]

Signaling complexes in the
postsynaptic density [290],

glutamatergic signaling, synaptic
plasticity, excitotoxicity, and

memory [132], neurite outgrowth
and axonal growth cone

motility [291,292]

NR2B

Anterior cingulate cortex neurons
in tissue and cultured (microscopy
and immunoprecipitation) [126];
neurons from normal rat cerebral
cortex (raft isolation, microscopy
and immunoprecipitation) [127];

primary culture of cortical neurons
(microscopy and raft

isolation) [132]; ganglion cells in
rat retina (tissue) [287,288]

Cav-1 [126,127], Flot-1 [127];
GM1 [287,288]

Soma and postsynapses [126,127];
ganglion cell dendrites

extrasynapses
peri-synapses [287,288]

NR2A [227]
Cultured hippocampal neurons
(microscopy and raft isolation)

[227]
Flot-1 and -2 [227] Small uniform puncta

throughout the neuron [227]
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Table 1. Cont.

Type Subunit Neuronal Type Associated with Raft
Component

Main Distribution in Brain and
Subcellular Location Function

AMPAR

GluA2 [130]

Primary culture of hippocampal
neurons (microscopy,

immunoprecipitation and raft
preparation) [130]

Cav-1 [130],
Cell body and as puncta

localized to areas of cellular
outgrowth [130]

Postsynaptic currents mediated
by the AMPA subtype of

glutamate receptors in LTP [293];
long-term potentiation (LTP)

induced GluA1 surface
exposure [294]

GluA1 [156,234]
Primary culture of hippocampal

neurons (microscopy and raft
isolation) [156,234]

Flot-1 and -2 [234],
Cav-1 [129],
GM1 [156]

Postsynapses [156], synapses and
dendritic Spines [129]

GluR2/3 [129]

Primary culture of hippocampal
neurons (microscopy) [129],

synaptosomes [271]; ganglion cells
in rat retina (tissue) [287]

Cav-1 [129], GM1 [271,287]
Synapses and dendritic

spines [129]; dendrites and
somata [287]

GluR4 Ganglion cells in rat
retina (tissue) [287] GM1 [287] Dendrites and somata [287]

mGluR mGluR1/5
Primary hippocampal neurons

(microscopy and
immunoprecipitation) [128]

Cav-1 [128]
Soma and dendrites [128];

postsynaptic density late in
development [295]

Synapse formation
and plasticity [159]

mGluR1a Hippocampus, arcuate nucleus,
hypothalamus [167] Cav-1 [167]

Caveolin proteins act to
functionally isolate distinct

estrogen receptors and mGluRs,
leading to activation of specific

second messenger signaling
cascades [167]

mGluR1α Synaptosomes from pig cerebellum Cav-1 and Flot [173,248]

By application of MβCD,
interaction of phosphorylated

caveolin with the receptor
decreased, and finally,

internalization of the receptor
was blocked [173]
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Table 1. Cont.

Type Subunit Neuronal Type Associated with Raft
Component

Main Distribution in Brain and
Subcellular Location Function

Pumps PMCA isoform 4 Synaptosomes from pig cerebellum
(Brij96 extracts) [181] ganglioside GM1 [181]

Discrete functional positions on
the synaptic nerve

terminals [181]

Purinergic receptors P2X3

Rat brain, cerebellar granule
neurons in culture (microscopy,
immunoprecipitation and raft

preparation), dorsal root ganglion
neurons in culture

Flot-2, Cav-1

P2X3 subunit is expressed in cell
bodies as well as in peripheral

and central terminals of sensory
neurons in dorsal root ganglia

(DRG) [296,297]

Well-defined role in pain
perception [298,299]. Cav-1 is

required for basal and
ligand-induced membrane

delivery of the
P2X3 receptor [187]

Note: The reason for no data regarding some of the calcium components and the main distribution in brain and subcellular location is the description of these calcium components in
experiments performed in vitro in culture. Although some of these cultures were prepared from tissue, we thought this should be differentiated from histochemical studies reporting
calcium transported elements in rafts directly visualized on tissue slices or directly prepared or isolated from those tissues.
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4. Conclusions

Future work should further elucidate the relationship between caveolin- and
flotillin-enriched domains and the proteins and lipid partners present in each type of
platform that, as shown in this review, may form different lipid membrane-domain
subtypes. This includes the effect of cholesterol in calcium signaling and the potential
modulation of elements in charge, including calcium channels, that might differentially
interact with this lipid in neurons, concerning the same population of protein that
might present in non- lipid membrane-domain areas. The cumulative experimental
evidence analyzed in this review suggest that lipid membrane-domain subtypes are
likely to exist in neurons, largely based on the well-known location and distribution
of calcium transporter elements differentially interacting with caveolin- and flotillin-
enriched domains.

There is a need for a better characterization of the molecular components of dif-
ferent lipid membrane-domain subtypes in different types of neurons, and of the role
of protein-protein and protein-lipid interactions in the functional modulation of the
components of these domains. One of the open questions to be answered is associated
with the role of cholesterol and its effects, induced by direct interaction with proteins
or by changes in the physical-chemical properties of the membranes. Cholesterol
enantiomers are potential tools that might help to answer this question since they have
identical physical properties to cholesterol but opposite three-dimensional configura-
tions compared to cholesterol [300]. An additional question that needs to be addressed
in the future concerns the presence of proteins such as cavin that are present in caveolae
of non-neuronal cells and seem to be required for the plasma membrane curvature.
Neuronal plasma membranes are non-invaginated, suggesting that cavin is not present
in these structures, but it should not be discarded the presence of other Cav-1 homol-
ogous partners at the neuronal lipid membrane domains that have been determined
to be present in non-neuronal cells such as caveolin-2 (Cav-2). Cav-2 is a protein that
has also been located at neuronal plasma membrane lipid membrane domains. Indeed,
antibodies against this protein have been shown to be helpful in inhibiting some of
the protein activities associated with plasma membrane lipid membrane nanodomains
of synaptosomes, such as Cb5R activity [29,31]. Although an antagonist role has been
described for Cav-2 with respect to Cav-1 due to the ability of Cav-2 to bind choles-
terol [301], it cannot be discarded the presence of Cav-2 in the same domains or its
role as a major component of some lipid membrane nanodomain subtype. Besides
calcium transport channels, the majority of the proteins associated with lipid mem-
brane domains are lipid-anchored proteins [302,303]. Cholesterol might also modulate
the dynamics of bulk phases in membranes, altering membrane proteins’ folding and
stability, and impacting energetics for protein oligomerization [304]. The hypotheti-
cal role of recently discovered molecular architectures enriched in caveolin-forming
nanodisks [15], in buffering, distributing, or controlling cholesterol availability for
neuronal plasma membrane proteins deserves to be studied in future studies.
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Abbreviations

5-hydroxytryptamine receptor (5-HT1A); NSF attachment protein (γ-SNAP); α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor (AMPAR); AMPAR-trafficking complexes (ATCs); brain-
derived neurotrophic factor (BDNF); calcium/calmodulin-dependent protein kinase IIa (CaMKIIa);
caveolin-1 (Cav-1); Cav-1–knocking down (Cav-1–KD); caveolin-2 (Cav-2); cytochrome b5 reductase
(Cb5R); cerebellar granule neurons (CGN); caveolin binding motif (CMB); central nervous system
(CNS); Cholesterol Recognition/Interaction Amino Acid Consensus (CRAC); C-terminal Src kinase
(CsK); cholera toxin (CTx); dorsal root ganglion (DRG); estrogen receptor (ER); fluorescence energy
transfer (FRET); ganglioside binding domains (GBD); monosialotetrahexosylganglioside (GM1);
glycosylphosphatidylinositol (GPI); trisialoganglioside gt1b (GT1b); insulin-like growth factor-1
(IGF-1); intermembrane domain (IMD); inositol-3-phosphate (IP3); long-term depression (LTD); low-
density lipoprotein receptor-related protein 1 (LRP1); metabotropic glutamate receptors (mGluRs);
neuraminidase (N’ase); modulation efficiency protein D (NfeD); N-methyl-D-aspartate receptor
(NMDAr); neuronal nitric oxide synthase (nNOS); NADPH oxidases (NOXs); N-ethylmaleimide
sensitive fusion protein (NSF); NMDAr subtype 2B subunit (NR2B); oligomerization domain (OD);
purinergic P2X receptor (P2XR); protein data bank (PBD); phospholipase C (PLC); plasma membrane
calcium ATPase (PMCA); postsynaptic density protein 95 (PSD-95); scaffolding domain (SD); Src ty-
rosine kinase family (SFK); signature motif (SM); stomatin, prohibitin, flotillin, and HflK/C domains
(SPFH); stomatin operon partner protein (STOPP); transmembrane (TM); tyrosine kinase receptors
(Trk); transient receptor potential canonical channel (TRPC); transient receptor potential vanilloid
type 2 (TRPV2).
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