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Abstract: Drug–target affinity (DTA) prediction is crucial for understanding molecular interactions
and aiding drug discovery and development. While various computational methods have been
proposed for DTA prediction, their predictive accuracy remains limited, failing to delve into the
structural nuances of interactions. With increasingly accurate and accessible structure prediction of
targets, we developed a novel deep learning model, named S2DTA, to accurately predict DTA by fus-
ing sequence features of drug SMILES, targets, and pockets and their corresponding graph structural
features using heterogeneous models based on graph and semantic networks. Experimental findings
underscored that complex feature representations imparted negligible enhancements to the model’s
performance. However, the integration of heterogeneous models demonstrably bolstered predictive
accuracy. In comparison to three state-of-the-art methodologies, such as DeepDTA, GraphDTA, and
DeepDTAF, S2DTA’s performance became more evident. It exhibited a 25.2% reduction in mean
absolute error (MAE) and a 20.1% decrease in root mean square error (RMSE). Additionally, S2DTA
showed some improvements in other crucial metrics, including Pearson Correlation Coefficient (PCC),
Spearman, Concordance Index (CI), and R2, with these metrics experiencing increases of 19.6%, 17.5%,
8.1%, and 49.4%, respectively. Finally, we conducted an interpretability analysis on the effectiveness
of S2DTA by bidirectional self-attention mechanism. The analysis results supported that S2DTA was
an effective and accurate tool for predicting DTA.

Keywords: graph neural network; convolutional neural network; drug–target affinity; sequence and
structural knowledge; heterogeneous models

1. Introduction

Target proteins are crucial biological macromolecules that play diverse roles in cells.
Identifying drug–target interactions is an important process in drug discovery [1]. Cal-
culating a drug molecule (small molecule compound) with high binding affinity against
the target is a crucial step in early-stage drug research [2]. The successful identification of
drug–target affinity (DTA) has received long-term attention from academia and industry
due to its significant role in drug discovery and design [3]. Typically, drug molecules
interact with specific targets through direct physicochemical interactions in shallow hy-
drophobic depressions on the surface of targets or buried deep inside the targets known
as pockets [4,5]. These pockets contain charged amino acid residues and hydrophobic
residues. Biological experimental observations suggest that the amino acid composition
and properties of these pockets are vital determinants for drug–target interactions [4].

Some traditional biological methods to determine DTA are measuring the half maxi-
mal inhibitory concentration (IC50), inhibition constant (Ki), and dissociation constant (Kd)
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between a pair of drugs and targets using bioassays [6]. However, traditional biological ex-
periments to measure DTA are time-consuming, labor-intensive, and resource-intensive [7].
With the increasing number of drug molecules and targets in databases, experimental
characterization of all possible drug–target pairs becomes nearly impossible. To address
this, numerous computational methods have been developed to predict DTA [8–11], with
some deep learning models based on sequence or/and structural knowledge showing
promising results [12,13].

Most DTA prediction models based on deep learning, including DeepDTA [9], Deep-
DTAF [10], DeepAffinity [14], FusionDTA [15], WideDTA [16], AttentionDTA [17], Deep-
CDA [18], and MRBDTA [19], primarily rely on drugs’ SMILES (Simplified Molecular Input
Line Entry System) [20] and target sequences. These sequence-based methods employed
Convolutional Neural Networks (CNNs) [21], Recurrent Neural Networks (RNNs) [22],
or the attention mechanism [23] to extract high-level features from the drug SMILES and
target sequences. For instance, DeepDTA used three consecutive 1D-convolutional lay-
ers to extract local features from drug SMILES and the sequences of targets, which were
then passed through three fully connected (FC) layers for DTA prediction. On the other
hand, DeepDTAF employed three independent CNN blocks to learn high-level features
from the drug SMILES and the sequences of targets and pockets. These CNN blocks con-
sisted of a 1D-convolutional layer for extracting local features from pockets and two 1D
dilated convolutional networks [24] for deciphering global features of drugs and targets,
respectively. MRBDTA utilized the Trans block with a multi-head attention mechanism to
extract molecule features from drug SMILES and the sequences of targets. Then, interaction
learning integrated these extracted features for DTA prediction. While sequence-based
approaches are effective in predicting DTA, it is evident that their performance can be
further enhanced if structural knowledge is incorporated. For example, in DeepDTAF, the
pocket knowledge which is essentially obtained from both its sequences and structures
may achieve higher performance. Furthermore, these methods are limited in providing a
reasonable interpretation of drug–target interactions due to the lack of structural knowledge.

While the structures of targets are challenging to obtain experimentally, some meth-
ods, such as GraphDTA [11], MgraphDTA [25], and DGraphDTA [26], have successfully
extracted high-level features from a limited number of the structures of drugs and targets
to predict DTA. For instance, GraphDTA recognized the structures of small molecules and
employed graph convolutional networks (GCNs) [27] to extract graph-based features. In
MgraphDTA, multiscale graph neural networks (MGNN) were utilized to extract multiscale
features from the input graph of the drug. In DGraphDTA, the structures of targets were
represented as graphs based on the contact maps and then combined with the graphs
of drugs to predict DTA by two GCNs. Although structure-based methods offer better
interpretation, they do have some limitations: (1) the full potential of structural knowledge
of drugs and targets remains untapped; (2) most models lack the utilization of semantic
knowledge in sequence format, relying solely on structural data for DTA prediction; (3) the
3D spatial positions of the atoms in targets are not fully characterized, as some methods
only use contact maps.

In recent years, with the accumulation of experimentally resolved structures of targets
and the emergence of algorithms like AlphaFold [28], which can predict the structures of
monomeric proteins and proteins without extensive disordered regions, there is a certain
degree of relief in obtaining protein structure. To address the problem of insufficient
feature extraction from the sequences and structures of drugs and targets in existing
methods, a novel deep learning model called S2DTA was proposed. S2DTA predicted
DTA by integrating sequence features of drug SMILES, targets, and pockets, and their
corresponding graph structural features using a heterogeneous model that combined GCNs
and CNNs. Experimental results demonstrated that S2DTA outperformed three other state-
of-the-art models by using simple feature representations. Additionally, we conducted an
interpretability analysis on the effectiveness of S2DTA using a bidirectional self-attention
mechanism, supporting that S2DTA is an effective and accurate tool for predicting DTA.
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2. Results and Discussion
2.1. Limited Performance Improvement by Using Only Sequence Knowledge

Numerous predictive models for DTA primarily rely on the sequences of targets due
to the challenge of obtaining the experimental structures of targets. In our study, we
conducted comprehensive tests involving both ML and DL models, comparing models
that used solely sequence data against a fundamental GCN model that incorporated the
structural insights of targets (Table 1). Within the realm of ML models, RF exhibited the
most promising performance across all evaluation metrics. Specifically, MAE, RMSE, PCC,
Spearman, CI, and R2 achieved values of 1.221, 1.527, 0.726, 0.713, 0.760, and 0.504, respec-
tively. Turning to DL models, sequence-oriented DL architectures like 1D-CNN and RNN
demonstrated relatively weaker performance compared to RF with label encoding. This
outcome highlighted that complex DL models did not necessarily lead to performance
enhancements. However, 1D-CNN, relying on one-hot encoding, delivered superior per-
formance across all evaluation metrics. This underscored that one-hot encoding provided
robust feature representation, enhancing the efficacy of sequence-based DL models. To
further enrich the understanding of targets, we incorporated the structural knowledge
of targets into the GCN model by characterizing the sequence knowledge of targets as
vertex features within the graphs of targets. Empirical findings demonstrated that even
a straightforward GCN model with label encoding surpassed RF and 1D-CNN. Notably,
when the sequence feature representations of targets employed one-hot encoding, the
GCN performed better than RF and 1D-CNN. Specifically, the GCN outperformed RF with
a reduction of 0.063 in both MAE and RMSE, and exhibited increments of 0.012, 0.016,
0.009, and 0.04 in PCC, Spearman, CI, and R2, respectively. All experimental results clearly
showed that the simple GCN model with a baseline feature representation outperformed
all sequence-based models. Only using the sequence knowledge of targets to predict DTA
limited performance improvement.

Table 1. Performance of machine learning and deep learning models using only sequence knowledge
compared to graph-based models fusing structure knowledge.

Category Model Feature
Representation MAE RMSE PCC Spearman CI R2

Machine learning models

RR label encoding 1.471 1.864 0.515 0.521 0.685 0.261
KNN label encoding 1.377 1.732 0.604 0.565 0.703 0.362

DT label encoding 1.409 1.882 0.590 0.577 0.707 0.247
SVR label encoding 1.749 2.150 0.156 0.231 0.527 0.017
RF label encoding 1.221 1.527 0.726 0.713 0.760 0.504

Sequence-based deep
learning models

1D-CNN
label encoding 1.569 1.938 0.535 0.531 0.683 0.201

one-hot encoding 1.159 1.473 0.752 0.741 0.776 0.539

RNN
label encoding 1.815 2.227 0.175 0.329 0.611 −0.054

one-hot encoding 1.669 2.045 0.459 0.460 0.657 0.111
Structure-based deep

learning models
GraphSAGE label encoding 1.288 1.599 0.675 0.664 0.739 0.449

one-hot encoding 1.127 1.417 0.758 0.745 0.778 0.573

2.2. Performance Comparison of Different Graph-Based Models

Although GraphSAGE has demonstrated superior performance as depicted in Table 1,
it is important to note that graph neural networks (GNNs) offer an array of models em-
ploying diverse approaches to extract features from graphs. Presently, GNNs are broadly
categorized into two types: spectral-based GNNs and spatial-based GNNs. Spectral-based
GNNs like GCN and ChebyNet operate on Laplacian matrices, focusing on single graphs.
However, for the context of this study, ChebyNet was excluded due to interpretability
concerns. Diverging from spectral-based models, spatial-based GNNs such as GraphSAGE,
GAT, and GIN gather knowledge from neighboring vertices directly in the spatial domain.

The methodology entailed initial one-hot encoding of drug SMILES and the sequences
of targets, utilizing them as the features of vertices in the respective graphs. Subsequently,
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four distinct graph-based models were harnessed for DTA prediction. The ensuing com-
parison of experimental results (Table 2) highlighted that GraphSAGE consistently out-
performed the other three models across all evaluation metrics. Noteworthiness was its
achievement of MAE and RMSE reductions of no less than 0.266 and 0.326 compared to
the other models. Moreover, GraphSAGE accomplished improvements of no less than
0.157, 0.156, 0.071, and 0.219 in PCC, Spearman, CI, and R2, respectively, all of which
demonstrated values exceeding 0.5. The better performance of GraphSAGE underscored
its efficacy in capturing interactions within the tertiary structures of drugs and targets,
reinforcing the significance of structural knowledge in DTA prediction.

Table 2. Performance comparison of different graph-based models.

Model Feature
Representation MAE RMSE PCC Spearman CI R2

GCN one-hot encoding 1.393 1.743 0.601 0.589 0.707 0.354
GIN one-hot encoding 1.524 1.842 0.532 0.549 0.692 0.279
GAT one-hot encoding 1.708 2.091 0.296 0.313 0.606 0.070

GraphSAGE one-hot encoding 1.127 1.417 0.758 0.745 0.778 0.573

2.3. Complex Feature Representations Do Not Improve Performance

In addition to employing one-hot encoding, the utilization of complex feature repre-
sentations for the drug SMILES and target sequences could potentially exert a substantial
impact on the performance of DTA prediction. Within the scope of this investigation,
a variety of complex feature representations were explored for the sequences of targets,
encompassing the physical–chemical properties of amino acids, position-specific scoring
matrix (PSSM) [29], Hidden Markov Models matrix (HMM) [30], Protbert [31], CNN, and
Word2Vec [32]. For drugs, only the physical–chemical properties of atoms were considered.
It is noteworthy that when alternative complex feature representations were applied to the
sequences of targets, the drug SMILES representation was employed using one-hot encoding.

Experimental results (Table 3) demonstrated that GraphSAGE attained comparable
performance across various representations, including one-hot encoding, Protbert, CNN,
and Word2Vec. For instance, the key evaluation metrics like RMSE and R2 hovered around
1.4 and 0.5, respectively. However, it is pertinent to acknowledge that generating semantic
features for the sequences of targets through complex representations like Protbert, CNN,
and Word2Vec can be time-intensive. Despite this investment of time, the performance
improvements garnered from these complex representations have not been notably substantial.

Table 3. Performance comparison of GraphSAGE with different feature representations.

Feature Representation MAE RMSE PCC Spearman CI R2

one-hot encoding 1.127 1.417 0.758 0.745 0.778 0.573
physical–chemical properties 1.444 1.770 0.583 0.585 0.706 0.334

PSSM 1.236 1.526 0.722 0.713 0.761 0.505
HMM 1.342 1.664 0.644 0.639 0.729 0.411

semantic feature (Protbert) 1.139 1.485 0.734 0.720 0.768 0.531
semantic feature (CNN) 1.158 1.477 0.733 0.723 0.769 0.536

semantic feature (Word2Vec) 1.136 1.411 0.760 0.746 0.777 0.577

2.4. Impact of Pocket Knowledge on Drug–Target Affinity Prediction

As demonstrated by DeepDTAF, pockets played a crucial role in predicting DTA, and
their characteristics directly influenced the binding affinity of drugs with their respective
targets. The maximum sequence length for pockets was 125, serving as the fixed sequence
length. In cases where the pocket sequences were shorter than 125, padding was applied us-
ing zeros. The representation of the sequences of pockets employed one-hot encoding. The
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structures of pockets were utilized for constructing the graphs, following a methodology
consistent with the graph construction of the target.

Three distinct experiments were conducted based on the sequences and structures of
targets, pockets, and their combination. Experimental results (Table 4) showed that the per-
formance of GraphSAGE utilizing the sequences and structures of targets was comparable
to that using the sequences and structures of pockets across all evaluation metrics. Notably,
the MAE, RMSE, PCC, Spearman, CI, and R2 exhibited values of approximately 1.1, 1.4,
0.7, 0.7, 0.7, and 0.5, respectively. The distribution plots depicting the real and predictive
affinity based on targets and pockets were illustrated in Figure 1. However, noteworthy
enhancements were observed in the performance of GraphSAGE when incorporating a
combination of the sequences and structures of targets and pockets. As compared to using
only the knowledge of targets, the MAE and RMSE exhibited reductions of 0.047 (4.2%) and
0.04 (2.8%), respectively. Moreover, improvements of 0.018 (2.4%) in PCC, 0.028 (3.8%) in
Spearman, 0.013 (1.7%) in CI, and 0.024 (4.2%) in R2 were realized. Similarly, in comparison
to using only the knowledge of pockets, the MAE and RMSE experienced decreases of
0.021 (1.9%) and 0.43 (3%), while enhancements of 0.017 (2.2%) in PCC, 0.018 (2.4%) in
Spearman, 0.009 (1.2%) in CI, and 0.026 (4.6%) in R2 were achieved. The distribution of
real and predictive affinity, incorporating both the sequence and structural knowledge of
targets and pockets, is visualized in Figure 1.

Table 4. Performance comparison of GraphSAGE with targets or combining the knowledge of pockets.

Name MAE RMSE PCC Spearman CI R2

Targets 1.127 1.417 0.758 0.745 0.778 0.573
Pockets 1.101 1.420 0.759 0.755 0.782 0.571

Targets + Pockets 1.080 1.377 0.776 0.773 0.791 0.597
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Figure 1. The distribution of real and predictive affinity of GraphSAGE with targets, pockets, and their
combination based on the test set. The performance of GraphSAGE, when harnessed in conjunction
with both the sequence and structural knowledge of targets and pockets, surpassed that achieved by
solely relying on the sequence and structural features of targets or pockets individually. Specifically,
as compared to using only the features of targets, the MAE and RMSE exhibited reductions of 0.047
and 0.04, respectively. Moreover, improvements of 0.018 in PCC, 0.028 in Spearman, 0.013 in CI, and
0.024 in R2 were realized. Similarly, in comparison to using only the features of pockets, the MAE
and RMSE experienced decreases of 0.021 and 0.43, while enhancements of 0.017 in PCC, 0.018 in
Spearman, 0.009 in CI, and 0.026 in R2 were achieved.

2.5. Fusing Sequence and Structure Knowledge with Heterogeneous Models

Although the semantic features extracted from the sequences of targets using Protbert,
CNN, and Word2Vec did not lead to an improvement in the performance of GraphSAGE,
fusing sequence knowledge with CNN to create an end-to-end model could enhance the
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performance. The process involved employing one-hot encoding for the sequences of
targets, which was then fed into a CNN to extract sequence knowledge. This extracted
sequence knowledge was utilized as vertex features within the graphs of targets, subse-
quently combined with the graphs of targets and input into a three-layer GCN network to
extract the fusion knowledge. This approach was also used to extract the sequence features
of pockets, but not to drug SMILES. Finally, the knowledge extracted from drugs, targets,
and pockets by three independent three-layer GCN networks was concatenated and fed
into the FC network to predict DTA.

Experimental results (Table 5) demonstrated some enhancements in performance by
integrating CNN into the model alongside GCN and FC. In comparison to the model
without CNN (Table 4), the MAE and RMSE were reduced by 0.090 (8.3%) and 0.078 (5.7%),
respectively. Moreover, the PCC, Spearman, CI, and R2 exhibited improvements of 0.025
(3.2%), 0.027 (3.5%), 0.013 (1.6%) and 0.044 (7.4%), respectively. In addition to CNN, several
other sequence-processing models, such as Long Short-Term Memory (LSTM) [33] and
Bidirectional LSTM (BiLSTM) [34], are also capable of extracting sequence knowledge.
Extensive experiments were conducted on these commonly utilized sequence-processing
models, with the findings (Table 5) indicating that integrating sequence knowledge with
CNN consistently yielded superior performance. The distribution of predictive affinity
resulting from the fusion of sequence knowledge with sequence-processing models is
depicted in Figure 2.

Table 5. Performance comparison of heterogeneous models with fused sequence and structural knowledge.

Sequence Processing Model Structural Model MAE RMSE PCC Spearman CI R2

LSTM

GraphSAGE

1.084 1.397 0.766 0.749 0.781 0.585
BiLSTM 1.100 1.399 0.764 0.765 0.785 0.584

CNN + LSTM 1.075 1.370 0.776 0.771 0.789 0.601
CNN 0.990 1.299 0.801 0.800 0.804 0.641
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Figure 2. The distribution of real and predictive affinity of heterogeneous models to fuse sequence
and structural knowledge from drugs, targets, and pockets based on the test set. Among multiple
sequence-processing models, including CNN, LSTM, BiLSTM, and their combinations, the end-to-end
heterogeneous model composed of CNN and GCN exhibited the best performance. In comparison to
the model without CNN, the MAE and RMSE were reduced by 8.3% and 5.7%, respectively. Moreover,
the PCC, Spearman, CI, and R2 exhibited improvements of 3.2%, 3.5%, 1.6% and 7.4%, respectively.

In summary, the proposed method, denoted as S2DTA, which encompassed CNN,
GCN, and FC, exhibited the highest performance by amalgamating sequence and structural
knowledge from drugs, targets, and pockets. The process involved extracting the sequence
knowledge from the sequences of targets and pockets, and incorporating structures and the
extracted sequence knowledge from targets and pockets into GCN to attain the high-level
fused features. For drugs, high-level features were directly extracted from drug SMILES
and their structures through GCN. Ultimately, all of these features were concatenated and
fed into a FC network to predict DTA.

2.6. Comparison with State-of-the-Art Methods

To comprehensively assess the predictive capability of S2DTA for DTA prediction, we
conducted a comparative analysis against three deep learning methods: DeepDTA, Deep-
DTAF, and GraphDTA. Firstly, we trained the three compared methods on the training set
provided in this study. Then employing the test dataset sourced from the PDBbind database
(2016 version), S2DTA emerged as the superior performer across all evaluation metrics
(Table 6). Experimental findings showed that S2DTA exhibited a 25.2% reduction in MAE
and a 20.1% decrease in RMSE when compared to the three state-of-the-art methodologies.
Additionally, S2DTA displayed some improvements in other vital metrics: PCC, Spearman,
CI, and R2, with increases of 19.6%, 17.5%, 8.1%, and 49.4%, respectively. Finally, these
experiments underscored the robustness and reliability of S2DTA as a predictive model
for DTA.

Table 6. Performance comparison of S2DTA with three state-of-the-art methods.

Model MAE RMSE PCC Spearman CI R2

DeepDTA 1.323 1.641 0.667 0.681 0.744 0.428
GraphDTA 1.367 1.715 0.618 0.612 0.717 0.374
DeepDTAF 1.327 1.625 0.670 0.654 0.734 0.429

S2DTA 0.990 1.299 0.801 0.800 0.804 0.641
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2.7. Performance Comparison between the Real Structures and Predictive Structures of Targets

Currently, a lot of targets possess known sequences but lack clear structures. This
limitation hampers the application of S2DTA. However, the emergence of AlphaFold offers
the potential to predict the structures of monomeric proteins and proteins without extensive
disordered regions. To evaluate the adaptability of S2DTA on these predictive structures of
targets, we selected 225 sequences from the test dataset, each with a length of approximately
500 amino acid residues. Employing AlphaFold, we obtained predictive structures for
these 225 sequences. The outcomes of S2DTA using both real and predictive structures of
targets are presented in Table 7. For S2DTA utilizing the predictive structures of targets,
the MAE and RMSE stood at 1.133 (compared to 1.046 with real structures) and 1.432
(1.316), respectively. The PCC, Spearman, CI, and R2 for S2DTA employing the predictive
structures of targets were 0.748 (compared to 0.792 with real structures), 0.749 (0.787),
0.78 (0.799), and 0.558 (0.627), respectively. The evaluation metrics collectively indicated
that the performance of S2DTA was similar to that when using real structures of targets.
S2DTA demonstrated good generalization proficiency when using the predictive structures
of targets.

Table 7. Performance comparison of S2DTA based on the real and predictive structures of targets.

Model Structures of Targets MAE RMSE PCC Spearman CI R2

S2DTA
Real structures 1.046 1.316 0.792 0.787 0.799 0.627

Predictive structures 1.133 1.432 0.748 0.749 0.780 0.558

2.8. Structure-Based Interpretable Analysis of S2DTA

To explain the effectiveness of S2DTA, we employed a bidirectional self-attention
mechanism to extract crucial information regarding drug–target binding affinity. This
was performed after the pooling operation in S2DTA, resulting in attention score matrices
that capture the interactions between drugs and targets. By making use of the structural
knowledge of drugs and targets, we aimed to provide interpretability for the effectiveness
of S2DTA. The pockets are the primary sites where drug–target interactions take place.
Hence, we conducted a structural explanatory analysis of S2DTA by explaining the atoms
constituting the drugs and the amino acids present in the targets, using different attention
score matrices. For drugs, we computed the binding data between each atom (excluding
hydrogen atoms) and all amino acids in the targets. Subsequently, we performed data
statistics (Table 8) to determine whether the top 5, top 10, and top 20 amino acids in the
attention score matrices were located within the pockets. The statistical findings revealed
that the top 5, top 10, and top 20 amino acids within the pockets accounted for 13.7%, 12.8%,
and 12.4%, respectively. In the upper row of Figure 3, we displayed four targets for drug
binding. In the middle row of Figure 3, we showcased the top 10 amino acids (depicted in
purple) identified by four drugs (PubChem ID: 43158872, 444128, 44629533, and 53308636)
within the pockets of their respective targets (PDB ID: 3AO4, 1A30, 2QNQ, and 3O9I).
These proportions were relatively low due to the length of target sequences, which made
it challenging to identify any interactions between each atom and the amino acids in the
pockets. However, S2DTA demonstrated its ability to effectively identify the amino acids
within the pockets that interacted with the atoms. Conversely, we also examined the
interaction between each amino acid and all atoms (excluding hydrogen atoms). Statistical
analysis (Table 8) was performed on the top 3, top 5, and top 8 atoms in the attention score
matrices. Interestingly, these atoms accounted for 48.6%, 56%, and 64.8% of the total number
of atoms in the drugs, respectively. The lower row of Figure 3 presented the visualization
results of the top 5 atoms (represented by the purple logo) with the highest scores in the
interactions between the amino acids constituting the targets and the corresponding drugs.
These above statistical results indicated that S2DTA could effectively identify the specific
atoms that interacted with the amino acids. Hence, the attention score matrices derived
from bidirectional self-attention served as a key explanation for the effectiveness of S2DTA
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in accurately predicting drug–target binding affinity. This underscores the reliability and
interpretability of S2DTA as a practical tool for drug–target affinity prediction.

Table 8. Data statistics for interpretability analysis of S2DTA.

Atoms of Drugs Amino Acids of Targets

Top 5 Top 10 Top 20 Top 3 Top 5 Top 8

13.7% 12.8% 12.4% 48.6% 56% 64.8%
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Figure 3. The visualization results of drug–target binding affinity by a bidirectional self-attention
mechanism for explaining the effectiveness of S2DTA. In the upper row, we present the targets of
amino acids with higher drug interaction scores. In the middle row, we show the top 10 amino
acids (depicted in purple) identified by four drugs (PubChem ID: 43158872, 444128, 44629533, and
53308636) within the pockets of their respective targets (PDBID: 3AO4, 1A30, 2QNQ, and 3O9I). The
statistical findings reveal that the top 5, top 10, and top 20 amino acids within the pockets account
for 13.7%, 12.8%, and 12.4%, respectively. The lower row presents the visualization results of the
top 5 atoms (represented by the purple logo) with the highest scores in the interactions between the
amino acids constituting the targets and the corresponding drugs. Statistical analysis was performed
on the top 3, top 5, and top 8 atoms in the attention score matrices. These atoms accounted for 48.6%,
56%, and 64.8% of the total number of atoms in the drugs, respectively.

2.9. Case Study

To further validate the effectiveness of the model, we compared S2DTA with Deep-
DTAF and MM-GBSA/PBSA [35] in specific samples. Firstly, we randomly selected 50 drug–
target binding samples from the test set of the PDBbind database (2016 version) and calcu-
lated the affinity values of all samples using S2DTA, the predictive model provided by the
advanced method DeepDTAF, and MM-GBSA/PBSA to calculate the binding free energy of
each sample. We then normalized the absolute values of the real affinity values, predictive
affinity values, and binding free energy (most of which are negative). Finally, we evaluated
the correlation between the normalized real affinity values and the normalized predictive



Molecules 2023, 28, 8005 10 of 15

values using PCC and R2. Our experimental results (Figure 4) showed that the binding
energy calculated by MM-GBSA/PBSA has a poor linear fit with the real affinity values and
two evaluation metrics (PCC = 0.597, R2 = 0.356) reflected their weak correlation. However,
both S2DTA (PCC = 0.969, R2 = 0.941) and DeepDTAF (PCC = 0.921, R2 = 0.847) exhibited
strong correlations with the real affinity values in terms of linear fit and evaluation metrics.
Furthermore, we found that S2DTA demonstrated slightly better performance than Deep-
DTAF, as confirmed by the linear fitting degree and the two evaluation metrics PCC and
R2 in Figure 4. Therefore, our experimental results suggest that S2DTA is an effective and
reliable tool for predicting drug–target binding affinity.
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Figure 4. The correlation analysis between the real affinity values and predictive values of S2DTA,
DeepDTAF, and MM-GBSA/PBSA. The results show that the real affinity values of the selected
samples exhibited a strong linear relationship with the predictive affinity values of both S2DTA
(PCC = 0.969, R2 = 0.941) and DeepDTAF (PCC = 0.921, R2 = 0.847). Notably, S2DTA showed slightly
superior performance compared to DeepDTAF. In contrast, we observed that the real affinity values
of the selected samples did not align well with the free energy predicted by MM-GBSA/PBSA
(PCC = 0.597, R2 = 0.356) in terms of a linear relationship, and its predictive values exhibited a weak
correlation with the real affinity values.

3. Materials and Methods
3.1. Datasets

In line with current competing methods [9–11], we utilized a benchmark dataset from
the PDBbind database (2016 version) [36] to train, validate, and test our model. This dataset
comprises 13,283 high-resolution structures of drug–target complexes sourced from the
Protein Data Bank (PDB, https://www.rcsb.org (accessed on 16 September 2023)), along
with experimental values of DTA, typically represented by pKd. The training and testing
datasets were constructed from the PDBbind database (2016 version), resulting in 12,993
and 290 samples, respectively. To ensure the training efficiency of the model, the sequence
length of targets was fixed at 2100 amino acids to cover 98.74% of samples (Supplementary
Figure S1) of the training dataset. A total of four samples were excluded due to processing
issues with the Biopython package [37]. Consequently, the training dataset comprises
12,823 samples, while the testing dataset has 289 samples. The maximum length of drug
SMILES was chosen as the fixed length. Sequences of targets or drug SMILES shorter than
their fixed lengths were zero-padded.

3.2. Sequence Representation

We utilized label encoding and one-hot encoding as baseline representations to depict
the 20 commonly used amino acids in targets and the 27 different atoms in drugs. Label
encoding employs a single number to differentiate objects, while one-hot encoding maps
encoded objects to status registers, generating encoding vectors. To characterize the diverse
amino acids of targets and atoms of drugs, we selected 24 (Supplementary Table S1) [38]
and 9 physical–chemical properties (Supplementary Table S2), respectively. For the se-
quence features of targets, we extracted the PSSM and utilized HHBlits for aligning ho-
mologous sequences to achieve the HMM. PSSM and HMM matrices, with dimensions

https://www.rcsb.org
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of 20, encapsulate the features of the 20 commonly used amino acids in the sequences
of targets. Furthermore, we harnessed multiple sequence-processing models, including
Protbert, CNN, and Word2Vec, to extract semantic features from the sequences of targets.

3.3. Structure Representation

To exploit structural insight, we devised a graph-based data format for drugs, targets,
and pockets. In the case of drugs, the individual atoms composing the drug formed the
vertices of its molecular graph. Covalent bonds from the .sdf or .mol2 files of drugs were
employed to establish edges. Regarding the graphs of targets, the carbon α atoms of
amino acid residues in the structures of targets were designated as vertices, and edges
were established between any two carbon α atoms within a Euclidean distance of 8 Å. The
structure representation of the pocket was consistent with the target.

3.4. Proposed S2DTA Approach

In this study, a deep learning method consisting of heterogeneous models, called
S2DTA (see Figure 5), was proposed to accurately and interpretively predict DTA by fusing
the sequence and structural knowledge of drugs and targets. S2DTA is an end-to-end model
that contained four modules: data input module, sequence learning module, structure
learning module, and feature fusion module.
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Figure 5. The architecture of S2DTA. S2DTA is an advanced model designed to predict drug–target
affinity (DTA) by leveraging sequence features of drug SMILES, targets, and pockets, and their
corresponding structural features. This model comprises four essential modules: (1) The data input
module was responsible for representing the sequence and structural data of drugs, targets, and
pockets. (2) Within the sequence learning module, a 1D-CNN layer was employed to extract semantic
features from both targets and pockets, based on their sequence data. (3) In the structure learning
module, three independent Graph Convolutional Networks (GCNs) were employed to extract high-
level features from the vertices present in the graph-based representation of drugs, targets, and
pockets. (4) The feature fusion module encompasses a two-layer fully connected (FC) network, which
played a pivotal role in predicting DTA by integrating the extracted features.
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(1) Data input module: S2DTA processed the drug SMILES and their structure data,
targets, and pockets, where input sequences were represented as a one-hot encoded feature
vector, and structure data included the molecular graphs for drugs and the graphs of targets
and pockets.

(2) Sequence learning module: A 1D-CNN layer was employed to extract semantic
features from both targets and pockets based on their sequence data. The 20-dimensional
sequence data of targets underwent convolution with a kernel size of 5, and a stride of 1,
resulting in an output dimension of 128. Meanwhile, the 20-dimensional sequence data of
pockets utilized a convolution kernel of size 3, with the remaining parameters identical to
those used for targets.

(3) Structure learning module: Three independent GCN networks, utilizing the
message-passing mechanism, were employed to extract high-level features from vertices
within the graph-based representation of drugs, targets, and pockets. Each GCN network
consisted of three layers of graph convolutions. In the case of targets and pockets, the
feature dimension of each vertex was 128, with the three graph convolutional layers having
dimensions of 32, 64, and 128, sequentially. A 128-dimensional feature vector obtained from
the final graph convolutional layer for targets and pockets was linearly transformed into
a 256-dimensional feature vector. For drugs, the 27-dimensional sequence data consisted
in the feature dimension of their vertices, and the dimensions of the three graph convolu-
tional layers were 32, 64, and 128. Similarly, a 128-dimensional feature vector of the drug
from the third graph convolutional layer was linearly transformed into a 256-dimensional
feature vector.

(4) Feature fusion module: The features extracted from drugs, targets, and pockets
through GCN networks were concatenated, resulting in a comprehensive 256-dimensional
feature vector. This feature vector was then fed into a FC network to predict DTA. The
FC network comprised two linear layers. The initial linear layer, acting as a hidden layer,
comprised 256 neurons. The subsequent linear layer, serving as the output layer, consisted
of a single neuron responsible for producing the affinity.

3.5. Training Process

S2DTA underwent a training process spanning 300 iterations, with optimization
carried out using the Adam optimizer [39]. The LeakyReLU activation function [40]
was employed, and mean square error (MSE) served as the chosen loss function. The
hyperparameters adopted for S2DTA were as follows: a learning rate of 0.0001, a batch size
of 128, and a dropout rate of 0.4.

3.6. Comparison Strategy

A comprehensive set of machine learning (ML) and deep learning (DL) models, and
MM-GBSA/PBSA were employed in this study to establish a robust baseline for evaluation.
The ML models encompassed ridge regression (RR), K nearest neighbor (KNN), support
vector machine regression (SVR), decision tree (DT), and random forest (RF). On the other
hand, the DL models comprised 1D-CNN and RNN. Additionally, a variety of graph-
based models, including GCN, ChebyNet [41], GraphSAGE [42], GAT [43], and GIN [44],
were tested.

The implementation of ML models was facilitated through the scikit-learn library
(https://scikit-learn.org (accessed on 16 September 2023)), while the DL models were
created using the Pytorch package (https://pytorch.org/ (accessed on 16 September 2023)).
Furthermore, the graph-based models applied the capabilities of the Deep Graph Library
(DGL, https://www.dgl.ai/ (accessed on 16 September 2023)) to carry out their computa-
tions and operations.

3.7. Evaluation Metrics

Six evaluation metrics including mean absolute error (MAE), root mean square error
(RMSE), Pearson Correlation Coefficient (PCC), Spearman, Concordance Index (CI), and

https://scikit-learn.org
https://pytorch.org/
https://www.dgl.ai/
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R-squared (R2) were used to comprehensively evaluate the performance of the model. MAE
is used to measure the mean absolute error between predictive and real values. It reflects
the size of the real prediction error; RMSE is often used to measure the deviation between
predictive and real values; PCC is used to measure the mutual relationship between two
variables; Spearman is a nonparametric measure of the dependence of two variables; CI
is an index used to evaluate the prediction accuracy of the model; R2 is mainly used to
measure how well the predictive value fits the real value.

4. Conclusions

In this study, we proposed S2DTA, a graph-based deep learning model designed to
predict DTA with accuracy and interpretability. By leveraging heterogeneous models and
fusing sequence and structural knowledge, S2DTA demonstrated novel advancements in
DTA prediction. The S2DTA model introduces two main innovations. Firstly, it integrates
sequence features of drug SMILES, targets, and pockets and their corresponding structural
features. This builds upon previous research which primarily focused on drug SMILES
and the sequences of targets, thereby enhancing the overall performance of the model.
Secondly, the incorporation of structural knowledge not only boosts predictive accuracy but
also offers interpretability for DTA. However, it is important to recognize three limitations
of S2DTA.

AlphaFold can only effectively predict the structures of monomeric proteins and
proteins without extensive disordered regions.

In cases where pocket knowledge for drug–target binding is missing from datasets,
precise pocket identification tools or biological experiments become necessary to provide
this crucial knowledge.

S2DTA is a deep-learning model specifically designed to predict drug–target binding
affinity. It should be noted that there are certain limitations when it comes to predicting the
binding affinity between drugs and other entities, such as drugs and nucleic acids or drugs
and other drugs.

While S2DTA has demonstrated itself as an effective and interpretable predictive
model for DTA, its refinement is still underway with a focus on two key aspects:
(1) Although S2DTA utilizes CNN effectively to extract local sequence knowledge, it
will be advanced to incorporate the extraction of long-range dependence knowledge. This
expansion will broaden the understanding of the intricate relationship of the model within
sequences and contribute to its predictive performance. (2) Recognizing the substantial
impact that surface pocket features have on DTA, S2DTA will undergo further development
to extract and integrate these features into its predictive framework.

In summary, the accessibility of drug molecular maps and target tertiary structures has
paved the way for exciting prospects in drug–target affinity research. Applying CNN, GNN,
and 3D-CNN models to extract high-level features from the drug SMILES, target sequences,
and their structures, along with complementary fusion of the extracted heterogeneous
knowledge, enables us to fully harness the potential of both sequence and structural data.
Undoubtedly, the integration of deep learning with the drug SMILES, target sequences, and
their structures will emerge as a prominent and promising research direction in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28248005/s1, Figure S1: A sequence length distribution
statistic chart of targets in 2016 version dataset of PDBbind database; Table S1: 24 physical-chemical
properties of amino acids in proteins; Table S2: 9 physical-chemical properties of atoms in drugs

Author Contributions: X.Z.: Ideas, writing—original manuscript, writing—review and editing,
writing—revised manuscript. K.-Y.Z.: Creation of models, data curation, implementation of the
computer code and supporting algorithms. B.J.: Supervision. Y.L.: Development of methodology,
formal analysis, writing—review and editing S1, modification guidance. All authors have read and
agreed to the published version of the manuscript.

https://www.mdpi.com/article/10.3390/molecules28248005/s1
https://www.mdpi.com/article/10.3390/molecules28248005/s1


Molecules 2023, 28, 8005 14 of 15

Funding: This work was supported by the National Natural Sciences Foundation of China (No.
62241602), Yunnan Fundamental Research Projects (No. 202101BA070001-227), and the Yunnan Key
Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan
(No. APR202110).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The source data and code repository can be accessed at https://github.
com/dldxzx/S2DTA (accessed on 16 September 2023).

Acknowledgments: We wish to thank Shu-Qun Liu and Yuan-Ling Xia from Yunnan University for
their advice on the revision.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, X.; Yan, C.C.; Zhang, X.; Zhang, X.; Dai, F.; Yin, J.; Zhang, Y. Drug–Target Interaction Prediction: Databases, Web Servers

and Computational Models. Brief. Bioinform. 2016, 17, 696–712. [CrossRef]
2. Santos, R.; Ursu, O.; Gaulton, A.; Bento, A.P.; Donadi, R.S.; Bologa, C.G.; Karlsson, A.; Al-Lazikani, B.; Hersey, A.; Oprea, T.I.; et al.

A Comprehensive Map of Molecular Drug Targets. Nat. Rev. Drug Discov. 2017, 16, 19–34. [CrossRef]
3. Mofidifar, S.; Sohraby, F.; Bagheri, M.; Aryapour, H. Repurposing Existing Drugs for New AMPK Activators as a Strategy to

Extend Lifespan: A Computer-Aided Drug Discovery Study. Biogerontology 2018, 19, 133–143. [CrossRef]
4. Du, X.; Li, Y.; Xia, Y.-L.; Ai, S.-M.; Liang, J.; Sang, P.; Ji, X.-L.; Liu, S.-Q. Insights into Protein–Ligand Interactions: Mechanisms,

Models, and Methods. Int. J. Mol. Sci. 2016, 17, 144. [CrossRef]
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