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Abstract: In this study, for the first time, boron oxide nanoflake is analyzed as drug carrier for
favipiravir using computational studies. The thermodynamic stability of the boron oxide and favipi-
ravir justifies the strong interaction between both species. Four orientations are investigated for the
interaction between the favipiravir and the B3O3 nanoflake. The Eint of the most stable orientation
is −26.98 kcal/mol, whereas the counterpoise-corrected energy is −22.59 kcal/mol. Noncovalent
interaction index (NCI) and quantum theory of atoms in molecules (QTAIM) analyses are performed
to obtain insights about the behavior and the types of interactions that occur between B3O3 nanoflake
and favipiravir. The results indicate the presence of hydrogen bonding between the hydrogen in
the favipiravir and the oxygen in the B3O3 nanoflake in the most stable complex (FAV@B3O3-C1).
The electronic properties are investigated through frontier molecular orbital analysis, dipole moments
and chemical reactivity descriptors. These parameters showed the significant activity of B3O3 for
favipiravir. NBO charge analysis transfer illustrated the charge transfer between the two species,
and UV-VIS analysis confirmed the electronic excitation. Our work suggested a suitable drug carrier
system for the antiviral drug favipiravir, which can be considered by the experimentalist for better
drug delivery systems.

Keywords: B3O3; Favipiravir; DFT; Drug delivery; QTAIM

1. Introduction

Favipiravir (FAV) is an antiviral drug that has shown potential in the treatment of
several RNA viruses, including influenza, Ebola virus, and, most recently, SARS-CoV-2,
the virus responsible for the COVID-19 pandemic [1]. Favipiravir, also known as T-705,
was initially developed as an influenza drug and works by selectively inhibiting the RNA-
dependent RNA polymerase (RdRp) of the virus, there by preventing viral replication [2].
The chemical name of favipiravir is 6-fluoro-3-hydroxy-2-pyrazine carboxamide, and its
molecular formula is C5H4FN3O. The structure of favipiravir consists of a pyrazine ring
linked to a carboxamide group, with a fluorine atom and a hydroxyl group attached at
positions 6 and 3 [3].
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In a study conducted by Furuta et al. (2013), favipiravir demonstrated potent antiviral
activity against the influenza virus in vitro and in animal models [2]. Additionally, in
a clinical trial conducted in Japan during the 2014 Ebola outbreak, favipiravir showed
efficacy in reducing mortality rates [4]. More recently, several studies have evaluated
the efficacy of favipiravir as a treatment for COVID-19. In a randomized clinical trial
conducted in China, patients treated with favipiravir had a shorter time for fever resolution
and improved radiological findings compared to the control group [5]. In another study
conducted in India, favipiravir was found to significantly improve clinical recovery in
COVID-19 patients compared to standard care [6]. Overall, favipiravir has shown promise
as a potential treatment for several RNA viruses, including SARS-CoV-2.

Drug delivery systems (DDS) refer to the technologies used to deliver therapeutic
agents to their intended targets in the body. The development of DDS has revolutionized the
field of medicine by enabling targeted and controlled drug release, improving therapeutic
efficacy, and minimizing side effects [7,8]. One promising area of research in DDS is the
use of nanomaterials for drug delivery, which offers advantages such as high drug loading
capacity, prolonged circulation time, and enhanced bioavailability [9,10].

Various nanostructures, including nanosheets, nanocages, and nanoparticles, have been
successfully employed for drug delivery systems, as reported in the literature [11–18]. Among
these, carbon-based nanomaterials have become increasingly popular due to their high
efficiency [19–22]. For instance, graphdiyne has been used to effectively deliver sorafenib
and regorafenib [23]. While graphene sheets have also been reported for drug delivery
systems [24,25], their limited chemical mobility restricts their use for many drugs [26,27].
Recent studies indicate that boron oxide nanosheets (B3O3) offer several advantages over
graphene nanosheets. B3O3 has a reactive hollow cavity in comparison to graphene, which
makes it a more attractive option [28].

Boron oxide nanosheets (B3O3) are a type of two-dimensional nanomaterial with
a hexagonal lattice structure. B3O3 nanosheets have been investigated for various ap-
plications, including catalysis, electronic devices, and biomedical applications such as
drug delivery [29–32]. Experimental and theoretical studies have confirmed that B3O3
nanosheets possess a hexagonal planar structure, with strong covalent bonds between the
boron atoms. The six-fold symmetry of this structure has been reported in both experi-
mental [33] and theoretical studies [34]. The formation of B3O3 nanosheets occurs through
the condensation of three tetrahydroxydiboron molecules [35], which connect six B3O3
hexagons to create a porous structure with a surface area of 2.32 Å. This porous structure
is ideal for attracting analytes. In 2018, Lin et al. theoretically designed a porous B3O3
nanosheet [36] with a flat surface with identical pores, as reported in the literature. B3O3
nanosheets have shown promise as a DDS due to their biocompatibility, low toxicity, and
ability to encapsulate drugs and release them in a controlled manner [35,37,38].

B3O3 nanosheets have shown promise for delivering anticancer agents. For example,
the nanosheets were functionalized with a targeting agent and demonstrated enhanced
accumulation in cancer cells, leading to increased therapeutic efficacy [39]. B3O3 mono-
layers have been investigated as potential carriers for a flutamide-based anticancer drug
delivery system [36]. Similarly, magnetic boron nitride nanosheets have been utilized as
pH-responsive smart nanocarriers for the delivery of doxorubicin in the treatment of liver
cancer [40].

Our study will employ density functional theory (DFT) calculations, powerful tools for
rationalizing experimentally observed phenomena and predicting the behavior, properties,
and applications of various systems [41,42]. Despite their potential, there are no reports in
the literature exploring the use of B3O3 nanoflake as antiviral drug carrier for favipiravir.
Therefore, we aim to propose B3O3 as a drug carrier for this antiviral drug. We hypothesize
that B3O3 has the potential to serve as a drug carrier for favipiravir. Our results support
our hypothesis, as we observed excellent interaction energies between favipiravir and
B3O3 nanoflakes.
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2. Results
2.1. Geometric and Energetic Analysis

For exploring the interaction of favipiravir with B3O3 nanoflake, four different orienta-
tions are chosen. These orientations are as follows: (i) favipiravir is adsorbed horizontally
on the B3O3 surface (FAV@ B3O3-C); (ii) the amino group is directed toward the center of
the B3O3 surface (FAV@ B3O3-C1); (iii) the aromatic ring containing fluoride is directed
towards the center of the B3O3 surface (FAV@ B3O3-C3); and (iv) favipiravir is adsorbed on
the side of the B3O3 surface (FAV@ B3O3-SW1). The optimized energy minima structures
of the individual drug, B3O3 nanoflakes and all complexes are given in Figures 1 and 2.
The prominent interacting distances (dint), interaction energies (Eint) and counterpoise-
counterpoise energies (Ecp) are summarized in Table 1. Geometric optimization is followed
by vibrational analysis, which confirmed that these optimized structures represent the true
minima on the potential energy surface. The optimized configurations revealed the highly
reactive nature of the porous cavity of B3O3 and its strong propensity for binding with
incoming molecules. The respective observed counterpoise-corrected energies (Ecp) for the
optimized complexes were −20.08, −22.59, −20.70 and −10.66 kcal/mol for the orienta-
tions FAV@B3O3-C, FAV@B3O3-C1, FAV@ B3O3-C3 and FAV@ B3O3-SW1, respectively. The
Ecp values are comparable to interaction energies (Eint)—see Table 1. The reason for the
stability (as shown by exothermic reactions) of these complexes is the presence of various
strong noncovalent interactions between the drug and the surface.
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Figure 2. The optimized geometries of FAV@B3O3 nanoflake complexes such as FAV@B3O3-C,
FAV@B3O3-C1, FAV@B3O3-C3 and FAV@B3O3-SW1.

The larger Ecp value (−22.59 kcal mol−1) for FAV@B3O3-C1 indicates that the NH2
group of the drug possesses more electropositive protons, which can form strong interac-
tions with the oxygen atoms of B3O3, resulting in higher interaction energy. The reason
for these strong interactions is the presence of oxygen, which has great affinity for the elec-
tropositive hydrogen atoms of the amine group. Consequently, these highly electropositive
hydrogen atoms exhibit stronger interactions with the electron-rich cavities of the B3O3
surface through hydrogen bonding. FAV@B3O3-C1 has two hydrogen bonds, leading to a
higher Ecp compared to FAV@B3O3-C, which has only one hydrogen bond between the
hydrogen of the hydroxyl group of favipiravir and the oxygen of the B3O3 surface. How-
ever, in FAV@B3O3-C3, an additional interaction occurs between the fluoride of favipiravir
and the boron atoms of the B3O3 surface. The additional halogen interaction between
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fluoride and the surface gives more stability to FAV@B3O3-C3 compared to FAV@B3O3-C.
Due to the fewer interactions and lower electronegativity on the sides of B3O3, the Ecp
value for FAV@ B3O3-SW1 is significantly lower than that of the other three complexes
(FAV@B3O3-C, FAV@B3O3-C1 and FAV@B3O3-C3). These findings also demonstrate that
Ecp increases as the interacting distances (dint) decrease. The important interaction dis-
tances are given in Table 1, and the interacting distance (dint) of the first bond is up to 2 Å
for all complexes except for the FAV@B3O3-SW1 complex. The dint of the second bond is
lower for FAV@B3O3-C1 (2.27 Å), followed by FAV@B3O3-C3 (2.57 Å) and FAV@B3O3-C
(2.70 Å). The largest dint is seen for FAV@B3O3-SW1 (3.01 Å). These results align with the
existing literature indicating an inverse relationship between thermodynamic stability and
distance [43,44].

Table 1. Interaction energies (Eint), interacting atoms (Aint), interacting distances (dint), and
counterpoise-corrected energies (Ecp) of reported FAV@B3O3 complexes.

Complexes Eint
(kcal/mol) Aint

dint
(Å)

Ecp
(kcal/mol)

FAV@B3O3-C −23.84
H57—O34 1.84

−20.08
H48—O28 2.70

FAV@B3O3-C1 −26.98
H55—O34 2.13

−22.59
H54—O28 2.27

FAV@B3O3-C3 −24.47
H57—O39 1.94

−20.70
H48—O34 2.57

FAV@B3O3-SW1 −12.55
O52—B23 2.71

−10.66
N49—O40 3.01

2.2. Noncovalent Interactions (NCI) Analysis

The noncovalent interactions between the surface and analyte (drug) for the deeper
visualization are evaluated through NCI analysis. The results of the NCI plots are presented
in two forms; 2D RDG scattered graphs and 3D isosurfaces. The 2D RDG scattered graphs
and 3D isosurfaces for our designed complexes are given in Figure 3. In this analysis, the na-
ture of the interactions is represented by three colors, namely red, blue and green. The blue,
green and red colors represent strong hydrogen bonding interactions, London dispersion
interactions and steric repulsion between the analyte and surface, respectively [38,45–47].

The scattered graphs of RDG are generated on the basis of the mathematical equation
given below.

RDG =
1

2(3π2)
1/3
|∇ρ|
ρ4/3

where ∇ρ represents the average reduced density gradient. The λ2 term in the sign λ2(ρ)
function is obtained using the RDG method as the second largest eigenvalue of the average
electron density Hessian matrix computed throughout the dynamical trajectory. It provides
information about the different types of weak interactions in a system. The existence of
green spikes between −0.020 and 0.001 au in the 2D RDG map evidences the presence
of dominant dispersion forces (van der Waals forces) in all complexes. There are some
blue spikes in the 2D RDG map depicting hydrogen bonding between the hydrogen of the
amino group (in Favipiravir) and the oxygen of B3O3 in all complexes. The red spikes in
the RDG scatter maps show intermolecular steric repulsion in all complexes. These results
indicate a stronger influence of van der Waal’s interactions and hydrogen bonding.

Furthermore, the 3D isosurfaces are plotted at an isosurface value of 0.05 au. The
strength of nonbonding interactions between the analyte and the surface is estimated
based on the thickness of the patches. The stippled patches show weak interactions,
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but thick patches indicate strong interactions between the analyte (Favipiravir) and the
surface (B3O3).
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complexes (FAV@B3O3-C, FAV@B3O3-C1, FAV@B3O3-C3, FAV@B3O3-SW1).

All complexes (FAV@B3O3-C, FAV@B3O3-C1, FAV@B3O3-C3, FAV@B3O3-SW1) show
dark green thick patches which depict strong dispersion interactions between favipi-
ravir and B3O3. However, the thickness of these patches is less in the FAV@B3O3-C
and FAV@B3O3-SW1 complexes as compared to the FAV@B3O3-C1 and FAV@B3O3-C3
complexes. We also noticed small red patches which illustrate steric repulsion between
favipiravir and B3O3. The blue patches indicate the hydrogen bonding between the hydro-
gen of the amino groups (in favipiravir) and the oxygen of B3O3. The most pronounced
blue patches are seen in the FAV@B3O3-C1 complex. The outcomes of both the 2D RDG
graphs and the 3D isosurfaces illustrate the stability of these complexes. The results of NCI
are consistent with the interaction energy results (vide supra).
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2.3. Quantum Theory of Atoms in Molecules (QTAIM) Analysis

QTAIM analysis is a topological technique used to estimate the nature and strength of
interactions between chemical species such as adsorbent (Favipiravir) and surface (B3O3).
The electronic density (ρ), Laplacian electron density (∇2ρ), and the sum of electron
densities (H) are important parameters in QTAIM results to differentiate between the
covalent and noncovalent interactions. The sum of electron densities (H) at bond critical
points (BCPs) is the sum of kinetic and potential energy densities [48,49], which can be
calculated using the equation below.

H = G + V

In the above equation, G and V represent the kinetic and potential energy densi-
ties. The H value is either zero or less than zero for all types of noncovalent interaction.
Meanwhile, an H value greater than zero indicates significant electronic contribution and
represents the covalent nature of the interaction. For close shell interactions, the kinetic
energy density dominant over potential energy density where H is positive. The total
electronic density produces the total electronic energy when integrated over all of the
space [48]. A value of electron density (ρ) less than 0.1 au indicates the presence of non-
covalent interactions with a positive value of Laplacian electron density (∇2ρ) and sum of
electron densities (H).

To examine the interactions more deeply and find bond critical points (BCPs) of
favipiravir-adsorbed B3O3 complexes (FAV@B3O3-C, FAV@B3O3-C1, FAV@B3O3-C3,
FAV@B3O3-SW1), the QTAIM analysis is performed, and the results are given in Table 2
and the BCPs are shown in Figure 4.

Table 2. QTAIM parameters including the electronic density (ρ), Laplacian electron density (∇2ρ),
kinetic energy density (G), potential energy density (V) and the sum of electron densities (H) at
bond critical points (BCPs) in favipiravir-adsorbed B3O3 complexes (B3O3-1-FAV-C, B3O3-1-FAV-C-1,
B3O3-1-FAV-C-3, and B3O3-1-FAV-C-SW1 in au).

BCPs Ana-Surface ρ ∇2ρ G V H

FAV@B3O3-C

78 N49-O26 0.60 × 10−2 0.21 × 10−1 0.44 × 10−2 −0.36 × 10−2 0.79 × 10−3

130 H57-O34 0.31 × 10−1 0.94 × 10−1 0.23 × 10−1 −0.23 × 10−1 0.92 × 10−4

FAV@B3O3-C1

81 N49-B7 0.80 × 10−2 0.24 × 10−1 0.52 × 10−2 −0.44 × 10−2 0.79 × 10−3

95 H55-O34 0.17 × 10−1 0.52 × 10−1 0.13 × 10−1 −0.13 × 10−1 −0.26 × 10−3

132 O56-B9 0.12 × 10−1 0.33 × 10−1 0.80 × 10−2 −0.77 × 10−2 0.22 × 10−3

FAV@B3O3-C3

24 H48-O34 0.42 × 100 −0.18 × 102 0.68 × 10−2 −0.46 × 101 −0.46 × 101

65 H57-O39 0.25 × 10−1 0.71 × 10−1 0.18 × 10−1 −0.19 × 10−1 0.49 × 103

126 O56-O41 0.11 × 10−1 0.35 × 10−1 0.82 × 10−2 −0.77 × 10−2 0.52 × 103

FAV@B3O3-SW1

66 O56-H1 0.54 × 10−2 0.19 × 10−1 0.38 × 10−2 −0.29 × 10−2 0.93 × 10−3

109 N49-O40 0.79 × 10−2 0.26 × 10−1 0.59 × 10−2 −0.53 × 10−2 0.60 × 10−3

119 F51-H5 0.36 × 10−2 0.16 × 10−1 0.31 × 10−2 −0.20 × 10−2 0.11 × 10−2

The average values of ρ in favipiravir-adsorbed B3O3 complexes such as FAV@B3O3-C,
FAV@B3O3-C1, FAV@B3O3-C3, and FAV@B3O3-SW1 range from 0.80 × 10−2 to 0.42 ×
100, respectively. The positive values of H in these complexes indicate the presence of
non-covalent interactions in all reported complexes. However, the negative values of H in
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some of the critical points of the complexes also depict the existence of hydrogen bonding,
which is comparable to the NCI results (vide supra).
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2.4. Electronic Properties

The computation of frontier molecular orbitals is carried out to evaluate the electronic
properties of drug and B3O3 nanoflake. According to the literature, the electronic behavior
of a surface undergoes changes when they interact with any chemical species [50,51].
Table 3 and Figure 5 exhibit the energies of the HOMO and LUMO orbitals, as well as
their corresponding isosurfaces. The energy gap between the HOMO and LUMO of
pure B3O3 is determined to be 9.95 eV. However, upon complexation with the considered
drug, the energy gap between HOMO and LUMO orbitals of FAV@B3O3-C, FAV@B3O3-C1,
FAV@B3O3-C3 and FAV@B3O3-SW1 complexes is decreased. Specifically, the energy gap
between the MOMO and LUMO orbitals for FAV@B3O3-C, FAV@B3O3-C1, FAV@B3O3-C3
and FAV@B3O3-SW1 complexes is 8.62, 8.67, 8.61 and 8.70 eV, respectively. The isosurface
visualization of the HOMO and LUMO provides insights into the localization of the HOMO
on the bonds in drug molecules in all of the doped complexes, while the LUMO is localized
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on the atoms of the drug as well. The dipole moment is another crucial factor that defines
the solubility and polarity of the system [52].
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Table 3. The electronic descriptors include the energy gap (EL-H), softness (s), hardness (η), chemical
potential (µ) and electrophilicity index (ω) in eV for the FAV@B3O3-C, FAV@B3O3-C1, FAV@B3O3-C
and FAV@B3O3-SW1 complexes.

Complexes EHOMO ELUMO EL-H s η µ ω

B3O3 −10.42 −0.46 9.96 0.10 4.98 −5.44 2.96

Favipiravir −9.51 −0.72 8.79 0.11 4.40 −5.11 2.97

FAV@B3O3-C −9.53 −0.89 8.64 0.12 4.32 −5.21 3.14

FAV@B3O3-C1 −9.54 −0.85 8.69 0.11 4.34 −5.20 3.11

FAV@B3O3-C3 −9.59 −0.97 8.62 0.12 4.31 −5.28 3.23

FAV@B3O3-SW1 −9.59 −0.88 8.71 0.11 4.36 −5.23 3.13

For the B3O3 nanoflakes, the dipole moment is measured to be 0.00 Debye, indicating
their non-polar nature. However, the dipole moment in the FAV@B3O3-C, FAV@B3O3-C1,
FAV@B3O3-C3 and FAV@B3O3-SW1 complexes is 5.96 D, 5.46 D, and 6.01 and 6.37 Debye,
respectively. The dipole moment values of the reported FAV@B3O3 complexes demonstrate
that the B3O3 nanoflakes acquire polarity upon interaction with the respective drug. This
polarity arises from the Coulombic interactions between the nucleophilic cavities of B3O3
and the electrophilic hydrogen atoms of the drug in the doped complexes, especially in
the FAV@B3O3-C1, FAV@B3O3-C3 and FAV@B3O3-C complexes. The dipole moments of
FAV@B3O3-C1 and FAV@B3O3-C3 indicate that these complexes are reasonably soluble in
an aqueous medium. On the other hand, FAV@B3O3-SW1 is relatively less soluble due to
the absence of Coulombic interactions. Good solubility is typically a desirable property
for a drug delivery system, which is evident in the FAV@B3O3-C1, FAV@B3O3-C3 and
FAV@B3O3-C complexes.

The reactivity of favipiravir with the B3O3 quantum dots is evaluated using chemical
reactive descriptors such as hardness (η), softness (s), chemical potential (µ), and elec-
trophilicity index (ω) (see Table 3). The results indicate that the chemical potential (µ) of the
respective drug-doped B3O3 complexes is higher than that of both the bare B3O3 nanosheets
and the drug molecule. Furthermore, the high softness (s) values and low hardness (η)
values follow the same trend as the chemical potential, indicating the stability of the doped
complexes after complexation when compared to bare B3O3. Notably, the FAV@B3O3-
C3 complex exhibits the highest softness (0.12 eV) value and the lowest hardness value
(4.31 eV), indicating its lower reactivity and higher stability among all of the designed
complexes. The FAV@B3O3-C3 complex also has the highest chemical potential (−5.28 eV)
and electrophilicity index (3.23 eV) compared to the other bare and doped complexes. The
higher chemical potential indicates greater charge transfer in this FAV@B3O3-C3 complex
and the high electrophilicity index justifies the higher stabilization energy of the doped
complex. The FAV@B3O3-SW1 complex exhibits the lowest softness (0.11 eV) value and
the highest hardness value (4.36 eV), indicating lower stability and high reactivity among
all designed complexes. On the other hand, the FAV@B3O3-C1 complex has the lowest
chemical potential (−5.26 eV) and electrophilicity index (3.11 eV). These results indicate
the lower charge transfer and lower stabilization energy of the FAV@B3O3-C1 complex.
The high electrophilicity, low hardness, high softness, and high chemical potential values
collectively suggest that B3O3 can serve as an effective drug delivery system for favipiravir.

2.5. UV-VIS Analysis

The UV-Vis analysis plays a crucial role in comprehending the behavior of the sensor
as an optical sensor. As per the existing literature, a rise in the interaction energy between
two chemical species is projected to cause a change in wavelength for an optical sensor [11].
Figure 6 and Table 3 present the UV-Vis spectra and corresponding values for both the bare
and complexed B3O3. The absorbance of bare B3O3 was observed at 221 nm. However,
upon complexation with favipiravir, this absorbance shifts towards higher wavelengths, as



Molecules 2023, 28, 8092 11 of 15

observed in our previous report [38]. The λmax of B3O3 experiences a shift to 273 nm, 266
nm, 274 nm and 269 nm for FAV@B3O3-C, FAV@B3O3-C1, FAV@B3O3-C3 and FAV@B3O3-
SW1 complexes, respectively (Figure 6). This red shift is observed for all of the doped
complexes. The UV-Vis analysis justifies electronic excitation in doped complexes due to
the strong interaction between the drug and the B3O3 surface. These findings strongly
indicate the effectiveness of B3O3 for optical sensing applications involving the antiviral
drug favipiravir.
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Figure 6. UV-Vis analysis of the FAV@B3O3 complexes (bare B3O3, favipiravir, FAV@B3O3-C,
FAV@B3O3-C1, FAV@B3O3-C3 and FAV@B3O3-SW1).

Internal descriptors including the oscillating strength and excitation energies are
calculated to understand the reason for the change in wavelength. The wavelength is
directly proportional to the oscillating strength and inversely proportional to the excitation
energy. The FAV@B3O3-C has a maximum wavelength of 273 nm and an oscillating strength
of 0.170. The FAV@B3O3-C1 has a maximum wavelength of 266 nm and an oscillating
strength of 0.119. The trend of increasing f o is comparable to the increase in wavelength.
The excitation energy also decreases for doped complexes compared to bare B3O3 (5.62 eV).
The excitation energy ranges from 4.53 to 4.67 eV. The trend of increasing wavelength is
similar to the increase in excitation energy. The lowest excitation energy (4.53 eV) is seen for
FAV@B3O3-C3, which has a maximum wavelength of 274 nm. The lowest excitation energy
is 4.66 eV for FAV@B3O3-C3, which has a maximum wavelength of 266 nm. The excitation
energy is the dominating factor responsible for causing changes in the wavelength of the
doped complexes (Table 4).

Table 4. The maximum wavelength (λmax in nm), oscillating strength ((f o) and excitation energy
(in eV) of bare B3O3, favipiravir, FAV@B3O3-C, FAV@B3O3-C1, FAV@B3O3-C3 and FAV@B3O3-SW1
complexes.

Complex Wavelength (nm) Oscillating Strength (f o) Excitation energy (eV)

B3O3 221 0.098 5.62
Favipiravir 265 0.179 4.67

FAV@B3O3-C 273 0.170 4.54
FAV@B3O3-C1 266 0.119 4.66
FAV@B3O3-C3 274 0.154 4.53

FAV@B3O3-SW1 269 0.182 4.60
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3. Materials and Methods
Computational Methodology

DFT simulations were conducted using Gaussian 09 [53], while the GaussView 5.0 [54]
software package was used for visualization. Geometric analysis utilized the ωB97XD
functional in conjunction with the 6-31+G(d,p) basis set. The ωB97XD functional is a
hybrid and long-range separated functional with additional dispersion correction, and is
popular due to its treatment of non-covalent interactions [55–57]. This correction factor
accounts for weak London dispersion forces and ensures the production of accurate opti-
mization results [58,59]. The interaction (Eint) and counterpoise-corrected (Ecp) energies
were calculated by using Equations (1) and (2):

Eint = EFAV−B3O3−[EFAV+EB3O3 ]
(1)

Ecp = EFAV−B3O3−[EFAV+EB3O3 ]+BSSE (2)

where EFAV@B3O3, EFAV, and EB3O3 represent the energies of the FAV@B3O3 complexes,
favipiravir (FAV), and the B3O3 surface, respectively. BSSE refers to the basis set superposi-
tion error caused by overlapping basis sets, and it was corrected by using the counterpoise
method specified in Gaussian 09 [58]. The interaction energies indicate the non-covalent
physiosorption of favipiravir onto the surface of the B3O3 nanoflakes. To evaluate the
non-covalent interactive and repulsive forces, non-covalent interaction index (NCI) and
quantum theory of atoms in molecules (QTAIM) analyses were performed using Multiwfn
3.8 software [60].

Electronic properties were investigated at theωB97XD/6-31+G(d,p) level of theory.
ωB97XD is a highly reliable functional widely used for investigating the electronic proper-
ties of various systems, providing energy gaps comparable to experimental data [61–63].
NBO charge transfer calculations were conducted to determine the extent of charge transfer
between the interacting moieties (drug and surface). Additionally, electronic descriptors
such as the chemical hardness, softness, chemical potential, and electrophilicity index were
computed to analyze the reactivity of the systems:

η = ELUMO − EHOMO/2 (3)

S = 1/2η (4)

µ = EHOMO + ELUMO/2 (5)

ω = µ2/2η (6)

4. Conclusions

B3O3 nanoflakes are analyzed as drug carriers for the antiviral drug favipiravir using
DFT simulations. The strong interactions between both species (boron oxide and favipiravir)
depict their thermodynamic stability. Four orientations are investigated for the interaction
between favipiravir and the B3O3. The Eint of the most stable orientation is−26.98 kcal/mol,
whereas the counterpoise-corrected energy is −22.59 kcal/mol. The electronic properties
are investigated through frontier molecular orbital analysis, dipole moments and chemical
reactivity descriptors. These parameters indicate the significant activity of B3O3 nanoflakes
for favipiravir. NBO charge transfer illustrates the charge transfer between the interacting
species. Noncovalent interaction index (NCI) and quantum theory of atoms in molecules
(QTAIM) analyses are performed to gain insights about the behavior and the types of
interactions that occur between B3O3 quantum dots and favipiravir. The results indicate
the presence of hydrogen bonding between the hydrogen of the favipiravir and the oxygen
of the B3O3 quantum dots in the most stable complex (FAV@B3O3-C1). UV-Vis analysis
confirmed the electronic excitation. All of the complexes showed red shift compared to
bare B3O3 quantum dots and favipiravir. Our work provides a suitable drug carrier system
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for the antiviral drug favipiravir, which can be considered by the experimentalist for better
drug delivery systems.
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