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Abstract: Carbon capture and storage (CCS) and carbon capture and utilization (CCU) are two kinds
of strategies to reduce the CO2 concentration in the atmosphere, which is emitted from the burning
of fossil fuels and leads to the greenhouse effect. With the unique properties of ionic liquids (ILs),
such as low vapor pressures, tunable structures, high solubilities, and high thermal and chemical
stabilities, they could be used as solvents and catalysts for CO2 capture and conversion into value-
added chemicals. In this critical review, we mainly focus our attention on the tuning IL-based
catalysts for CO2 conversion into quinazoline-2,4(1H,3H)-diones from o-aminobenzonitriles during
this decade (2012~2022). Due to the importance of basicity and nucleophilicity of catalysts, kinds
of ILs with basic anions such as [OH], carboxylates, aprotic heterocyclic anions, etc., for conversion
CO2 and o-aminobenzonitriles into quinazoline-2,4(1H,3H)-diones via different catalytic mechanisms,
including amino preferential activation, CO2 preferential activation, and simultaneous amino and
CO2 activation, are investigated systematically. Finally, future directions and prospects for CO2

conversion by IL-based catalysts are outlined. This review is benefit for academic researchers to
obtain an overall understanding of the synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and
o-aminobenzonitriles by IL-based catalysts. This work will also open a door to develop novel IL-based
catalysts for the conversion of other acid gases such as SO2 and H2S.

Keywords: aminobenzonitrile; CO2 fixation; CO2 utilization; C1 chemistry; CO2 chemistry; CO2-philic;
mechanism; CCUS; greenhouse gas control; carbon neutral

1. Introduction

Large amounts of CO2 emissions from the combustion of fossil fuels have caused
severe global climate change issues, including the greenhouse effect, global warming, and
extreme climate. Carbon capture and storage (CCS) and carbon capture and utilization
(CCU) are two kinds of technologies to reduce the CO2 concentration in the atmosphere [1].
CCS technology means that the captured CO2 then is pressurized and transported to a
storage site, where it is injected into one of a number of types of stable geological features,
trapping it for multiple hundreds or thousands of years and preventing its subsequent
emission into the atmosphere [2]. Alternatively, CCU technology presents a free, abun-
dant, and non-toxic carbon source with economic benefits to offset high capture costs,
wherein CCU systems, atmospheric CO2 or industrially emitted CO2 could be recycled
and converted into carbon-containing value-added chemicals and fuels [3]. Among these
chemicals, quinazoline-2,4(1H,3H)-diones, regarded as pharmaceutical intermediates with
a wide range of biological activity, have been successfully synthesized from CO2 and
o-aminobenzonitriles. This reaction is an atom-economical route, and it has been widely
investigated using kinds of catalysts, such as metal oxides, [4,5] inorganic/organic sup-
ported/grafted catalysts, [6–9] organic bases, [10–15] water, [16] etc. However, most of
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these reaction systems have drawbacks, such as high CO2 pressures, high temperatures,
high catalyst loadings, long reaction times, and difficulties in recycling the catalysts. Thus,
the development of alternative sustainable catalysts is of great importance for efficient CO2
capture and conversion.

With increasing interest in the green chemistry concept, the application of ionic liq-
uids (ILs) is one of the most promising approaches to construct alternative catalysts for
CO2 conversion into quinazoline-2,4(1H,3H)-diones in recent years. ILs are a kind of
sustainable organic compound, which are composed of organic cations and organic or
inorganic anions [17–23]. Typical cations include imidazolium, pyridinium, ammonium,
phosphonium, and superbase-based protic cations, etc., while typical anions include car-
boxylates, phenolates, and aprotic heterocyclic anions, etc. ILs have been applied in
CO2 capture and conversion as solvents and catalysts due to their unique properties,
such as low vapor pressure, high chemical stability, and tunable “CO2-philic” structure-
properties [24]. It is known that melting points of ILs are below 100 ◦C, and some ILs
are room-temperature ILs. Thus, homogeneous catalysts could be obtained from pure
ILs or IL-based mixtures. In addition, heterogeneous catalysts could also be prepared via
grafting or supporting ILs on porous materials. The first IL for CO2 conversion has been
reported in 2009 [25]. During this decade, kinds of IL-based catalysts have been devel-
oped for CO2 conversion into quinazoline-2,4(1H,3H)-diones with o-aminobenzonitriles
as the raw materials, and most of them reported from China. The reported ILs with
high basicity could help the transformation of CO2. There are several review articles that
have been published for the synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and
o-aminobenzonitriles. Gheidari and Mehrdad et al. [26] have reviewed the recent advances
in synthesis of quinazoline-2,4(1H,3H)-diones. Soleimani-Amiri et al. [27] and Zhu et al. [28]
have reported the mechanisms and reaction conditions of CO2 with o-aminobenzonitrile
for the synthesis of quinazoline-2,4-dione. With the increasing attention on ILs as a kind of
green solvent and catalyst, it is crucial to review this field systematically from a point of
design functional IL-based catalysts, according to catalyze mechanism.

In this critical review, we mainly focus our attention on the tuning ionic liquid-based
catalysts for CO2 conversion into quinazoline-2,4(1H,3H)-diones from o-aminobenzonitriles
during this decade (2012~2022). Due to the importance of basicity and nucleophilicity of
catalysts, kinds of ILs with basic anions such as [OH], carboxylates, aprotic heterocyclic
anions, etc., convert CO2 and o-aminobenzonitriles into quinazoline-2,4(1H,3H)-diones via
different catalytic mechanisms, including amino preferential activation, CO2 preferential
activation, and simultaneous amino and CO2 activation, which are investigated systemati-
cally. Finally, future directions and prospects for CO2 conversion by IL-based catalysts are
outlined (Figure 1).
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2. CO2-Philic ILs for Efficient CO2 Capture

CO2-philic task-specific ILs or functional ILs used in CO2 capture have been devel-
oped during two decades [29–32]. The Functional ILs mainly based on functional anions
include single-site anions, such as amino anions, [33,34] carboxylate anions, [35] alcoholate
anion, [36] phenolate anions, [37,38] and azolate anions, [39–41] and multiple-site anions,
such as pyridinolate anions, [42,43] imide anions, [44–47] and hydantoin anions [48,49].
The single-site anion-functional ILs result in up to a 1:1 stoichiometry absorption capacity,
while multiple-site anion-functional ILs result in more than equimolar capacities. The
typical anions of functional ILs and reaction mechanisms can be found in Figure 2.
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3. CO2 Conversion into Quinazoline-2,4(1H,3H)-diones

The general mechanisms of the reaction of CO2 and o-aminobenzonitriles by cata-
lysts reported in the literature can be classified into three categories: amino preferential
activation, CO2 preferential activation, and both amino and CO2 simultaneous activation.

3.1. Amino Preferential Activation
3.1.1. [OH]-Based ILs as a Catalyst

(1) [Bmim][OH]
According to the results of the study from Xu and Wang et al. [50], the amino group

can react with CO2 when its pKa is above 8.6 (Figure 3). Therefore, as the pKa of o-
aminobenzonitrile is relatively small, a basic catalyst is needed, which can improve the
reactivity of the amino group on the o-aminobenzonitriles for CO2 conversion. The first
basic IL used as a catalyst for CO2 conversion with o-aminobenzonitriles for synthesis of
quinazoline-2,4(1H,3H)-diones is 1-butyl-3-methyl imidazolium hydroxide ([Bmim][OH]),
which is reported by Bhanage et al. [25] They show that a remarkable activity of [Bmim][OH]
can be achieved for the wide variety of substituted o-aminobenzonitriles. The mechanism
study indicates that [Bmim][OH] only activates the amino group, and subsequently, the
dehydrogenated amino group with high enough basicity to react with CO2. Wu et al. [51]
verifies the same mechanism using a computational study. The mechanism for the chemical
fixation of CO2 with o-aminobenzonitrile in the presence of [Bmim][OH] is proposed in
Figure 4.
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(2) Supported [OH]-based ILs
Bhanage et al. [52] report the synthesis of quinazoline-2,4(1H,3H)-diones through the

carboxylative coupling of CO2 with o-aminobenzonitriles at 120 ◦C and 30 bar CO2 using
the heterogeneous supported IL phase catalyst 1-hexyl-3-methyl imidazolium hydroxide
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supported on silica ([Hmim][OH]/SiO2). The influences of catalyst loading, reaction time,
solvent, temperature, and pressure on the reaction system have been investigated. Their
results show that lower concentrations of the [Hmim][OH] (10, 20 wt%) gives lower yields
of desired product, while the optimum concentrations of the [Hmim][OH] (30 wt%) gives
85% yield. The plausible reaction pathway is similar to [Bmim][OH].

(3) Grafted [OH]-based ILs
Srivastava et al. [53] report a series of [OH]-based ILs grafted on nanocrystalline

Zeolites ZSM-5 for the synthesis of quinazoline-2,4(1H,3H)-diones at 150 ◦C and 35 bar.
These grafted [OH]-based ILs catalysts have been synthesized through multiple steps,
including quaternization, grafting, and [OH] anion exchange (Figure 5). They investigate
the influence of solvents on the performance of grafted catalysts. The results show that
the reaction has proceeded well in DMF or DMSO, while it did not take place in nonpolar
solvents (toluene) and aprotic polar solvents (acetonitrile). However, only a low product
yield is obtained in a polar protic solvent (methanol), while moderate product yield is
obtained in H2O. The plausible reaction pathway is also similar to [Bmim][OH].
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3.1.2. Carboxylate-Based ILs as Catalysts

(1) [OAc]-based ILs
Han et al. [54] reports that 1-butyl-3-methylimidazolium acetate ([Bmim][OAc]) can

act as both solvent and catalyst for the conversion of CO2 and o-aminobenzonitriles into
quinazoline-2,4(1H,3H)-diones at atmospheric pressure of CO2 with high yields. Using
DMF as the solvent, the results show that the yield of product increases with the increased
amount of the IL, indicating that the IL is an active catalyst for the reaction. A plausible
mechanism is proposed as depicted in Figure 6. After the acetate anion [OAc] captures a
proton from the amino group, the activated amino group reacts with CO2 rapidly, leading
to the formation of a carbamate. Subsequently, an intramolecular nucleophilic cyclization
and the rearrangement occur. The final product will be obtained from the proton transfer.
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(2) Atypical carboxylate-containing ReILs
The reversible ionic liquids (ReILs) have first been reported by Jessop et al. [55], where

the mixture of superbase and alcohol could capture equimolar CO2 to form carboxylate-
containing ReILs. Zheng et al. [56] have synthesized a series of ReILs as both the solvents
and catalysts for the conversion of CO2 or CS2 and o-aminobenzonitriles into quinazoline-
2,4(1H,3H)-diones or quinazoline-2,4(1H,3H)-dithiones. A plausible mechanism is proposed
as depicted in Figure 7. As can be seen, the reaction mechanism using this atypical
carboxylate-containing ReILs as the catalyst is similar to other mechanisms using typical
carboxylate anion-containing ILs as the catalysts. The CO2 conversion can be performed at
40 ◦C and 1 bar CO2 with a high yield of quinazoline-2,4(1H,3H)-diones. Compared with
the reaction conditions using different ILs based on anions [OH] (at 120 ◦C and 30 bar),
[WO4] (at 140 ◦C and 1 bar), and [OAc] (at 90 ◦C and 1 bar), the advantages using ReILs as
the catalyst can be mild conditions, high efficiency, easy separation of products, and the
reusability of catalysts.
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(2) [Im−CO2] complexes
It is known that anions play a key role in CO2 capture or CO2 utilization. How-

ever, Wang et al. [57] report that the basicity of cations affect the catalytic activity of ILs
dramatically, and the hydrogen bond from cations could promote this reaction at 80 ◦C
and 1 bar CO2. In their research, 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene imidazolate
([HMTBD][Im]) with a higher basicity (pKa = 13.0) could improve the yield to 87%, while
1-methylimidazolium imidazolate (HMIm][Im]) with a lower basicity (pKa = 7.1) exhibits
poor catalytic activity with a yield of 16%, indicating that the cation can impact this re-
action dramatically. In addition, the results of the quantum-chemical calculations, NMR
spectroscopic investigations, and controlled experiments indicate that in-situ generated
[Ch][Im−CO2] is the real catalyst for the conversion of CO2 and o-aminobenzonitriles into
quinazoline-2,4(1H,3H)-diones. Thereby, the possible reaction mechanism can be illustrated
in Figure 8, which is similar to that of using [OAc]-based ILs as catalysts.
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3.1.3. Aprotic Heterocyclic Anion ILs as Catalysts

(1) Azolate-based anion IL
Dyson et al. [58] investigate the relationship between the pKa of the IL anion (conju-

gate acid) and the yield of quinazoline-2,4(1H,3H)-dione. The results show that a linear
relationship is found in the pKa range of 9.2~14.4. They have determined the acidity of
the quinazoline-2,4(1H,3H)-dione product using UV/Vis spectroscopy, and the measured
pKa is 14.7. Thus, all catalysts with pKa values above 14.7 only act as pre-catalysts towards
the formation of the quinazolide anion IL catalysts, explaining the uniform reaction yield
observed for all ILs with a pKa above this value (Figure 9). The results indicate that neutral-
ization of the original catalyst and formation of the alternative quinazolide anion catalyst
leads to the efficient CO2 conversion.
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(2) imide-based anion IL
It is reported by Cui and Wang et al. [45] that tri-n-butylethylphosphonium succin-

imide ([P4442][Suc]) affords to introduce the CO2 into the IL phase even under the low
concentration of CO2 by formation of [Suc−CO2] and [Suc−2CO2] through preorganization
and cooperation. Recently, Wang and Zhang et al. [59] have reported a series of [Suc]-based
ILs with different kinds of cations for CO2 capture and CO2 conversion into quinazoline-
2,4(1H,3H)-diones. The results of absorption performance show that 1.45 mol CO2 has
been absorbed by each mol of benzyltrimethylammonium succinimide ([BzTMA][Suc])
in DMSO, while only 0.69 and 0.42 mol CO2 per mol IL are absorbed by [Ch][Suc] and
[HMIm][Suc], respectively, due to the strong interaction between active hydrogen atoms
in these cations and [Suc] anions. In order to study the mechanism of CO2 conversion,
the role of the anion/cation, the synergistic effect of the cation and anion, and the actual
catalytic species have been systematically investigated based on the different catalytic
species, including [BzTMA][Suc−CO2], [BzTMA][Suc], and [BzTMA−CO2][HSuc]. Since
the NMR results could not totally elucidate the active species ([Suc−CO2] or [Suc]), the
calculations have been performed. The negative charge of two O atoms in the anion of
[BzTMA][Suc−CO2] are −0.695 e and −0.753 e, while the negative charge of the N atom in
the anion of [BzTMA][Suc] is −0.793 e. As more negative charge is favorable for activating
the substrate, the actual catalytic species should be [Suc] rather than [Suc−CO2]. Therefore,
the possible reaction mechanism can be illustrated in Figure 10, including amino activation,
cyclization, ring-opening, and ring-closure and catalyst regeneration.
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3.2. CO2 Preferential Activation
3.2.1. [Ch][OH] + Water

Ma and Han et al. [60] report that the transformation of CO2 and o-aminobenzonitriles
to quinazoline-2,4(1H,3H)-diones in water can be promoted by choline hydroxide ([Ch][OH].
The results of yield vs. CO2 pressure show that the yield becomes independent of the pres-
sure above 2 MPa. Additionally, the results of yield vs. temperature show that the yield can
be reached 92% at 90 ◦C, and then remain unchanged with further-increasing temperature.
The reaction mechanism is discussed and proposed as Figure 11. It is well-known that
CO2 can form carbonic acid (H2CO3) in water. Thus, choline bicarbonate ([Ch][HCO3])
is formed when CO2 is in the aqueous [Ch][OH] solution. Subsequently, the hydroxyl
H of [HCO3] migrates to the N atom of the nitrile group, while the O atom of [HCO3]
nucleophilically attacks the C atom of the nitrile group. After a series of rearrangement
and catalyst regeneration steps, the quinazoline-2,4(1H,3H)-dione is formed.
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3.2.2. NHC as a Catalyst

Shi et al. [61] reports that the quinazoline-2,4(1H,3H)-diones can be obtained from CO2
and o-aminobenzonitriles catalyzed by N-heterocyclic carbenes (NHCs) at 120 ◦C and 1 bar
CO2. The NHCs are generated from a series of imidazolium chloride in the presence of
the base K2CO3 in DMSO. The plausible reaction mechanism is reported and illustrated in
Figure 12. The authors suggest that NHCs are the catalytic active species, and NHCs transfer
CO2 to quinazoline-2,4(1H,3H)-diones via the formation of NHC−CO2 adducts. After the
nucleophilic addition of zwitterionic adducts to the nitrile group and the intramolecular
cyclization, the NHCs are regenerated. Finally, quinazoline-2,4(1H,3H)diones are produced
via a series of proton transfer, ring opening, and intramolecular nucleophilic addition.
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3.2.3. [Bu4P][2-MIm] as a Catalyst

Liu et al. [62] reports that quinazoline-2,4(1H,3H)-diones can be obtained in excellent
yields from atmospheric CO2 and o-aminobenzonitriles using tetrabutylphosphonium
2-methylimidazolate ([Bu4P][2-MIm]) as a catalyst. A possible reaction mechanism is
proposed and illustrated in Figure 13. It can be seen that the carbamate intermediate
[2-MIm−CO2] is first generated from the reaction of CO2 and [2-MIm] anion. After IL
nucleophilically attacks the CN group and is followed by intramolecular nucleophilic
cyclization and hydrogen transfer, the corresponding quinazoline-2,4(1H,3H)-dione is
obtained and the catalyst is regenerated.
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3.3. Amino/Nitrile and CO2 Simultaneous Activation
3.3.1. Oxylate Anion as a Catalyst

(1) [TBA]2[WO4] IL as a catalyst
Mizuno et al. [63,64] reports tetra-n-butylammonium tungstate ([TBA]2[WO4]) to show

catalytic activities for the chemical fixation of CO2 with various kinds of o-aminobenzonitriles
in N-methylpyrrolidone (NMP) to the corresponding quinazoline-2,4(1H,3H)-diones with
high yields at 140 ◦C and atmospheric pressure of CO2. The proposed reaction mech-
anism for conversion of CO2 and o-aminobenzonitrile catalyzed by [TBA]2[WO4] is il-
lustrated in Figure 14. In the proposed mechanism, amino and CO2 are simultaneously
activated by [WO4] anion firstly, resulting in dehydrogenated amino and [WO4−CO2]
active species. After the nucleophilic attack and proton transfer, the [WO4] regenerates.
Finally, quinazoline-2,4(1H,3H)-diones are obtained through intramolecular nucleophilic
cyclization and rearrangement.
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(2) Alcoholate ILs as catalysts
Liu et al. [65] synthesize a bifunctional protic IL [HDBU][TFE] via the neutralization

of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and trifluoroethanol (TFE). [HDBU][TFE]
can be used as both the catalyst and solvent for the reaction of CO2 with various o-
aminobenzonitriles at atmospheric pressure and room temperature, producing correspond-
ing quinazoline-2,4(1H,3H)-diones in excellent yields. The reported possible reaction
pathway can be found in Figure 15. It can be seen that [HDBU][TFE] activates both CO2
and the substrates simultaneously, resulting in dehydrogenated amino and [TFE−CO2]
active species. After the nucleophilic attack, intramolecular nucleophilic cyclization, re-
arrangement, and hydrogen transfer, quinazoline-2,4(1H,3H)-diones are obtained and
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[HDBU][TFE] is regenerated. However, Mu and Liu et al. [66] investigate using systematic
DFT calculations that one o-aminobenzonitrile molecule requires two CO2 molecules to
yield one quinazoline-2,4-(1H,3H)-dione. One CO2 acts as a reactant, while another trans-
ferred to [TFE–CO2] acts as the catalyst. The conversion mechanism begins with nitrile
activation, which is different from Figure 15. Recently, [HDBU][TFE] grafted on Fe3O4 for
fixation of CO2 into quinazoline-2,4(1H,3H)-dione has been reported by Vishwakarm and
Mahto et al. [67].
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Bhanage et al. [68] have synthesized another bifunctional protic IL [TBDH][HFIP] via
the neutralization of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and hexafluoroisopropanol
(HFIP). They have found that [TBDH][HFIP] simultaneously activates o-aminobenzonitrile
as well as CO2 and shows excellent performance for the conversion of o-aminobenzonitriles
into quinazoline-2,4(1H,3H)-diones at 35 ◦C and 1 bar CO2. The proposed plausible
reaction mechanism in Figure 16 for the synthesis of quinazoline-2,4(1H,3H)-diones by
[TBDH][HFIP] from CO2 and o-aminobenzonitriles is similar to the mechanism using
[HDBU][TFE].
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(3) Phenolate ILs as catalysts
Zhu and Wang et al. [69] have synthesized a series of aprotic phenolate ILs with

cholinium cation and substituent phenolate anions. Among these ILs, cholinium 2,4-
dichlorophenolate ([Ch][2,4-Cl-PhO]) can efficiently promote the conversion of CO2 to
quinazoline-2,4(1H,3H)-diones at 40 ◦C and 1 bar CO2. The reported plausible catalytic
reaction mechanism can be found in Figure 17. CO2 is activated by the phenolate anion
([PhO]), forming a carbonate anion [PhO–CO2]. The amino group is activated by [PhO]
via hydrogen bond, and simultaneously, the nitrile group is activated by the hydroxyl
group on the [Ch] cation. After intramolecular nucleophilic cyclization, rearrangement, and
hydrogen transfer, quinazoline-2,4(1H,3H)-dione is obtained and [Ch][PhO] is regenerated.
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Liu et al. [70] have synthesized a series of protic ILs via the neutralization of bases
and kinds of phenols. The bases include 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 1,1,3,3-
tetramethylguanidine (TMG), 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), and tetrabutylphos-
phonium hydroxide ([P4444][OH]), while the phenols include o-aminophenol (o-AP), m-
aminophenol (m-AP), p-aminophenol (p-AP), phenol (PhO), and m-dihydroxybenzene
(m-DHB). Among these ILs, [HTMG][m-AP] in dimethylformamide (DMF) solvent can
convert CO2 into quinazoline-2,4(1H,3H)-diones at 60 ◦C and 1 bar. A synergistic catalytic
mechanism is proposed in Figure 18. As can be seen, amino and CO2 are simultaneously
activated by [HTMG][m-AP] and DMF, resulting in the dehydrogenated amino, carbamate,
and carbonate species. After the nucleophilic attack, intramolecular nucleophilic cycliza-
tion, rearrangement, and hydrogen transfer, quinazoline-2,4(1H,3H)-diones are obtained
and [HTMG][m-AP] is regenerated.
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(4) Carboxylate IL as a catalyst
Gao and Zhou et al. [71] report that DBU/[Bmim][OAc] displays excellent perfor-

mance in catalyzing the reactions of CO2 with o-aminobenzonitriles at 60 ◦C and 1 bar.
Additionally, the mixtures containing [Bmim][OAc] and one of inorganic bases like NaOH,
KOH, Na2CO3, or Cs2CO3, or organic bases like TMG, imidazole, or DBN, could catalyze
this reaction, affording quinazoline-2,4(1H,3H)-diones in a yield of >78%. The reported
possible reaction pathway is shown in Figure 19. Firstly, o-aminobenzonitrile and CO2
are activated simultaneously by [OAc] and DBU, respectively. After the nucleophilic
attack, intramolecular nucleophilic cyclization, rearrangement, and hydrogen transfer,
quinazoline-2,4(1H,3H)-diones are obtained and DBU/[Bmim][OAc] is regenerated.
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Liu et al. [72] reports that 1,1,3,3-tetramethylguanidinium laevulinate ([HTMG][Lae])
could catalyze the transformation of CO2 and o-aminobenzonitriles into quinazoline-
2,4(1H,3H)-diones at 70 ◦C and 10 bar CO2 without other additives. A feasible reaction
mechanism is proposed in Figure 20.
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3.3.2. Amino Acid Anion IL as a Catalyst

He et al. [73] reports that tetra-butylphosphonium argininate ([TPB][Arg]) could
promote cyclization of o-aminobenzonitrile with CO2. The authors have investigated the
influences of the reaction parameters, including CO2 pressure, reaction temperature, and
time. The results showed that the yield decreases from 95% to 16% with CO2 pressure
decreasing from 8.5 to 0.1 MPa. In addition, the comparative yields are obtained at 120 ◦C
and 100 ◦C after 12 h reaction. The possible pathway for the reaction of o-aminobenzonitrile
with CO2 catalyzed by [TBP][Arg] is illustrated in Figure 21. It can be seen that both the
amino group and CO2 are initially activated by the bifunctional anion (carboxyl group and
guanidine group, respectively) in [TBP][Arg]. After the nucleophilic attack, intramolecular
nucleophilic cyclization, rearrangement, and hydrogen transfer, quinazoline-2,4(1H,3H)-
dione can be obtained while [TPB][Arg] can be regenerated.
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He et al. [74] reports a series of azolate anion ILs for the carboxylative cyclization of

o-aminobenzonitriles with CO2 at 120 ◦C and 1 bar CO2. The results show that the catalytic
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activity follows the order of [HTMG][Im] > [HDBU][Im] > [TBA][Im] for ILs with the same
anion, and the order of [HTMG][Im] > [HTMG][MIm] > [HTMG][Pyr] > [HTMG][PhO]
for ILs with the same cation. In addition, the yield of 90% could be obtained at 20 ◦C and
1 bar CO2 when using 1,1,3,3-tetramethylguanidinium imidazolate ([HTMG][Im]) as the
catalyst. Thus, [HTMG][Im] is chosen as a catalyst, and the plausible mechanism could be
illustrated in Figure 22. With simultaneous activation of both amino and CO2, following the
dehydrogenation, nucleophilic attack, intramolecular nucleophilic cyclization, rearrange-
ment, and hydrogen transfer, quinazoline-2,4(1H,3H)-dione is obtained and [HTMG][Im]
is regenerated.
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Liu et al. [75] have reported a series of triazolate anion ([Triz]) ILs for CO2 conversion
into quinazoline-2,4(1H,3H)-dione, and [HTMG][Triz] has exhibited a high activity at 50 ◦C
and 1 bar CO2 without any organic solvents. The plausible reaction mechanism can be
found in Figure 23, which is similar to the reaction using [HTMG][Im] as the catalyst.
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(2) Imide anion IL as a catalyst
Liu et al. [76] reports the 1,1,3,3-tetramethylguanidinium succinimide ([HTMG][Suc])

as the solvent and catalyst for the efficient transformation of CO2 and o-aminobenzonitriles



Molecules 2023, 28, 1024 17 of 23

into quinazoline-2,4(1H,3H)-diones at 60 ◦C and 20 bar CO2. The reported possible path-
ways of CO2 and o-aminobenzonitrile catalyzed by [HTMG][Suc] are illustrated in Figure 24,
where both the amino group and CO2 are simultaneously activated.
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(3) Hydantoin anion IL as a catalyst
Xu et al. [48] have synthesized a hydantoin anion-functional IL, tri-n-butylethylphosphonium

1-methylhydantoin ([P4442][1-MHy]), for efficient CO2 capture and catalytic conversion of
CO2 to quinazoline-2,4(1H,3H)-dione. The results of CO2 capture show that the capacity
of IL at 30 ◦C and 1 bar is up to 1.58 mol CO2 per mol IL, which is attributed to the
multiple-site cooperative interactions. Moreover, the results of CO2 conversion show that
the yield of quinazoline-2,4(1H,3H)-dione is 97% at 60 ◦C and 2 MPa CO2. Possible reaction
mechanisms of CO2 with o-aminobenzonitrile catalyzed by [P4442][1-MHy] are shown in
Figure 25, similar to the mechanisms of this reaction using other aprotic heterocyclic anion
ILs as catalysts.
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4. Comparison of Three Kinds of Mechanisms
4.1. Mechanisms Analysis

It is known that the pKa of o-aminobenzonitrile at 25 ◦C is only 0.77, [77] and insuffi-
cient nucleophilicity cannot induce nucleophilic attacks on CO2. Thus, it is necessary to add
catalysts with basicity and nucleophilicity to improve the conversion of o-aminobenzonitrile
and CO2. However, the different basicity and different nucleophilicity of catalysts result
in different mechanisms. As aforementioned, there are three kinds of mechanisms of the
reaction of CO2 and o-aminobenzonitriles catalyzed by ILs reported in the literature, includ-
ing amino preferential activation, CO2 preferential activation, and both amino and CO2
simultaneous activation. According to the literature and our critical analysis, although the
mechanisms in each group are different in detail, the steps are basically similar in general.
Thus, the general reaction mechanisms for CO2 conversion into quinazoline-2,4(1H,3H)-
diones can be summarized as follows.

For “amino preferential activation”, the anion ([X]) of IL with proper basicity first
dehydrogenates the hydrogen of the amino group in the o-aminobenzonitrile, resulting in
the active amino group with a negative charge (–HN–). Second, the negative-charged amino
nucleophilically attacks the C atom of CO2, resulting in the carbamate anion (–HNCOO–).
Third, the carbamate anion nucleophilically attacks the C atom of the nitrile group in the
o-aminobenzonitrile, leading to an intramolecular nucleophilic cyclization. Last, the ring
is rearranged along with proton transfer, resulting from the presence of tautomeric forms
(–NHC( = O)– 
 –N = C(OH)–) or the assistance from the anion (–NH + [X] 
 –N– + [HX]).
After these four steps, product can be synthesized.

For “CO2 preferential activation”, the carbamate or carbonate intermediate [X−CO2]
anion is generated first from the reaction of CO2 and the anion [X]. Second, the [X−CO2]
anion nucleophilically attacks the C atom of the nitrile group in the o-aminobenzonitrile,
resulting in a negative-charged N atom (–C = N–). Third, proton transfer from amino group
to the negative-charged N atom results in –C = NH and a negative-charged amino group.
Four, the negative-charged amino nucleophilically attacks the C atom of –COO–, leading to
an intramolecular nucleophilic cyclization, accompanied by the removal of the anion [X].
Last, the ring is rearranged along with proton transfer, resulting in the target product.

For “both amino and CO2 simultaneous activation”, CO2 is first activated by the anion
[X], forming a carbamate or carbonate intermediate [X−CO2] anion, and the amino group
is simultaneously activated by [X], forming a negative-charged amino group –HN– via
dehydrogenation. Second, the negative-charged amino nucleophilically attacks the C atom
of CO2 in [X−CO2] accompanied by the removal of anion [X], resulting in the carbamate
anion (–HNCOO–). After intramolecular nucleophilic cyclization, ring rearrangement, and
proton transfer, the target product can be obtained.

The “both amino and CO2 simultaneous activation” mechanism is similar to the
mechanism of “amino preferential activation”. The difference between these mechanisms
is the first two steps. With both amino and CO2 simultaneous activation, the energy
consumption of the nucleophilic attack in the second step of the “both amino and CO2
simultaneous activation” mechanism is lower than the other one.

4.2. Desired Synthetic Method under Mild Reaction Conditions

Although some reported ILs as the catalysts have drawbacks (high CO2 pressures,
high temperatures, difficulties in recycling the catalysts, etc.) as conventional catalysts
(metal oxides, inorganic/organic bases, etc.), ILs still have great advantages as solvents
and catalysts due to their unique tunable structures and properties. According to the
aforementioned discussion, the “both amino and CO2 simultaneous activation” mecha-
nism could provide an alternative opportunity to obtain the product under mild reaction
conditions with low energy consumption. Through tuning the structures of ILs, CO2-philic
task-specific ILs or functional ILs could act as the catalysts following the “both amino and
CO2 simultaneous activation” mechanism.
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These CO2-philic task-specific ILs or functional ILs with desired basicity could be used
in CO2 capture. Typical functional anions and corresponding absorption mechanisms can
be found in Part 2. Generally, the catalytic performance of ILs (especially anions) is affected
by both cations and anions as well as the cation-anion interaction. A typical example
anion is imidazolate anion ([Im]). The results of the quantum-chemical calculations, NMR
spectroscopic investigations, and controlled experiments from Wang et al. [57] indicate
that insitu-generated [Ch][Im−CO2] is the real catalyst for the conversion of CO2 and o-
aminobenzonitriles following the “amino preferential activation” mechanism. Liu et al. [62]
agrees that 2-methyl-substituted imidazolate ([2-MIm]) could generate [2-MIm−CO2] when
[Bu4P][2-MIm] is used as the catalyst; however, the carbamate nucleophilically attacks
the CN group and becomes a part of product. One possible reason is that the methyl
group changes the interaction between the imidazolate anion and CO2. He et al. [74]
show that [HTMG][Im] could simultaneously activate both amino and CO2, probably
due to the strong interaction between the cation and anion as well as the proton on the
cation. Thus, the effects of structures and interactions of anions and cations cannot be
ignored. Additionally, features can be used to develop the innovative synthetic routes for
the synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and o-aminobenzonitriles.

5. Conclusions and Outlook

Because of their unique properties, ILs could be used as solvents and catalysts for
CO2 capture and conversion into value-added chemicals. After the first IL has been
reported in 2009 for the conversion of CO2 and o-aminobenzonitriles into quinazoline-
2,4(1H,3H)-diones, kinds of ILs with basic anions such as [OH], carboxylates, aprotic hete-
rocyclic anions, etc., have been developed for converting CO2 and o-aminobenzonitriles
into quinazoline-2,4(1H,3H)-diones. The different catalytic mechanisms, including amino
preferential activation, CO2 preferential activation, and simultaneous amino and CO2 acti-
vation, have been investigated systematically. This review is benefited for understanding
the synthesis of quinazoline-2,4(1H,3H)-diones from CO2 and o-aminobenzonitriles using
IL-based catalysts. However, it is clear that this field is still in its infancy. Several issues
should be paid more attention to and need to be investigated further as follows.

(1) Developing IL-based heterogeneous catalysts. There are only a few examples of IL-
based heterogeneous catalysts used in the synthesis of quinazoline-2,4(1H,3H)-diones from
CO2 and o-aminobenzonitriles. Because of the advantages in the separation of catalysts and
products from reaction system, heterogeneous catalysts based on ILs, especially functional
ILs, should be developed.

(2) Conversion CO2 under flue gas conditions. “In situ” strategies for CO2 capture
and subsequent conversion into value-added chemicals have been developed as potential
methods for directly transforming waste CO2 to value-added CO2-based chemicals without
purification. There are only a few examples of the catalysts that could be used under
flue gas conditions [57]. However, more IL-based catalysts with high efficiency should be
developed for CO2 conversion at low temperature (40~60 ◦C) and low CO2 partial pressure
(0.1~0.15 bar CO2).

(3) Conversion mechanisms should be investigated deeply. It can be seen from the
above discussion in Part 3 that reported mechanisms of ILs with anions such as carboxylate
anions, aprotic heterocyclic anions, etc., in different literatures followed different routes.
The main concern is whether the mechanism begins with a preferential activation or a
simultaneous activation.

Generally, functional ILs with tunable structures and properties contribute an opportu-
nity to achieve efficient CO2 capture and conversion into the value-added chemicals under
flue gas conditions. This review article opens a door to develop novel IL-based systems for
CCUS and other gases utilization.
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