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Abstract: Metal oxide (MOx) gas sensors have attracted considerable attention from both scientific
and practical standpoints. Due to their promising characteristics for detecting toxic gases and volatile
organic compounds (VOCs) compared with conventional techniques, these devices are expected to
play a key role in home and public security, environmental monitoring, chemical quality control, and
medicine in the near future. VOCs (e.g., acetone) are blood-borne and found in exhaled human breath
as a result of certain diseases or metabolic disorders. Their measurement is considered a promising
tool for noninvasive medical diagnosis, for example in diabetic patients. The conventional method
for the detection of acetone vapors as a potential biomarker is based on spectrometry. However, the
development of MOx-type sensors has made them increasingly attractive from a medical point of
view. The objectives of this review are to assess the state of the art of the main MOx-type sensors in
the detection of acetone vapors to propose future perspectives and directions that should be carried
out to implement this type of sensor in the field of medicine.

Keywords: acetone; volatile organic compounds (VOCs); gas sensors; metal oxide (MOx);
micro/nanostructures; diabetes

1. Introduction

The analysis of exhaled human breath has long been a subject of study, making use of
several different methods and techniques. Since the time of Hippocrates of Cos (460 BC),
physicians have known that the scent of human breath can provide clues to the diagnosis
of disease. Among the identified indicators are the sweet, fruity odor of acetone in patients
with uncontrolled diabetes; the musty, fishy reek of liver disease; the urine-like smell that
accompanies failing kidneys; and the putrid stench of lung abscesses [1]. In 1798, John
Rollo described the odor of decaying apples in exhaled breath, and 59 years later (1857), this
odor was identified as acetone [2], which was then used as the first biomarker of diabetic
comas. Over the years, exhaled acetone was underestimated, mainly because there were no
devices suited to its detection. Linus Pauling, however, later published an article (1971)
explaining the analytical methodology used to identify approximately 250 compounds in
breath [3,4], and this date is, therefore, considered a starting point in the development of
the analysis of exhaled breath.

In general, the methods used for the detection of biomarkers in breath are based
on spectrometric methods such as gas chromatography–mass spectrometry (GC-MS) [5],
proton-transfer-reaction mass spectrometry (PTR-MS) [6], and ion-mobility mass spectrom-
etry (IMS-MS) [7]. All of the above techniques are used to measure low gas concentrations
and are conducted by specially trained laboratory officers and staff. The development of
nanotechnology has made it possible to consider gas sensors a potential tool for the early
notification of advanced diseases [8,9]. Among these, sensors based on semiconductors
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metal oxides (MOxs) have advantages, such as their small size (miniaturization), low cost,
easy fabrication, and good reversibility. In these devices, the electrical resistance of the
gas-sensitive material is adjusted by phenomena occurring at the surface between the
material, the adsorbed oxygen ions from the air, and the target gaseous compound. These
devices are sensitive to a wide variety of toxic and combustible gases and have been used
successfully in a wide range of fields [10–12]. Breath exhaled by human beings is made up
of a wide variety of volatile organic compounds (VOCs) that could be used to effectively
identify disorders of the body, achieving an acceptable diagnosis of disease with greater
precision, as is the case of acetone vapor, which is related to diabetes [13], or compounds
from the aldehydes group and ammonia vapor that are related to lung cancer and kidney
disorders [14,15] and other biomarkers that have been the subject of research in recent years
(Figure 1).
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Traditional methods for taking blood glucose measurements during clinical examina-
tions and home care are invasive, causing patients to experience additional psychological
stress and pain [16]. In the long term, this could prove to be a disadvantage for diabetic
patients, particularly those with type 1 diabetes mellitus, who are absolutely dependent on
insulin injections for the treatment of diabetes. Therefore, blood glucose measurement is not
a favorable method for everyone in the long run. Currently, there are no accessible, cheap,
fast, hygienic, easy-to-operate, or highly sensitive methods or devices for noninvasively
and painlessly detecting diabetes. The possibility of using metal oxide gas sensors in this
type of application is, thus, of great interest in solving this type of problem. The presence
and suitable detection of acetone gas in concentrations of 300 ppb to 1800 ppb from the
exhaled breath by a person would allow for a preventive diagnosis [4]. This becomes
more important when considering that the number of people with diabetes continues to
increase year after year; in 2019, the number of adults with diabetes was approximately
463 million worldwide, and it is estimated that 4.2 million deaths per year are due to
this disease [17]. Biomarker-based gas sensors are, therefore, the technology of choice for
the early notification of advanced disease, thereby reducing the number of blood sugar
measurements per day.

There is a large number of reviews commenting on the characteristics and performance
of metal oxide gas sensors for the detection of VOCs (e.g., acetone, nitric oxide, hydrogen
sulfide, and ammonia). Tomić et al. [18] presented a discussion focused on key materials
such as metal oxides, conductive polymers, and carbon-based materials and their mutual
combination due to their representativeness in sensing VOCs. Ahmadipour et al. [19]
presented breath acetone measurement techniques and the factors that affect the concen-
tration of acetone in human breath (e.g., dietary changes, hourly variations, weight, and
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exercise). Yang et al. [20] and Baharuddin et al. [21], like Ahmadipour et al. [19], discussed
the factors that affect detection performance, especially the structures, morphologies, pres-
ence of impurities in semiconductor materials, and specific surface area of metal oxides.
Vajhadin et al. [22] and Drmosh et al. [23] presented the current state of gas sensors based
on the three most common metal oxides, including ZnO, SnO2, and In2O3, highlighting
the role of nanomaterials in improving the analytical performance of sensors. Tai et al. [24]
showed the prospects for future development from individual sensors to integrated devices
and self-powered health monitoring systems. The results compiled in these reviews show
that the development of chemo-resistive, metal oxide-based acetone sensors is the future
of noninvasive diabetes management. However, the use of metal oxides presents some
challenges for chemo-resistive sensing applications, i.e., sensitivity, selectivity, limit of
detection (LOD), and stability. Overcoming these challenges will lead to better diabetes
control. In this review article, challenges and strategies to improve the chemo-resistive
performance of a wide variety of metal oxides for the detection of acetone are presented.
In addition, the need to advance the study of some materials selected from doped metal
oxides and heterostructures is highlighted.

2. Methodology of the Literature Review

Exhaled acetone is generally in the range of 0.3–1.8 ppm for “healthy” people and
1.25–2.5 ppm for people with diabetes [25]. Some references have shown that the level of
acetone can increase to as much as 25 ppm for type 1 diabetes [26]. Figure 2a shows the
response of the sensor in both regions [27]. Based on the literature review, the “healthy”
and “diabetes” regions are not strictly defined, and various ranges can be considered.
Moreover, in uncontrolled diabetic patients, intensified lipolysis can be found, leading
to excessive ketone bodies in the blood and even ketoacidosis. When the blood ketone
level exceeds 0.4 mmol/L, there is a high possibility of developing diabetes with ketosis.
Therefore, the monitoring of blood ketone levels is also extremely important for diabetic
patients [28]. Such control carries with it slight variation due to the complexity of the
composition of human breath and the factors that influence it [19]. In recent research, the
exhaled acetone concentration has been correlated to blood glucose concentration and
discussed with physicians before being used as a single biomarker (Figure 2b) [29,30].
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Figure 2. (a) The “healthy” and “diabetes” regions in an In2O3 nanowire sensor and a TiO2-
nanoparticles-functionalized In2O3 nanowire sensor (adapted from [27]). (b) Exhaled acetone con-
centration vs. blood glucose concentration of diabetic patients from the Second Hospital of Jilin
University (adapted from [30]).

The increasing number of diabetes patients who seek to monitor their disease
noninvasively—as current practice is still based on blood-sampling—has created a market
for portable exhaled breath analyzers. Currently, commercially available gas sensors for
acetone detection function in the order of 50–5000 ppm, values outside the range of levels
of acetone exhaled by patients [31,32]. The scientific community has thus focused research
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on the development of more efficient gas sensors that also work at room temperature [33].
This sensor will be noninvasive and enable real-time detection. It will be less costly and
miniaturized compared with standard clinical diagnostic techniques. In recent years, this
area has been the subject of many publications, and, therefore, only the latest results will be
shown and discussed in this review. Table 1 shows a summary of a bibliographic review
in the Elsevier and Scopus databases between the years 2018–2021 of metal oxide-based
sensors that have been selected for the detection of acetone considering their possible use
in the diagnosis of diabetes. The keywords used for the search were “acetone gas sen-
sor”, “metal oxide”, “VOCs”, “resistive sensors”, and “sensing performance”. The search
equation for the review in the Scopus database was as follows: Your query: TITLE-ABS-
KEY (detection AND acetone AND by AND metal-oxides) AND (LIMIT-TO (DOCTYPE,
“ar”)) AND (LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO
(PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018)) AND (LIMIT-TO (EXACTKEYWORD,
“Acetone”) OR LIMIT-TO (EXACTKEYWORD, “Volatile Organic Compounds”) OR LIMIT-
TO (EXACTKEYWORD, “Gas Sensing Properties”) OR LIMIT-TO (EXACTKEYWORD,
“Metal Oxide Gas Sensors”) OR LIMIT-TO (EXACTKEYWORD, “Acetone Sensing”)).

Table 1. Summary of the literature review of selected metal oxide-based sensors for acetone detection
published between 2019 and 2022.

Sensitive Material 1 Response 2 T (◦C)
C(acetone)

(ppm)

3 LOD
(ppm)

Reference

YSZ-Cd2SnO4 * 60–70 600 10/98% RH 0.05 [30]
ZnO ~12 450 125/80% RH ~2 [34]

ZnO: Au 2900 365 100 – [35]
ZnO/SnO2 13.83 180 5/25% RH 0.5 [36]

Chitosan/ZnO ~18 RT 10 1 [37]
Ag/ZnO/Au ** 80 150 5 1 [38]

NiO/SnO2 20.18 300 50 0.01 [39]
SnO2/ZnSnO3 16.7 290 100/90% RH 2 [40]

ZnSnO3 105.1 260 100/65% RH – [41]
ZnSnO3/SnO2 19.1 260 50 1 [42]

ZnFe2O4/ZnSnO3 63.3 200 30/50% RH – [43]
ZnSnO3 bodies 37 270 80/30% RH 1 [44]

Zn2SnO4:Pt 33 300 100 1.27 [45]
Rh2O3-ZnO 1.9 250 0.0100 0.005 [46]

RGO 31.23 RT 1000 – [47]
GO-SnO2-TiO2 60 200 5 0.25 [48]

TiO2 15.24 270 1000 0.5 [49]
TiO2/Ag2V4O11 10.2 300 100/30% RH – [50]

TiO2/SnO2 303.5 300 100 0.02 [51]
WO3 – 250 >1 – [52]

WO3:Au 7.6 410 1.5 0.1 [53]
W18O49:Pt ~6 180 20/95% 0.0052 [54]

WO3 3.8 320 0.25 0.0075 [55]
γ-Fe2O3:Gd 31.2 200 20 – [56]

In2O3 39.7 200 100 – [57]
In2O3/TiO2 33.34 250 10 0.1 [27]
Cu2O-CuO 25 RT 500/30% RH – [58]

Cu2O-CuO:Ag ** 34 350 1000 – [59]
ZnO/CdO *** 540 RT 1 1 [60]
ZnO/MoS2 *** 1.33 RT 0.001 0.001 [61]

WO3:Fe *** 12 260 10/90% RH 0.2 [62]
CdS/Co3O4 *** 7.22 RT 100 0.5 [63]

1 Ra/Rg: maximum electrical resistance under exposure to air/humid and target gas (acetone), respectively, for
n-type semiconductors; Rg/Ra: for p-type semiconductors. 2 T(◦C): Operating temperature. 3 LOD: Limit of
detection. RT: Room temperature. * ∆V (mV). ** ∆R/Ra (%). *** In the presence of light.
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3. Description of Gas Sensors
3.1. Characteristics

Numerous researchers have shown that the reversible interaction of a gas with the
surface of a material is a characteristic of an active or sensitive material (MOx) [64,65]. This
reaction can be influenced by many factors, including internal and external causes, such
as the natural properties of sensitive materials, surface characteristics, the microstructure
of detection layers, surface additives, UV illumination, temperature, humidity, etc. The
most important performance parameters in a sensor are sensitivity; selectivity; response
time; reproducibility; stability; and, of course, the limit of detection [66,67]. The articles
published by Baharuddin et al. [21] and Righettoni et al. [68] show the importance of the
parameters defined above considering a practical application for the detection of acetone.
First of all, the sensors must show a high sensitivity toward low concentrations of acetone
gas, ranging from ppt to ppm; secondly, selectivity is important because the detection of
acetone in breath involves other gases or other possible breath biomarkers, especially when
the diagnosis of diabetes is being considered; thirdly, the sensors should be able to operate
at high relative humidity (RH) of about 90% and be resistant to its fluctuations, especially
if exposed to acetone breath; and, last but not least, the response and recovery times for
acetone detection are important because a “fast response” is required from gas detection
devices upon being put into practice.

3.2. Type of Gas Sensors

There are several types of gas sensors, and their operation depends on the type of
technology they use. Liu et al. [69] classified gas sensors into two groups according to the
mode of operation: sensors that work by means of adsorption, chemical reactions, and con-
tact with the gas and those that work based on infrared or ultrasonic emissions. Moreover,
sensors (regardless of their configuration and operation) can be grouped according to the
type of gas they detect. Thus, those that detect combustible gases are generally catalytic,
self-powered triboelectric, and infrared sensors, while for the detection of toxic gases, the
sensors generally used are electrochemical, mixed potential, and semiconductor metal
oxides (SMO).

Although there are many types of gas sensors available, in this review, the focus will
be on MOx-type gas sensors due to their importance in the detection of toxic or carcinogenic
gases, among which a number of VOCs have been identified. For example, acetone toxicity
affects almost every system in the body, including the nervous, respiratory, cardiovascular,
and endocrine systems [70]. Acetone is harmful to health, and its inhalation can cause
irritation in the eyes, nose, and throat. A short, five-minute exposure at 300–500 ppm may
be mildly irritating to humans. In high concentrations, it can cause dry mouth, fatigue,
headache, nausea, dizziness, muscle weakness, loss of coordinated speech, and drowsiness.
Ingestion can cause headaches, dizziness, and dermatitis [70]. Therefore, acetone detection
encompasses a wide range of purposes—for example, the need to monitor the concentration
of acetone in the environment for health and in the workplace for safety, as well as the
provision of an alternative to the conventional diagnosis of diabetes. These topics have
been the subject of many publications, where 83% of those are related to metal oxides
(Figure 3). Therefore, in the main, only the latest results will be shown and discussed in the
following sections.

3.3. Operation

Semiconductor devices capable of detecting the presence of certain types of gases are also
of interest due to their possible miniaturization and integration, which allows for complex
devices capable of detecting extremely low concentration levels to be achieved [71,72]. Cur-
rently, the most interesting semiconductors from the point of view of gas detection are certain
metallic oxides: n-type semiconductors such as SnO2, ZnO, and TiO2, either in a thin or thick
film form [73] or even as a ceramic body [74,75]. The choice of semiconductor as a sensor
is limited to these oxides because, normally, the sensor is designed to operate in a certain
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atmosphere at high temperatures and in aggressive environments, and any other material
tends to oxidize. Other advantages of using ceramic materials as sensors are related to the
relatively simple processes of obtaining them and their low cost, which means that this type
of sensor is relatively cheap [76].
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The operation of MOx-type gas sensors is based on the change in conductivity under
the influence of reducing gases (H2, H2S, CO, NH4, ethanol, CH4, acetone) or oxidizing
gases (O2, O3, NOX, CO2, SO2). Since temperature—generally referred to as the operating
temperature or optimum operating temperature—is a factor that influences the behavior of
the sensing material (i.e., when the sensor response is higher), these gas sensors usually
include a heating element. The classical fabrication of a metal oxide gas sensor uses powder
metallurgy (pellet or tube form) or thick or thin film technology [36,77]. In more advanced
methods, a microstructured silicon substrate is applied as the base for the metal oxide
(sensitive material) and heater. Due to the limited space to be heated and the shorter
distance between the heating layer and the sensitive surface layer, the required heating
power of microstructured sensors is lower than that of conventional sensors [78]. The
design of a metal oxide gas sensor in microstructured silicon technology is illustrated
in Figure 4a.

Figure 4b presents the dynamic response–recovery curve as a function of the acetone
concentration obtained by Chen and Cao [36] using a gas sensor based on a ZnO/SnO2
thick film at an operating temperature of 180 ◦C. The sensor signal shows an immediate
response to the change in the concentration (ppm) of acetone. After several cycles between
acetone gas and air, the sensor response can still recover to the initial state, indicating
that the sensor has good reversibility. The sensor response was defined as Ra/Rg (for a
p-type semiconductor, it is its inverse: Rg/Ra [80]), where Ra and Rg are the resistance in
dry/humid air and the resistance after gas exposure, respectively.
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3.4. Mechanisms of Gas Detection

MOx semiconductors are characterized by their gas-sensing mechanism being con-
trolled by the surface [66,81]. The most widely accepted model to explain sensitivity posits
that changes in resistance are due to the species and amount of chemisorbed oxygen on
the surface. When n-type semiconductor-based sensors are exposed to air, the electrical
resistance of the material is controlled by the concentration of adsorbed oxygen species
(O−2 , O− or O2−) that trap electrons (Figure 5a) and act as dispersion centers, effectively
reducing their conductivity (when the working temperature is below 100 ◦C, the oxygen
ions are mainly in the O−2 form; in the range of 100–300 ◦C, O− ions are stable oxygen
species; beyond 300 ◦C, the dominant oxygen species are O2− ions [82]). When the sensor
is exposed to acetone gas at the optimum operating temperature, the gas reacts with the ad-
sorbed oxygen species, reducing their concentration and thus increasing the conductivity of
the semiconductor, i.e., reducing the electrical resistance as observed in the measurements
shown in Figure 4b. The reaction that occurs can be explained by Equation (1):

CH3COCH3 (gas) + 8O− (ads)→ 3CO2 + 3H2O + 8e (1)

This indicates that the acetone molecules adsorb on the surface of the sensitive material
and react with oxygen ions to produce CO2, H2O, and free electrons (Figure 5b). In this
process, electrons are released back into the conduction band, resulting in a substantial
increase in the density of charge carriers on the surface. This reduces the width of the
semiconductor depletion layer (Figure 5d) and the height of the potential barrier [82] and,
consequently, the resistance of the sensitive material. This process takes place in the same
way in the reaction sites of the remaining surface of the sensitive material as in the pores
that are present. When the sensors are re-exposed to ambient air, the acetone gas desorbs
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from the surface of the material; the oxygen captures electrons from the conduction band
to form oxygen ions, which increases the width of the depletion-layer electrons (Figure 5c);
and the resistance of the sensitive material returns to the initial value, as seen in Figure 4b.
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composite microspheres-based sensor to acetone [40].

Although MOx micro/nanostructures such as SnO2, ZnO, and TiO2 have been used as
gas-sensing materials for several decades due to their unique physicochemical properties,
the lack of selectivity and high operating temperatures (200–600 ◦C) of these oxides [45] has
led to the development of special MOx sensors. Improvements include doping/decoration
with noble metals (for example, Pd, Ag, Pt, and Au) [83,84], surface functionalization [85,86],
composite production (for example, MOx–MOx, polymer–MOx, and MOx–carbon nan-
otubes, among other compositions) [87]. These advances have shown that gas detection
performance is primarily mediated by the surface properties of the sensing material and its
combination of multiple components, which act synergistically to increase sensitivity, selec-
tivity, and response rates during acetone detection. Chen et al. [40] obtained SnO2/ZnSnO3
composite microspheres with double-layer hollow structures using the chemical vapor
deposition (CVD) method. This composite material has shown an important sensing
capacity against different gases [88], among them, acetone [42], ethanol [89,90], formalde-
hyde [88,91], CO [92], NO2 [93], H2 [94], etc. The structure obtained by Cheng et al. [40]
showed excellent selectivity and long-term stability against acetone. The authors attributed
this performance to the synergistic effect of the hollow double-layer structure with a large
specific surface area and the n–n heterojunction at the SnO2/ZnSnO3 compound interface.
Du et al. [41] showed that multi-shelled ZnSnO3 hollow microspheres exhibited excellent
acetone sensing performance, which was superior to that of double-shelled samples and the
nanocomposites reported by other authors [40,43]. Ochoa et al. [44] formed porous bodies
of MSnO3 (M = Ba, Ca, Zn) with slip casting. Figure 6 shows a scanning electron microscopy
image and an illustration of the gas detection mechanism based on the ZnSnO3 porous body.
The lowest measurements for acetone, ethanol, and toluene vapors in humid environments
(10–30% relative humidity) were performed at 1 ppm. Hanh et al. [45] developed an acetone
gas sensor using Pt–Zn2SnO4 hollow octahedra for exhaled breath analysis to diagnose
diabetes. Zn2SnO4 hollow octahedra prepared by a hydrothermal method were decorated
with different amounts of Pt nanoparticles through a simple mixing process to optimize
the Pt content to enhance the acetone-sensing performance. Liu et al. [37] designed a room
temperature-operating triboelectric acetone sensor (TAS) based on a chitosan (CTS)/zinc ox-
ide (ZnO) bilayer film (CTS/ZnO-TAS) with good humidity-tolerant properties (89.3% RH),
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demonstrating a potential application in noninvasive diabetes diagnoses. Jiang et al. [30]
fabricated a zirconia (YSZ)-based mixed-potential-type acetone sensor using a Cd2SnO4
sensing electrode. The developed sensor detected acetone in a concentration range of
0.05–200 ppm at an optimal operating temperature of 600 ◦C. The sensing mechanism was
analyzed and verified through the test of polarization curves (Figure 7). In addition, they
carried out clinical tests for the sensor on the exhaled breath of healthy people and diabetic
patients, and strong correlations were established between the response values, acetone
concentrations, and blood ketone concentrations, which demonstrate the great potential of
the sensor for the prediagnosis of diabetes.
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Different materials, structures, and morphologies for gas-sensing layers could further
enhance the performance of nanosensors and allow for the suitable detection of biomarkers
even with highly humidified samples and at high levels of interfering gases due to existing
cross-sensitivity. Therefore, breath analyzers with excellent selectivity and good moisture-
resistant properties still need to be intensively investigated, which is one of the biggest
challenges in realizing online breath analyses. These requirements are the motivation for
all researchers to develop a fast, cheap, and highly sensitive biomarker detector. In the
following section, the latest achievements of selected MOx sensors in acetone measurement
are presented.
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4. Results of Acetone Detection in MOx Sensors
4.1. ZnO-Based Sensors

Zinc oxide (ZnO) is an n-type semiconductor metal oxide. The first report of its
use as a gas sensor dates to 1962 [95]. ZnO has been extensively researched as a base
material for acetone detection due to its high electron mobility, chemical stability, and
structural adjustability [35,68]. ZnO (as well as SnO2) is one of the few materials to have
been successfully commercialized. However, there are still some drawbacks, such as
high working temperatures, low sensitivity, and poor selectivity, which make it difficult
to apply in practice as a high-performance gas sensor. Van Duy et al. [34] studied the
performance of acetone detection using ultrafine porous ZnO nanoplates obtained with
the hydrothermal method, showing responses of 20 at an exposure of 125 ppm evaluated
at 450 ◦C, a relatively high operating temperature compared with other reports of similar
morphology [96]. However, new compositions of ZnO nanostructures in synergy with other
components continue to be researched in terms of improving the detection of acetone at
lower concentrations. Recently, Wang et al. [35] used Au-functionalized ZnO flowers with
thin film and a hemispherical morphology, obtained via thermal decomposition and with
responses of 2900 measured at 100 ppm acetone vapor operating at 365 ◦C. Drmosh et al. [38]
fabricated Au-decorated ZnO/Ag core–shell films via sequential DC sputtering for the
detection of acetone in low concentrations by engineering the depletion layer. The acetone-
sensing performance of Au/ZnO/Ag is four- and two-times, respectively, higher than that
of ZnO and ZnO/Ag core–shell films. Chen and Cao [36] synthesized ZnO/SnO2 hybrid
nanospheres using the sol–gel method; the authors formed thick films with improved
detection properties at a relatively low operating temperature (180 ◦C) and a low detection
limit (ppb level) for the detection of acetone, as seen in Figure 3a. The reported sensitivities
at 0.01 and 5 ppm acetone were 1.23 and 13.83, respectively. These results are considered
promising when the sensor is required to correlate the detection of low concentrations of
acetone with diabetes.

4.2. SnO2-Based Sensors

Among the various semiconducting metal oxides, tin oxides are the most popular
gas detection material researched so far and used in practice, including for the improved
detection of acetone [72]. Recently, Hu et al. [39] fabricated structures of NiO/SnO2
(p/n) compounds using the hydrothermal method and evaluated the detection of acetone-
type gases in a temperature range of 200 to 400 ◦C; the maximum response was 20.18
measured at 300 ◦C up to 50 ppm acetone [58]. Kalidoss et al. [48] investigated using
ternary nanocomposite graphene oxide–tin dioxide–titanium dioxide (GO-SnO2-TiO2) to
detect acetone in the breath of patients with diabetes. These sensors exhibited superior
performance in a range of 0.25 to 30 ppm at 200 ◦C; at the 3 ppm exposure, the response was
~13. The ternary nanocomposite sensor developed by Kalidoss et al. [48] had short response
and recovery times—10 s and 12 s, respectively—measured at 3 ppm acetone vapors.

4.3. TiO2-Based Sensors

Titanium oxide (TiO2), a typical n-type semiconductor and has been featured in
research and industry due to its excellent physicochemical properties, low cost, and simple
synthesis method [97]. In particular, TiO2-based gas sensors exhibit not only good stability
but also fast response/recovery times [49]. However, most pure TiO2 sensors have shown
a poor response to VOCs, especially acetone. Navale et al. [49] synthesized TiO2 particles
using the hydrothermal method. The response was only four to 100 ppm acetone at
an optimal operating temperature of 270 ◦C. Chen et al. [98] used TiO2 nanospheres
prepared with the sol–gel method. The response at 1000 ppm acetone reached only 2.3.
Bhowmik et al. [99] reported that the response of TiO2 nanoflowers, obtained using the
hydrothermal process, was even lower than three at 700 ppm acetone. From the point
of view of practical applications, the above works still cannot meet the requirements for
the high-performance detection of acetone. Different strategies have been proposed to
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improve the gas detection performance of TiO2-based sensors, such as the construction of
heterojunctions between different semiconductor oxides [100]. Y. Zhou et al. [50] prepared
a TiO2/Ag2V4O11 nanostructure gas sensor, and its response at 100 ppm acetone was
10.2, a higher response than pure TiO2 (3.4). Lou et al. [101] synthesized nanofibers
composed of TiO2-Fe2O3 and the response to 50 ppm acetone was about three times
higher than that of pure TiO2 and Fe2O3. Sharma et al. [51] reported thin films based
on TiO2-SnO2 heterostructures obtained with the PVD method and exposed to different
concentrations of acetone (0.25 to 100 ppm) at a temperature of 300 ◦C. The sensors proposed
by Sharma et al. [51] showed high responses, selectivity, and long-term stability (measured
up to 60 days). The design and synthesis of heterostructures with controllable morphologies
and compositions in the fabrication of TiO2-based gas sensors can, therefore, lead to high-
performance sensors for gas detection.

4.4. WO3-Based Sensors

One of the metal oxides commonly used for the detection of exhaled acetone is tung-
sten oxide (WO3), which has n-type conductive behavior with a catalytic effect both in
the oxidation and reduction reactions on its surface. Recently, Muñoz and Rodríguez [52]
used colloidal processing (slip casting) to control the elaboration of sensitive materials, that
is, macroporous bodies based on WO3. These pieces showed good sensitivity to acetone
vapors at concentrations above 1 ppm and at 250 and 300 ◦C. Zhang et al. [53] proposed
acetone sensors based on WO3 compounds modified with Au, with macroporous archi-
tecture and a detection limit of 100 ppb at 410 ◦C, a sufficient value suited to analyzing
breath acetone for diabetes screening. The W18O49:Pt studied by Xu et al. [54] demon-
strated excellent sensing performance with a response of 85 upon exposure to 20 ppm
of acetone at an operating temperature of 180 ◦C. Lu et al. [55] presented the detection
results of WO3 nanocrystals obtained with the hydrothermal method. WO3 sensors were
studied in an acetone vapor concentration range of 0.25 ppm–100 ppm, yielding responses
of 3.8–250 ppb and 31–100 ppm, respectively, at an optimum operating temperature of
320 ◦C. The detection limit was estimated as 7.5 ppb, which is applicable for the detection
of ultra-low concentrations, for example, in the noninvasive diagnosis of diabetes.

4.5. FexOy-Based Sensors

The most common iron oxides are FeO, Fe2O3, and Fe3O4, with Fe2O3 generally
being the most widely studied in gas detection applications. The main limitation for
Fe2O3-based gas sensors is the operating temperature (450–1075 ◦C), as the operating
temperature is difficult to implement on gas sensor substrates such as silicon. However,
recently, Zahmouli et al. [56] obtained samples synthesized using the sol–gel technique on
pure γ-Fe2O3 doped with different loads of gadolinium. These doped sensors exhibited
sensitivities to low acetone concentrations (~1 ppm) and lower temperatures (200 ◦C). The
best detection performance was with a 3% Gd load, with a response (Rg/Ra) of 31.23 against
20 ppm acetone, 30 times higher than that of pure γ-Fe2O3. This novel sensor showed good
selectivity and signal stability/response reproducibility, which makes it very promising for
practical applications, and it can very likely attract more attention in the future.

4.6. In2O3-Based Sensors

Cubic indium oxide (In2O3) has been widely used in the microelectronic field, includ-
ing in gas sensors, due to its lack of stoichiometry. Nonstoichiometric defects arise due to
the presence of an excess or deficiency of metal ions, which, in turn, is highly dependent
on the synthesis process. These defects induce modifications in the band structure of the
ideal In2O3, thus varying its electrical resistance [102,103]. Che et al. [62] presented results
related to In2O3 microstructures with nanowire morphologies, fabricated by electrospin-
ning exposed to acetone environments. The maximum response obtained to 100 ppm of
acetone was 37.9 at an optimum operating temperature of 200 ◦C. The developed sensor
was able to identify a variety of VOC gases, reflecting good selectivity; it also had a very
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fast response/recovery time (1/7 s) and long-term stability characteristics (measured up to
30 days) against acetone gas. However, there remains the need to determine its sensitivity to
low concentrations of acetone in humid environments, conditions similar to exhaled breath.

4.7. CuO-Based Sensors

In most of its compounds, copper has low oxidation states, the most common being
+2, although there are also some with oxidation states of +1. The CuO phase, however, is
considered a gas-sensitive material with p-type semiconductor properties. Wang et al. [58],
using sensors based on CuO powders, reported responses of only ~2 to 500 ppm acetone
operating at room temperature; even when using Cu2O–CuO porous octahedrons, no
sensitivity enhancement to these vapors was achieved. Previous studies developed by
Choi et al. [59]—using Cu2O–CuO composites decorated with Ag nanoparticles evaluated
at different concentrations of acetone (0.125 to 1000 ppm) and an operating temperature
of 350 ◦C—reported superior results to undecorated structures (8.0 to 0.125 ppb and 34 at
1000 ppm) with the following recovery times: 27 s for 125 ppb and 37.9 s for 1000 ppm ace-
tone. The sensor developed by Choi et al. [59], on the one hand, exhibited good sensitivity
to acetone at lower concentrations, but, on the other hand, the operating temperature was
very high compared with the latest achievement in the field.

4.8. Light-Assisted Detection

Apart from thermal excitation, one of the promising methods of increasing the limit of
detection for metal oxide sensors is ultraviolet (UV) illumination during gas detection. Pho-
toexcitation induces electron–hole pairs [61,104], a phenomenon that increases the width of
the accumulation layer and reduces the width of the depletion layer, thereby promoting
the adsorption and desorption processes of the surface oxygen molecules, achieving a
rapid response and recovery against acetone vapors at low temperatures. Recent stud-
ies have shown detection tests with UV illumination on heterostructures based on ZnO
due to the ease of UV activation shown by this semiconductor metal oxide [23]. In 2019,
Srinivasan et al. [60] studied the effect of UV irradiation (UV LED light) on the response
of ZnO/CdO heterostructure thin film obtained with the spray pyrolysis technique. The
sensitive film showed a selective photoresponse of 540 to 1 ppm acetone at room temper-
ature, and the response and recovery times were 61 and 47 s, respectively. The authors
found that UV irradiation reduced surface band bending, which promoted interparticle
charge transfer and reduced sensor baseline resistance drift. It also stimulated the desorp-
tion of analytes, increasing the reproducibility of sensor signals. The configuration of the
sensor device and its equivalent circuit is shown in Figure 8a. UV LED (blue light) with a
wavelength of 365 nm was employed as a light source in which the VLED was chosen as
2.1 V to ensure an irradiated power density of 3.01 mW/cm2. In 2020, Chang et al. [61]
examined the acetone-sensing properties of hollow ZnO/MoS2 nanosheets under UV illu-
mination. Core–shell heterostructures were synthesized through a simple hydrothermal
method. Light-emitting diode-based UV light (375 nm, 50 µW/cm2) was applied to assist
the acetone-sensing measurement, as shown in Figure 8b. In this study, it was reported
that the acetone-sensing properties obtained by the synergistic effect of the UV light and
HZnO/MoS2 core–shell heterogeneous structures showed a stable response (1.52) to 100 ◦C
and 100 ppb acetone with UV irradiation while exhibiting no response to 100 ppb acetone
without UV. Even at room temperature (30 ◦C), UV-activated HZnO/MoS2 still exhibited a
stable response (∼1.33) and fast recovery time (19 s/97 s) to 50 ppm acetone. Among other
photo-assisted structures are the sensors developed by Wang et al. [62], Fe-doped hexagonal
and monoclinic WO3 synthesized using the solvothermal calcination method. Under LED
illumination and an operating temperature of 260 ◦C, the optimized 1.25Fe–h/m–WO3
sensor exhibited higher responses to acetone compared with other identically prepared
sensors, and excellent linearity between responses and acetone concentration (0.5–2.5 ppm)
was achieved at 90% RH. Meanwhile, the 1.25Fe–h/m–WO3 sensor exhibited good acetone
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selectivity and stability over three months. In this work, photocatalytic performance in the
degradation of rhodamine B (RhB) was also studied under visible-light illumination.
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Guo et al. [63] developed an acetone gas sensor based on a CdS/Co3O4 nanocomposite
using an electrospinning method combined with a hydrothermal method. They used green
visible light to improve the sensing properties of the CdS/Co3O4 sensor operated at room
temperature (25 ◦C). With the irradiation of 520 nm green visible light, the response of
CdS/Co3O4 to 50 ppm acetone increased by about 25%, and the response/recovery time
was shortened to 5 s/4 s. The excellent sensing performance of the nanocomposite was
mainly attributed to the one-dimensional-structured morphology and the formation of p-n
heterojunctions, as well as the catalytic activity of Co3O4 on acetone gas. Since the revision
of the sensors under photoexcitation showed the lowest detection limits of 1 ppm, these can
be used for the identification of acetone from exhaled breath for the diagnosis of diseases.

4.9. Comparison

In recent decades, MOx-based gas sensors have been used primarily to detect VOCs
(sub-ppm) in human breath due to their low cost, compact size, ease of production, and
simple measuring electronics. These materials include TiO2, WO3, ZnO, Fe2O3, In2O3,
CuO, and SnO2, to name just a few. Specifically, ZnO and WO3 are sought after as sensors
for their high sensitivity to VOCs such as acetone, in addition to their ability to present
various crystalline and complex nanoparticle morphologies, as discussed in the work of
Jing et al. [105] and Lu et al. [55]. In addition, In2O3 has shown very promising results
in the detection of acetone [57]. The current review includes single-oxides, but most of
the investigated gas-sensitive materials are doped with other metals, such as Au, Ag,
Pt, Gd, and Fe, or correspond to multi-oxide systems with the hope of improving their
performance. However, the versatility of these metal oxides comes at a price. Historically,
simple metal oxides had poor stability with cyclical exposure to moisture and various test
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gases. Progress has been made in improving stability, but there is a limit to this because the
sensor will always be in direct contact with test gases and moisture. Light-assisted sensors
can be beneficial in these situations; they use a closed-loop system to protect the sensors
and offer long-term stability, as per Wang et al. [62].

The most prominent sensors discussed here are semiconductor metal oxides. They
differ in their composition, operating temperature, output data (selectivity, sensitivity,
response), and the breadth of their tests. Moisture testing is necessary because human
breath is very humid, and before human testing can begin, the sensor must be validated
under these conditions. Many sensors have been tested in moist conditions and even tested
for long-term stability in moist conditions [30,40,62], which is very valuable. More than
half of the sensors discussed here have not been tested on humans. In the early stages of
development, this is acceptable, but to be considered for use as commercial devices, they
must undergo clinical validation.

The selectivity of the sensors is very important to differentiate between different VOCs.
The highest selectivity was observed in several works [35,42,51,53], highlighting the study
by Xu et al. [54]. This is due to the control they carried out to manufacture the sensing
layer. They also determined one of the lowest LODs (0.0052 ppm) of the MOx discussed in
this article. The maximum response for each sensor was also noted, and the highest was
noted with the sensor of Wang et al. [35], with a response of 2900 (Rair/Rgas) at 100 ppm,
without considering the effect of humidity. The maximum response is important because
it must be significant enough to be detected, but it must also vary from other test gases
to have good selectivity. Response and recovery times are also crucial because they allow
for comfort and ease of use. A sensor with a long response or recovery time may not
be commercially successful. The lowest times reported were with the mixed potential
sensor from Jiang et al. [30] with 2/8 s response and recovery times, respectively, at 10 ppm
acetone and an operating temperature of 600 ◦C. The operating temperature is another
crucial parameter. A high operating temperature can be dangerous and causes sensitive
material to deteriorate. A lower temperature is preferred to keep the sensor stable [19]. The
light-assisted sensors all detected acetone vapors at room temperature.

For a manufacturer to decide on the use of different technologies, it all comes down to
its needs. A high operating temperature sensor may be suitable if it is inexpensive, and the
company can afford the excess power needed for a new power supply system. A sensor
with low selectivity may be successful with a company that then adds an earlier step to
reduce other analytes, such as the design of Rydosz et al. [106], with a preconcentrator chip.
There is no sensor that is the best in all respects, but there are certainly sensors that have
valuable features.

5. Devices and Applications in Breath Gas Analysis

There are several potential advantages to breath tests over conventional laboratory
tests (for example, noninvasive, painless, easy-to-use, real-time measurements, etc.). How-
ever, they have not yet been applied to clinical practice, possibly because there are no
commercially available devices. In 2014, Toshiba Corp. [107] announced that they had
developed a prototype of a compact breath analyzer that can detect a wide range of target
gases in exhaled breath (Figure 9). The current version of the equipment can detect ac-
etaldehyde, methane, and acetone. By analyzing these trace gases, it is possible to measure
one’s health and metabolic activity. That analysis can be performed by simply having the
subject breathe and is less stressful on the body and mind than blood tests and urinalysis.
In 2020, Dr. Artur Rydosz created the “Diabetomat” (Figure 10) [108]. The device analyzes
the composition of exhaled air, measures the content of ketone bodies, and relates this to
the blood glucose level. Additionally, this system uses the pre-concentration technique
to reduce the moisture level in the exhaled samples [106] (integrated sensor matrix in
Figure 10). In 2022, an ultrasensitive acetone gas sensor based on a p-Rh2O3-n-ZnO porous
heterostructure was fabricated by Cai et al. [46]. Figure 11 shows the process of obtaining
the simulated exhaled gas of diabetic patients. A volume of 5 L exhaled gas from the healthy
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people was obtained. Acetone was then injected into the bag to add a concentration of
900 ppb acetone into it, raising the acetone concentration in the bag to 1200–1800 ppb since
300–900 ppb and 1800 ppb acetone was contained in the exhaled gas of the healthy peo-
ple and the diabetic patients, respectively. Guo et al. [63] investigated the feasibility of
CdS/Co3O4 composite material for breath analysis. They used a bag to collect the exhaled
air of healthy people and mixed this with 2 ppm of acetone gas to simulate the breathing
environment of a diabetic patient (Figure 12a,b). The hygrometer in the airbag showed
that the humidity of the exhaled air was 89%, and the humidity of the test environment
was controlled at this level to avoid the influence of humidity. Figure 12c,d show the
repeatability of the sensor in the environment of the simulated breath of diabetic patients
and healthy breath. Most of the devices developed are still under laboratory verification or
in clinical trials, studies that are crucial before market entry.
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Figure 12. Investigation of the breath gas analysis of a Co3O4/CdS sensor. (a) The breath of a healthy
experimenter is collected with an air bag. (b) The breathing of diabetic patients is simulated by
injecting 2 ppm acetone into the exhaled breath of healthy people. (c) The response curve of the
sensor in the environment of the simulated breath of diabetic patients. (d) The response value of the
sensor tested upon exposure to simulated diabetes breath, 2 ppm acetone, and healthy breath [63].

6. Conclusions and Futures Prospects

In this review, metal oxide (MOx) gas sensors were investigated. A comparative
study was presented of different micro- and nanostructures for the detection of acetone
considering their potential use in the diagnosis of diabetes. The general properties and their
gas detection mechanisms, with porous architecture, were also considered. This effort was
aimed at providing researchers and industrialists working in the field of VOCs, especially
in the detection of acetone, with valuable data and benchmarks. The advances described
here suggest that the MOx semiconductor nanomaterial-based acetone detection technique
is rapidly thriving. Therefore, a comprehensive understanding of recent acetone gas sensor
development is essential to ensure rapid progression is maintained in the future.

As illustrated in the course of this review, several sensors have been developed using
different metal oxide-based nanomaterials, synthesis methods, and sensor modalities. The
procedures and protocols to evaluate the multiple sensors vary widely from one publication
to another, since there is no norm or standard that provides the rules to execute them,
and, therefore, cross-comparisons are a challenge. However, the most commonly studied
reliability parameters for acetone detection are shown, including sensitivity, selectivity,
response/recovery time, operating temperature, stability, and some significant sensor
parameters for the selected functions. Promisingly, these analyzed parameters are improved
in gas sensors by doping/decorating them with noble metals, surface functionalization, and
the formation of MOx heterostructures. The heterojunctions allow for effective conduction
channel tuning, and the synergistic effect of various semiconductors with respect to their
gas detection performance. The main drawbacks of the reviewed nanocomposites are their
higher operating temperatures. This can be reduced by working on the concentration of the
component materials, as well as controlling the morphology, although this parameter was
not a central idea in this review. It should also be noted that thermal and optical excitations
with UV increase surface defects and, therefore, the effective enhancement in the charge
carriers for the more efficient adsorption and diffusion of gases is a facet of gas-sensing
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which are still under improvement. However, ultraviolet light consumes a lot of light and
has radiation. Compared with ultraviolet light, visible light is cheap and environmentally
friendly, but the excitation rate is low. Hence, in subsequent research, the optical properties
of the material itself should be adjusted to achieve a high excitation rate and enhance
gas-sensing performance under visible light irradiation. This, therefore, offers a gap for
future researchers in gas-sensing applications.

Efforts are currently being made in the medical and engineering sectors to manu-
facture acetone sensors that incorporate improved sensitivity, capable of detecting low
concentrations of biomarkers, such as acetone, and also require less thermal energy, among
other characteristics of the sensor. The development of the breath acetone sensor in the
coming years ought to focus on the manufacturing process in order to deliver to the market
a final device for accurately and reproducibly collecting exhaled breath and performing an
analysis thereof. Its instrumentation ought to consider variations in the respiration cycle
(for example, the way human subjects breathe during measurements) and the background
level of interfering compounds (for example, ambient air pollution is an issue). Long-term
tests must be carried out for all the aforementioned detection techniques in order to be one
hundred percent sure that the results obtained are relevant. Multidisciplinary collaboration
is the sole way to achieve that goal: the development of totally noninvasive devices for the
detection and evaluation of states of disease.

Author Contributions: Conceptualization: Y.H.O.-M., J.E.R.-P. and R.M.d.G.; methodology, formal
analysis, investigation, writing—original draft preparation: Y.H.O.-M.; resources, supervision, project
administration, funding acquisition: R.M.d.G.; supervision: J.E.R.-P.; writing—original draft prepa-
ration: Y.H.O.-M.; writing—review and editing: R.M.d.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Universidad del Valle (Cali, Colombia), grant number
21049, and the Ministry of Science, Technology, and Innovation (MINCIENCIAS), call N◦ 757 of 2016.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors (Y.H.O.-M. and R.M.d.G., members of the Composite Materials
Group (GMC) and CENM) thank the Universidad del Valle (Cali, Colombia) for the support received.
We are especially grateful to Colin McLachlan for suggestions related to the English text.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Phillips, M. Breath Tests in Medicine. Sci. Am. 1992, 267, 74–79. [CrossRef] [PubMed]
2. Crofford, O.B.; Mallard, R.E.; Winton, R.E. Acetone in Breath and Blood. Trans. Am. Clin. Climatol. Assoc. 1977, 88, 128–139.
3. Pauling, L.; Robinson, A.B.; Teranishi, R.; Cary, P. Quantitative Analysis of Urine Vapor and Breath by Gas-Liquid Partition

Chromatography. Proc. Natl. Acad. Sci. USA 1971, 68, 2374–2376. [CrossRef]
4. Rydosz, A. Sensors for Enhanced Detection of Acetone as a Potential Tool for Noninvasive Diabetes Monitoring. Sensors 2018,

18, 2298. [CrossRef] [PubMed]
5. Ligor, M.; Ligor, T.; Bajtarevic, A.; Ager, C.; Pienz, M.; Klieber, M.; Denz, H.; Fiegl, M.; Hilbe, W.; Weiss, W.; et al. Determination

of Volatile Organic Compounds in Exhaled Breath of Patients with Lung Cancer Using Solid Phase Microextraction and Gas
Chromatography Mass Spectrometry. Clin. Chem. Lab. Med. 2009, 47, 550–560. [CrossRef] [PubMed]

6. Steeghs, M.; Bais, H.P.; de Gouw, J.; Goldan, P.; Kuster, W.; Northway, M.; Fall, R.; Vivanco, J.M. Proton-Transfer-Reaction Mass
Spectrometry as a New Tool for Real Time Analysis of Root-Secreted Volatile Organic Compounds in Arabidopsis. Plant. Physiol.
2004, 135, 47–58. [CrossRef]

7. Westhoff, M.; Litterst, P.; Freitag, L.; Urfer, W.; Bader, S.; Baumbach, J.-I. Ion Mobility Spectrometry for the Detection of Volatile
Organic Compounds in Exhaled Breath of Patients with Lung Cancer: Results of a Pilot Study. Thorax 2009, 64, 744–748. [CrossRef]

8. Wilson, A. Application of Electronic-Nose Technologies and VOC-Biomarkers for the Noninvasive Early Diagnosis of Gastroin-
testinal Diseases. Sensors 2018, 18, 2613. [CrossRef]

9. Delgado-Rodríguez, M.; Ruiz-Montoya, M.; Giraldez, I.; López, R.; Madejón, E.; Díaz, M.J. Use of Electronic Nose and GC-MS in
Detection and Monitoring Some VOC. Atmos. Environ. 2012, 51, 278–285. [CrossRef]

10. Fine, G.F.; Cavanagh, L.M.; Afonja, A.; Binions, R. Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring.
Sensors 2010, 10, 5469–5502. [CrossRef]

http://doi.org/10.1038/scientificamerican0792-74
http://www.ncbi.nlm.nih.gov/pubmed/1502511
http://doi.org/10.1073/pnas.68.10.2374
http://doi.org/10.3390/s18072298
http://www.ncbi.nlm.nih.gov/pubmed/30012960
http://doi.org/10.1515/CCLM.2009.133
http://www.ncbi.nlm.nih.gov/pubmed/19397483
http://doi.org/10.1104/pp.104.038703
http://doi.org/10.1136/thx.2008.099465
http://doi.org/10.3390/s18082613
http://doi.org/10.1016/j.atmosenv.2012.01.006
http://doi.org/10.3390/s100605469


Molecules 2023, 28, 1150 18 of 21

11. Spannhake, J.; Helwig, A.; Schulz, O.; Müller, G. Micro-Fabrication of Gas Sensors. In Solid State Gas Sensing; Springer: Boston,
MA, USA, 2009; pp. 1–46.

12. Marzorati, D.; Mainardi, L.; Sedda, G.; Gasparri, R.; Spaggiari, L.; Cerveri, P. A Metal Oxide Gas Sensors Array for Lung Cancer
Diagnosis Through Exhaled Breath Analysis. In Proceedings of the 2019 41st Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1584–1587.

13. Nag, S.; Sachan, A.; Castro, M.; Choudhary, V.; Feller, J.F. Spray Layer-by-Layer Assembly of POSS Functionalized CNT Quantum
Chemo-Resistive Sensors with Tuneable Selectivity and Ppm Resolution to VOC Biomarkers. Sens. Actuators B Chem. 2016, 222,
362–373. [CrossRef]

14. Tisch, U.; Haick, H. Chemical Sensors for Breath Gas Analysis: The Latest Developments at the Breath Analysis Summit 2013. J.
Breath Res. 2014, 8, 027103. [CrossRef] [PubMed]

15. Broza, Y.Y.; Zuri, L.; Haick, H. Combined Volatolomics for Monitoring of Human Body Chemistry. Sci. Rep. 2015, 4, 4611.
[CrossRef] [PubMed]

16. Parkes, J.L.; Slatin, S.L.; Pardo, S.; Ginsberg, B.H. A New Consensus Error Grid to Evaluate the Clinical Significance of Inaccuracies
in the Measurement of Blood Glucose. Diabetes Care 2000, 23, 1143–1148. [CrossRef] [PubMed]

17. Statista Diabetes—Statistical Data|Statista. Available online: https://es.statista.com/temas/3526/diabetes/#topicHeader_
_wrapper (accessed on 10 January 2022).
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