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Abstract: The advantages of IR spectroscopy include relatively fast analysis and sensitivity, which
facilitate its wide application in the pharmaceutical, chemical and polymer sectors. Thus, IR spec-
troscopy provides an excellent opportunity to monitor the degradation and concomitant evolution
of the molecular structure within a perovskite layer. As is well-known, one of the main limita-
tions preventing the industrialization of perovskite solar cells is the relatively low resistance to
various degradation factors. The aim of this work was to study the degradation of the surface of
a perovskite thin film CH3NH3PbI3-xClx caused by atmosphere and light. To study the surface of
CH3NH3PbI3-xClx, a scanning electron microscope, infrared (IR) spectroscopy and optical absorption
were used. It is shown that the degradation of the functional layer of perovskite proceeds differently
depending on the acting factor present in the surrounding atmosphere, whilst the chemical bonds are
maintained within the perovskite crystal structure under nitrogen. However, when exposed to an
ambient atmosphere, an expansion of the NH3

+ band is observed, which is accompanied by a shift in
the N–H stretching mode toward higher frequencies; this can be explained by the degradation of the
perovskite surface due to hydration. This paper shows that the dissociation of H2O molecules under
the influence of sunlight can adversely affect the efficiency and stability of the absorbing layer. This
work presents an approach to the study of perovskite structural stability with the aim of developing
alternative concepts to the fabrication of stable and sustainable perovskite solar cells.

Keywords: PSC; degradation; FTIR spectroscopy; functional layer; stability

1. Introduction

In the context of increasing energy consumption [1–3] and to ensure energy security
and the prevention of the associated environmental damage [4–6], the development and
rapid deployment of novel photovoltaic technologies [7–9], such as organometallic halide
(OMH) perovskite solar cells (PSCs) [10–15], are becoming the focus of R&D activities
across the world. This is a result of the unique advantages of OMH perovskites such as
the ease of fabrication, high cost-effectiveness, adjustable band gap, low recombination
rate, high carrier mobility and high light absorption coefficients [16–23]. During the last
decade PSCs have improved their efficiency noticeably, with the cell performance achieving
efficiencies in excess of 25% [24–30]. Improving the performance of such devices requires
advanced knowledge of charge transport and dynamics within the active layer, which are
directly related to the device’s efficiency. In this regard, we refer to earlier studies [31,32]
which report on the investigation of a fully inorganic perovskite solar cell CsPbBr3. At the
same time, commercialization and widespread use of PSCs are still to materialize due to
the inability to maintain the device’s stability during both storage and operation [33–36].

Due to their excellent processability and good semiconductor properties, perovskite
materials have shown great potential for use in microelectronics. For example, perovskite
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thin film field effect transistors have demonstrated low hysteresis and medium charge
carrier mobility, making them highly promising for low-cost electronic applications if good
stability towards external influences is achieved [37,38].

The PSC stability is affected by various degradation factors, which may be classified
as internal and external. For example, the migration of perovskite ions, which affects the
strength of bonds between cations and anions, is an internal degradation factor [39–43].
Therewith, the preservation of the crystal structure and the stoichiometric ratio of the
PSC components may be attained via the suppression of ion migration [43–45]. External
factors include environmental influences such as humidity [46–48], oxygen [49–51], tem-
perature [52–54] and radiation [49,55–57]. The intensive impact of the environment leads
to a decrease in the strength of the CH3NH3

+ hydrogen bond, which destroys the PSC
structure [58,59]. For example, degradation of PSCs upon adsorption of water molecules
may occur via a strong distortion of the interatomic distance [60]. In order to avoid
exposure to humidity and oxygen, a significant effort is placed on the development of
effective encapsulation solutions [61–64]. Thus, the problem of stability leads to suspended
commercialization of perovskite photovoltaics, which is already competitive with other
photovoltaic technologies in terms of PCE. One approach to address this was shown in
Reference [65], which describes the fabrication of perovskite layers with different band gaps
by changing the ratio of bromine (Br) to iodine (I) in the position of the halide anion. Here,
the authors report the creation of a wide-bandgap PSC using an inexpensive inorganic
transport layer, which provides improved efficiency and remarkable stability.

Some of the successful examples enable the achievement of excellent PSC temperature
cycling stability (−40 to 85 ◦C), with more than 90% optoelectronic performance remaining
after 200 temperature cycles and more than 1000 h of operation [66–69]. For example, Ref-
erence [70] shows that perovskite lattice deformation resulting from extreme temperature
fluctuations (from −160 to 150 ◦C) can be restored.

In spite of such success, the influence of temperature on the stability of perovskites un-
der atmospheric conditions and when exposed to light is not fully understood. At an early
stage in the development of perovskite solar cells, there was already an awareness of the
dramatic role of humidity in the deterioration and degradation of the initial characteristics
of a solar cell [71]. Perovskite thin films, compared with single crystals, are subject to faster
degradation due to the greater number of grain boundaries, which ensures rapid water
penetration. Water molecules are quite easily included in the perovskite lattice due to their
ability to form hydrogen bonds with lattice iodides, which leads to destruction. Narrowly
focused experimental studies are required to establish the hydrate phase and its effect on
the optical properties of a thin perovskite film.

Understanding the underlying degradation mechanisms is essential to improve the
performance, sensitivity and stability of organometallic perovskite devices. To study the
mechanisms of degradation and thermal instability in PSCs, spectroscopic analyses are usu-
ally required. These include techniques such as X-ray diffraction [72,73], photoelectron spec-
troscopy [74,75], thermogravimetric analysis [76,77], mass spectrometry [78,79], scanning
electron microscopy [80,81] and Fourier transform infrared (FTIR) spectroscopy [82–86].

In this paper, we present the results of a study of the evolution of the crystal structure
of a separate perovskite layer under the influence of the surrounding atmosphere. The
degradation of the surface structure of the perovskite layer was studied using scanning
electron microscopy. Using IR spectroscopy, the vibrational spectra of the samples were
measured under various conditions. The absorption spectra of the samples in the wave-
length range of 300–1100 nm were obtained using a QEX10 automated setup. The obtained
results indicate that the perovskite crystal structure degrades differently depending on
external influences. It can be assumed that under the influence of the atmosphere, the
surface layers are mainly subjected to degradation, whereas under the influence of light,
volumetric degradation of the perovskite occurs.
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2. Results and Discussion

The susceptibility of perovskites to the external environment leads to the combined
impact of factors such as moisture, oxygen and lighting, which leads to a deterioration of
the photovoltaic characteristics and an accelerated degradation. Exposure to an environ-
ment with relative atmospheric humidity above 50% leads to the formation of hydrogen
bonds with organic perovskite cations, where the perovskite easily interacts with water
molecules, ultimately creating a hydrated product (CH3NH3)4PbI6·2H2O [87–89]. In this
case, degradation of the perovskite structure and a decrease in the absorption of the spec-
trum in the visible region are observed, and faster destruction of the perovskite occurs
due to a weak chemical bond between the octahedral framework and the weakly bonding
cation. It was noted in [90] that perovskite decomposes quite quickly with the release
of a yellow substance PbI2 due to the interaction with water, whereby water protonates
iodide, leading to the appearance of hydrogen iodide (HI). In order to reduce the harmful
effect of oxygen and moisture on the perovskite stability, the control the iodide defects is
crucial [91]. This paper considers the evolution of the chemical structure of an individ-
ual functional perovskite layer using the FTIR spectroscopy, SEM and optical absorption
measurements. In the work, samples were studied in an amount from 10 to 50 in order to
ensure reproducibility of the results.

2.1. FTIR

This section presents the results of IR spectroscopic studies of the degradation of the
perovskite films under the influence of an ambient environment and visible illumination in
the wavelength range of 380–800 nm. IR spectroscopy was used previously to study the
evolution of the chemical structure of individual functional layers and their combinations
under the influence of the surrounding atmosphere and temperature [83,92,93]. The spectral
measurement range in our study was 600–4200 1/cm.

The process of atmospheric degradation was studied by placing the resulting per-
ovskite film inside a glove box in the dark at room temperature T = 295 K. The film was kept
in the glove box for 600 h. For statistics, 10 samples were selected to assess degradation
from the total of 50 manufactured films. The procedure for testing the stability of the
samples partially complies with the ISOS-D-1 protocol [94].

Figure 1 shows the vibrational spectra employed for identifying the evolution of
the chemical structure using characteristic transmission bands recorded at a high signal-
to-noise ratio and in the wavenumber range of 400–4200 1/cm from a ~700 nm thick
CH3NH3PbI3-xClx sample before and after the sample degradation. Based on the pub-
lished data [80,83,85,86,92,93,95–100], a good convergence of the vibrational spectra was
observed when compared with the experimentally obtained vibrational spectra (red line)
of a freshly obtained (new) sample. In a freshly produced thin perovskite film, the most
intense vibrational mode was observed at the frequencies of 3132 1/cm and 3179 1/cm,
which corresponded to the symmetric and asymmetric N-H stretching modes (associated
with NH3

+). It should be noted that there was no visible feature, corresponding to O–H
stretching vibrations in the region of 3400–3700 1/cm, which indicated the presence of a
functional hydroxyl group (hydrates, hydroxide and water) in the freshly obtained thin
perovskite film [97,101,102].

The following peaks are typical for a freshly prepared perovskite film: 910 1/cm and
1248 1/cm (CH3NH3

+ rock), 961 1/cm (C–N stretch), 1421 1/cm (C–H bend), 1468 1/cm
(N–H bend (symmetric)), 1578 1/cm (N–H bend (asymmetric)), 2921 1/cm (C–H stretch
(symmetric)) and 2958 1/cm (C–H stretch (asymmetric)).
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Figure 1. Fourier transform IR spectra of CH3NH3PbI3-xClx single crystal samples: freshly prepared
(red) perovskite thin film and exposed to atmosphere (blue).

Exposure of the perovskite film to the ambient environment was conducted at relative
humidity of 50% ± 5%. It is known, that when exposed to the atmosphere, the NH3

+

band widens, which is accompanied by a shift of the N–H stretching mode toward higher
frequencies (blue line). The simultaneous expansion and shift of the N–H vibrational
peak at ~3200 1/cm may be due to the degradation of the perovskite film via its hydration.
Another sensitive characteristic of the hydration process was the appearance of new infrared
absorption peaks at 1660 1/cm and 1497 1/cm [97]. The dominant peak at 1660 1/cm
represented the bending mode of the N–H and O–H bonds, while the peak at 1497 1/cm
was due to the stretching of the O–H and C–H bonds [93]. Additionally, we observed
spectral shifts due to the destruction of the crystalline structure in the region of 900 1/cm–
1300 1/cm: the peaks at 910 1/cm and 1248 1/cm (CH3NH3

+ rock) shifted to 935 1/cm and
1255 1/cm, respectively, whereas the peak at 961 1/cm (C–N stretch) shifted to 990 1/cm.
Hence, it is evident that the hydration leads to the formation of new chemical bonds within
the perovskite crystal structure due to the deprotonation of CH3NH3

+ [80].
Next, the stability of the samples to light exposure was studied using an LED lamp.

The illuminance of the samples was controlled using a Digisense 20250-00 light meter,
calibrated according to the NIST standard, before each measurement. The characteristics of
the LED lamp were as follows: brand—OSRAM Parathom Classic P25, electric power—4 W,
light flux—250 lm and wavelength range—380 to 800 nm. The exposure was carried out
entirely in an inert atmosphere (N2) and without access to external lighting. Nitrogen with
a purity of 99.999% was used to create an inert environment in accordance with ISO 2435-73,
while the atmospheric condition in the glove box corresponded to ISO 106482:1994 (oxygen
concentration ~0.4 ppm and humidity ~2 ppm). Thus, the samples were illuminated for
30 days. Then, the samples were taken without encapsulation to the ambient environment,
and optical studies were carried out immediately to evaluate degradation by exposure to
light in the indicated wavelength range.

Photodegradation proceeded via the decomposition of CH3NH3PbI3 into PbI2 and
CH3NH3I, followed by further decomposition of the latter product into CH3N2 and I2 [103].
Therefore, three stages of the photodegradation process have been proposed [57]. During
the first stage of photodegradation of CH3NH3PbI3-xClx, volatile gases such as CH3I, NH3
and PbI2 were formed. In the next step, a reversible reaction took place, which led to
the formation of CH3NH3, HI and PbI2. The final step resulted in PbI2 forming Pb0 and
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volatile I2 [104]. Accordingly, iodine vacancies and HI were formed on the surface of
the perovskite crystal or at the grain boundary due to the deprotonation of CH3NH3

+.
This led to further decomposition of perovskite. CH3NH3PbI3, due to the chain chemical
reaction of decomposition of iodine and PbI2 in the perovskite structure, can irreversibly
photodegrade with the formation of lead and iodine, which contributed to the destruction
of the perovskite crystal structure. In Reference [105], the authors aimed at reversing the
photodegradation of CH3NH3PbI3 by adding gaseous CH3NH2 in a glove box with the
sample; however, this approach could not establish a continuous recovery cycle due to
the gradual loss of I. Overall, a detailed understanding of the variations in the chemical
components of perovskite during exposure to light is still in its initial state and further
research is needed to improve the device’s stability.

FTIR spectroscopy was used to investigate the influence of light exposure, as it is
sensitive to the presence of hydroxyl groups, which play an important role during the
photovoltaic process by restraining injection and charge transfer, as well as energy transfer
from the perovskite crystallites to OH vibrational states [106,107]. Figure 2 shows a com-
parison of the IR spectra of a freshly prepared sample (new) with a degraded (decomposed)
sample under the influence of the LED lamp.
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Comparison of the IR spectra of the freshly prepared and degraded samples demon-
strates, that the intensity of the band, corresponding to the stretching vibrations of hydroxyl
groups, decreases. This may indicate desorption or dissociation of the hydroxyl groups
within the sample. Accordingly, the dissociation of H2O molecules under the influence of
light can adversely affect the efficiency and stability of the absorbing layer due to the for-
mation of defects. A more pronounced peak, corresponding to N–H bending (asymmetric)
vibrations is observed with a shift in position from 1578 1/cm to 1590 1/cm. One can also
see pronounced peaks at 936 1/cm and 1260 1/cm that belong to CH3NH3

+ rocking oscil-
lations, which indicates degradation of the perovskite film. Preservation of the efficiency
and stability of a perovskite solar cell can be achieved by passivating ionic defects, i.e., by
increasing the recombination lifetime and reducing the density of charge traps [108,109].

The presented results indicate a rapid degradation of the perovskite film when ex-
posed to an ambient environment (atmosphere and light). It was also observed that in
some cases the degraded film had a grey–yellow tint after degradation, which is unusual
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and not similar to the bright yellow color of the PbI2 films—a typical material residue
after degradation.

It can be seen that different types of environmental influences, be it atmosphere or
light, lead to different routes of decomposition of the perovskite crystal structure. In order
to maintain efficiency and avoid degradation, the impact of a nitrogen environment on the
surface of a thin perovskite film was studied. The results of the study are shown in Figure 3,
where the main characteristic vibrations of the CH3NH3PbI3-xClx band are identified.
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Figure 3. Fourier transform IR spectra of CH3NH3PbI3-xClx: freshly prepared (red) and exposed to
nitrogen (purple).

It is clear that the exposure of the perovskite film in a nitrogen environment does not
lead to any significant changes, including the CH3 vibration band at 910 1/cm and the
scissoring of the CH vibrational band at 1468 1/cm of the CH3 functional group. When
comparing a freshly obtained thin perovskite film with an aged sample in a nitrogen
atmosphere, oscillations were observed at frequencies equal to 3132 1/cm and 3179 1/cm.
The absence of the functional hydroxyl group feature in the region of 3400–3700 1/cm,
which corresponds to the O–H stretching vibrations, confirms the preservation of the crystal
structure of the sample under study. Thus, we conclude that the original properties of a
thin perovskite film are preserved in the nitrogen environment.

Our results largely correlate with those reported by other authors [110]. However, in
the previous study, no degradation of the perovskite sample under the influence of light
in the visible range and in the absence of oxygen was reported. In contrast, in our case,
the sample underwent degradation under the influence of light. This could be related
to the accepted standard conditions (ISO 106482:1994), as well as the difference in the
sample compositions (CH3NH3PbI3-xClx vs. CH3NH3PbI3 [110]), which may affect film
morphology [111] and, respectively, stability.

2.2. Surface Morphology

Figure 4 shows micrographs of methylammonium iodide-lead chloride perovskite
films deposited on a crystalline silicon substrate at spin speed 1000 rpm.
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Figure 4 demonstrates that the surface of the perovskite films has a branched structure,
with the size of the crystallites being sensitive to the speed of spin-coating. The absence of
pores or voids, nevertheless, indicates a good quality of the films, which is critical for the
photovoltaic application. Initially, no significant changes were observed on the surface of
the degraded film; however, with prolonged exposure to the atmosphere (more than 600 h),
decomposition and destruction of the surface of the perovskite film could be noticed (see
Figure 4c,d).

2.3. Optical Density

The evaluation of the optical characteristics of the degraded perovskite films was
carried out using optical absorption spectroscopy. Weakening of the absorption of the
absorption spectra was observed under prolonged exposure to the ambient atmosphere,
which caused the degradation of the sample and which led to the release of a yellow
substance PbI2, as well as a decrease in the absorption intensity. The optical absorption
through the sample films was measured in the range from 300 nm to 1100 nm. The obtained
spectra of degraded films under the influence of the atmospheric factor are shown in
Figure 5.

Upon degradation under the influence of the atmospheric factor, a stronger decrease in
the light absorption can be observed in the visible region of 400–750 nm. Thus, the obtained
experimental data demonstrate the impact of degradation on the optical properties of the
perovskite film.
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3. Materials and Methods
3.1. Materials

N,N-dimethylformamide (HCON(CH3)2, 99.8%, Sigma-Aldrich, UK), methylammo-
nium iodide (CH6IN, >99.5%, LumTec, Taiwan) and lead(II) chloride (PbCl2, 99.999%,
LumTec, Taiwan) were used as is to obtain the perovskite layers. The chemicals were used
without any further purification. The resulting solution was deposited on glass substrates
coated with tin oxide (FTO) (Solaronix SA, Switzerland), as well as on n-doped silicon sub-
strates (200 µm, Atecom, Taiwan). The substrates were preliminarily cleaned using distilled
water, acetone, ethanol and Hellmanex. After washing, the substrates were dried in a muffle
furnace at a temperature of 100 ◦C for an hour. The choice of a crystalline silicon substrate
was related to its high transparency in the IR range. This made it possible to conduct an IR
spectroscopic study of the perovskite structure of the film in a nondestructive manner.

3.2. Preparation of CH3NH3PbI3-xClx
The CH3NH3PbI3-xClx perovskite films were fabricated in an inert atmosphere at

room temperature T = 295 K. To ensure better dissolution of the solid precursors CH3NH3I
and PbCl2 in N, N-dimethylformamide at the total concentration of 0.66 g/mL, the vial
was heated at 60 ◦C. The weight ratio of 3:1 between CH3NH3I and PbCl2 was used. The
samples were prepared via spin-coating at 1000 rpm for 30 s, then left to dry for 10 min,
followed by annealing using a C-MAG HP 7 hotplate (IKA, Staufen, Germany) at 100 ◦C for
90 min, and further at 120 ◦C for 10 min. The prepared samples were left to cool down to
room temperature in an inert atmosphere. Individual perovskite layers had an approximate
thickness of 700 nm. A scheme of the process is shown in Figure 6, and follows a recipe
described elsewhere [112].

3.3. Film Characterization

The morphology of the samples was studied using scanning electron microscopy
(Quanta 200i 3D, FEI Company, Hillsboro, OR, USA). The optical properties were measured
using a QEX-10 quantum efficiency measurement tool (PV Measurements, Inc., Boulder,
CO, USA). The vibrational spectra were recorded using an INFRASPEK FSM 2203 FTIR
spectrometer in the spectral range of 370–7800 1/cm with a maximum resolution of 0.125
1/cm and a signal-to-noise ratio exceeding 60,000.
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4. Conclusions

Based on the vibrational spectroscopy studies on the stability of the CH3NH3PbI3-xClx
perovskite films, the following conclusions can be drawn. Strong changes in the absorption
intensity of the characteristic frequencies corresponding to the NH and CH functional
groups were revealed. In the range of the stretching vibrations of these groups, intense
vibrational modes at the frequencies of 3132 1/cm and 3179 1/cm for the as-prepared and
aged films differed in terms of the width of the bands. We attribute these differences to
the degradation of the perovskite structure. This is confirmed by SEM and absorption
spectroscopy studies. The surface morphology of the samples varied greatly under the
influence of the atmosphere and light, which led to the destruction of the perovskite
layer on the substrate as a whole. Accordingly, this destruction was accompanied by
hydration degradation of the crystal structure with the formation of new chemical bonds
via the deprotonation mechanism. The results of this study, as well as previous results
by other authors [83,92,93], suggest that the exposure of the perovskite to the natural
environment leads to the breaking of iodide bonds in its crystalline structure. In principle,
the degradation dynamics of perovskite structures can be heterogeneous and varied, and we
hope that this work will provide a lens through which studies on the stability of perovskite
solar cells can be viewed. Understanding the stability limitations of organohalide perovskite
films is hoped to eventually bring the perovskite photovoltaic technology closer to the
competitive thin film photovoltaic industry.
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