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Abstract: Nanocellulose-reinforced ionic conductive hydrogels were prepared using cellulose nanofiber
(CNF) and polyvinyl alcohol (PVA) as raw materials, and the hydrogels were prepared in a dimethyl
sulfoxide (DMSO)/water binary solvent by a one-pot method. The prepared hydrogels were charac-
terized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR).
The mechanical properties, electrical conductivity, and sensing properties of the hydrogels were stud-
ied by means of a universal material testing machine and LCR digital bridge. The results show that
the ionic conductive hydrogel exhibits high stretchability (elongation at break, 206%) and firmness
(up to 335 KPa). The tensile fracture test shows that the hydrogel has good properties in terms of
tensile strength, toughness, and elasticity. The hydrogel as a conductor medium is assembled into a
self-powered strain sensor and the open-circuit voltage can reach 0.830 V. It shows good sensitivity
in the bend sensing testing, indicating that the hydrogel has good sensing performance. The water
retention and anti-freezing performance experiments show that the addition of dimethyl sulfoxide
solvents can effectively improve the anti-freezing and water retention properties of hydrogels.

Keywords: cellulose nanofiber; polyvinyl alcohol; ionic conductive hydrogels; sensors

1. Introduction

In recent years, wearable smart sensors have attracted growing attention in advanced
fields, such as electronic skin and health monitoring [1]. At present, traditional sensors
based on inorganic or metal materials in the market usually have excellent electrical
properties, durability, and compatibility. However, due to their stiffness, brittleness, hy-
drophobicity, and weak tensile properties, traditional sensors are not suitable for wearable
sensors used for human motion detection [2,3]. Three-dimensional conductive hydro-
gels with excellent flexibility have received considerable attention as emerging materials
with substantial applications as electronic skins, flexible wearable devices, multifunctional
sensors, and so on.

Polyvinyl alcohol (PVA) is a cheap biopolymer, which is widely used in many fields
such as bioengineering, modern medicine, textiles, and garments [4]. It is easily soluble in
biological media and can use various cross-linking agents to form stable new hydrogels
based on polyvinyl alcohol [5,6]. In general, the addition of nanomaterials to hydrogel
systems is an effective and practical way to improve the mechanical strength of hydrogels.
Cellulose nanofiber derived from the most abundant native renewable biomass has unique
and promising properties, such as high crystallinity, aspect ratio, specific surface area, and
tensile strength [7]. This material is non-toxic, harmless, lightweight, and has good bio-
compatibility. More importantly, the surface of nanofibers is rich in hydroxyl groups, with
high elastic modulus, stiffness, and low thermal expansion coefficient, which can be stably
dispersed in water-soluble polymers or as matrix composites dispersed in water [8–13].
In this regard, cellulose is often combined with conductive fillers to make conductive
nanocomposite complexes, which play an important role in toughening, crosslinking, and
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acting as network support with excellent mechanical properties. Carbon nanotubes (CNTs)
have been widely used to prepare conductive hydrogels due to their excellent mechan-
ical properties and electrical conductivity. However, CNTs are not easily dispersed in
water under the action of van der Waals force. When CNF interacts with a CNT, due to
the strong nonpolar interaction of cellulose with its surface energy, a significant van der
Waals interaction occurs. Moreover, when CNTs are adsorbed onto CNFs, all the water
bound to CNFs will be released, resulting in a large increase in entropy. Considering the
large specific surface area of CNFs, this may imply that the driving force for CNFs to
disperse CNTs should be the overall gain in entropy and the highly nonpolar interaction
between the two nanoparticles [14,15]. Ge et al. [16] designed a self-healing composite
hydrogel with antioxidant and antibacterial activity using nanocellulose and tannic acid
(TA) as functional additives. Due to the combined dynamic borate ester bonding between
polyvinyl alcohol–borax and multi-hydrogen bonding between different components, ex-
cellent mechanical stability, stretchability, and rapid self-healing ability were realized in
one system. Bai et al. [17] proposed a strategy using ethanol to dynamically adjust the
hydrogen bond crosslinking between polyvinyl alcohol and tannic acid to prepare hydrogel
coatings. Because ethanol dynamically regulates the hydrogen bonds between PVA and
TA in water, a uniform hydrogel coating is formed on the surface of the porous substrate.
The obtained hydrogel coating exhibits ultra-high strength, swelling volume stability, and
excellent oil–water separation efficiency. Yang et al. [18] used cellulose nanofibers (CNF)
as a dispersant to promote the uniform dispersion of multi-walled carbon nanotubes
(MWCNTs) in hydrogels. Hamedi et al. [15] used well-dispersed CNF/CNT nanohybrids
to fabricate conductive hydrogels for wearable flexible sensors and intelligent electronic
skins. Li et al. [19] grafted lignin-based carbon (LC) as the conductive filler and cellulose
nanofibrils (CNF), carboxymethyl chitosan (CMC), and polyvinyl alcohol (PVA) as the
polymer matrix to prepare a conductive hydrogel, which endowed it with a tensile strength
of 133 kPa. Wei et al. [20] synthesized by a one-step acrylamide polymerization in the
presence of cellulose nanofiber (CNF), templated carbon nanotube (CNT) hybrids, and
glycerol–water binary solvent, which synergistically endows the organohydrogel with
excellent tensile strength (≈119.2 kPa).

Due to the large amount of water contained in a hydrogel, it is easy to freeze and
evaporate, which dramatically restricts the practical application of hydrogels. Most conven-
tional hydrogels have poor environmental stability because of the low-temperature-induced
freezing problem. The addition of organic solvents is a strategy to improve the anti-freezing
performance of hydrogels. Dimethyl sulfoxide (DMSO) is widely used to cryopreserve
cells and has recently been used to prepare freeze-resistant hydrogels [21].

Therefore, multifunctional hydrogels with good mechanical strength, anti-freezing
properties, moisture retention, and long-term stability are highly desirable for human
motion monitoring. In this experiment, a high-strength, anti-freezing, and stretchable
nanocellulose-enhanced ionic conductive hydrogel was prepared by a one-pot method
using CNF and polyvinyl alcohol (PVA) as raw materials, adding dimethyl sulfoxide
(DMSO), AlCl3, and carbon nanotubes. Dimethyl sulfoxide (DMSO) was added to improve
the anti-freezing performance and water retention performance of the hydrogel, and AlCl3
and carbon nanotubes were incorporated to improve the conductivity of the hydrogel. The
microstructure of the prepared hydrogel was characterized by scanning electron microscopy
(SEM) and Fourier transform infrared spectroscopy (FTIR). The mechanical properties,
electrical conductivity, anti-freezing properties, water retention properties, and sensing
properties of the hydrogels were studied by means of testing methods such as universal
material testing machines and the LCR digital bridge. The results show that the prepared
hydrogel has good electrical conductivity, anti-freezing performance, and good mechanical
properties. At the same time, the hydrogel can be applied to human motion detection and
has the potential to be used in flexible sensors.
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2. Results and Discussion
2.1. Surface Topography

As shown in Figure 1, the three-dimensional porous network structure of the hydrogel
can be seen. The pore size is between a few hundred nanometers and a micron, making it
easier for some ions to enter the internal network of the hydrogel. This kind of ordered
porous structure lays a foundation for the establishment of conductive pathways. Due to
the three-dimensional porous network structure of the hydrogel, it provided a pathway for
ion transmission and improved the conductivity of the hydrogel [22].
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Figure 1. SEM image of the PVA-CNF hydrogel.

The PVA-CNF hydrogels were fabricated via a one-pot method. As shown in the
schematic diagram (Figure 2), the CNF was used as a reinforcement agent and a strong
hydrogen bonding crosslinker in the system. Al3+ ions were introduced into the hydrogel
to act as conductive ions.
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Figure 2. Schematic diagram of the preparation process of the PVA/CNF hydrogel.

2.2. Infrared Spectroscopy Analysis

As shown in Figure 3, the hydrogel exhibited a broad and strong peak at 3357 cm−1,
which was attributed to the intermolecular and intramolecular hydrogen bonds between
PVA and CNF. It can be seen from the spectra that the peak shifts to lower wave numbers
as the CNF content increases from 0 to 1.5%. The PVA-CNF hydrogel exhibits absorption
peaks at 1650 and 475 cm−1 associated with the enhanced C–H bending vibrations of
the DMSO, while the stretching absorption peak at 1011 cm−1 is attributed to the S = O
characteristic peak of DMSO. The DMSO forms strong hydrogen bond cross-links with
water molecules and also enhanced the mechanical properties of the hydrogels. The CNF
may also be induced to produce coordination bonds under the reaction of both parties,
resulting in the formation of microcrystals in PVA to enhance the mechanical properties of
the hydrogel.
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2.3. Mechanical Property Analysis

The tensile stress–strain curves of hydrogels at room temperature were tested by a
universal material testing machine (Figure 4), and the tensile stress of the hydrogel changes
continuously with the increase in CNF content. When the content of CNF is added to
2%, the tensile strength and elongation at the break of the hydrogel are 0.335 MPa and
206%, respectively. When the content of CNF continues to increase, the tensile strength
and elongation at the break of the hydrogel decrease significantly. As a polymer nano-
reinforcement agent, CNF forms hydrogen bonds with PVA chains, which effectively
improves the mechanical properties of the hydrogels [21]. However, a high CNF concentra-
tion has a negative impact on the mechanical properties of hydrogels, as it causes CNFs to
aggregate or form more crystallites in the hydrogel of the polymer material, which leads to
inhomogeneous distribution in the three-dimensional network structure and leads to the
degradation of the mechanical properties.
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As shown in Figure 5, the PVA-CNF hydrogel exhibits excellent flexibility and me-
chanical strength. The PVA-CNF hydrogel can withstand 200 g of weight without breaking
(equivalent to 333 times its weight). The PVA-CNF hydrogel can be stretched to twice its
distance without breaking, and can still be stretched twice its length without breaking in
the case of knotting and twisting, which reflects the excellent mechanical properties of the
PVA-CNF hydrogel.
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2.4. Ionic Conductivity

The ionic conductive hydrogel acts as a conductor in the circuit and is connected to a 3 V
power supply (Figure 6a). The LED light can be lightened when the hydrogel is stretched,
bent, twisted, and knotted (Figure 6b–f). The brightness of the LED light decreased as the
strain increased, indicating that the resistance of the hydrogel increased with the stretching.
As shown in Figure 6g, the digital bridge was used to analyze the resistance and the relative
resistance change for the conductive hydrogel under various tensile strains. The results
show that the resistance of the hydrogel increased gradually with the increase in strain. The
main reason is that with the increase in tensile strain, the distance between the conductive
segments inside the hydrogel network becomes longer due to the interference of external
forces [23]. At the same time, the transmission of ions in the hydrogel pore structure is
blocked, which leads to an increase in the resistance of the hydrogel.
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Figure 6. (a–f) Brightness change of LED lamp after hydrogel deformation. (g) Resistance change
with the increase in tensile strain.

The ionic conductive hydrogel was stretched to 1.5 times its length and then restored
to its original length. The cycle test was performed 10 times, and the change rate of the
relative resistance of the hydrogel was recorded by an LCR digital bridge. The results are
shown in Figure 7. In this process, the relative resistance changes repeatedly in a stable
range and the relative resistance has no significant loss. When the hydrogel recovers the
original length, the relative resistance also recovers the initial value, which indicates its
potential application in strain sensors.

A self-powered strain sensor device based on a hydrogel battery was fabricated using
a digital multimeter. The schematic diagram is shown in Figure 8a. The hydrogel, zinc
foil, and copper foil were assembled into a primary battery structure using zinc foil as the
negative electrode and copper foil as the positive electrode. Electrons flow continuously
from the negative electrode to the positive electrode through a wire to form a potential
difference. The self-powered device converts chemical energy into electrical energy. The
test found that the generated voltage was about 0.830 V (Figure 8b). This self-powered
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sensor frees itself from the limitations of external power sources and expands the hydrogel’s
potential application in wearable sensors.
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As shown in Figure 9, the resistance value of PVA-CNF hydrogels with different Al3+

ion concentrations changes under the test of a digital bridge. From the diagram, it can be
seen that with the continuous increase in Al3+ concentration, the resistance value shows
a downward trend, indicating that with the continuous increase in Al3+ concentration,
the conductivity of the hydrogel is continuously improved. This is due to the continuous
increase in Al3+ concentration, which will increase the efficiency of ion passage in the
hydrogel, resulting in a decrease in the resistance of the hydrogel.
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2.5. Sensing Performance

Figure 10 shows that the hydrogel could detect small finger movements with different
angles. The resistance of the hydrogel changed with different bending angles. The relative
resistance signal correspondingly increased with increasing angles of bending from 30◦ to 90◦

and instantly returned to the initial resistance when the finger returned to the initial degree.
Interestingly, the resistance value of the hydrogel remained constant while holding the same
bending angle of the forefinger. This indicates that this hydrogel-based sensor has high
sensitivity. As the hydrogel elongates, the ion channels and electron channels are elongated,
increasing the relative resistance change of the hydrogel. The results show that this hydrogel-
based strain sensor has a certain potential application in wearable electronic devices.
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The cut hydrogel sample is connected by VHB tape to assemble a capacitor and connected
to the instrument. The relative capacitance of the capacitor composed of the hydrogel is tested
during the process of applying pressure to releasing pressure. As shown in Figure 11, it can
be found that the relative capacitance shows a stable change in a range, indicating that the
hydrogel has good pressure sensitivity, and at the same time, the change in pressure will also
produce a corresponding relative capacitance change. The sensitivity of pressure reflected by
the hydrogel can sensitively reflect the change in the pressure when worn on the human body,
which provides feasibility for the application of the hydrogel to human intelligent wearables.
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2.6. Anti-Freezing and Moisture Performance

Improving the low-temperature tolerance of hydrogel sensors is necessary for the use
of flexible sensors using hydrogels as substrates at low temperatures [24]. The electrical
conductivity of the hydrogels at low temperatures was also investigated. The more conduc-
tive the hydrogel is the less resistive it is. As shown in Figure 12, the PVA-CNF hydrogels
were used to light an LED light in a circuit using a 3 V power source, which indicated
its conductivity. The LED light brightness was decreased with increasing resistance. By
analyzing the brightness of the LED lamp of the control hydrogel, it can be seen that the
LED light intensity of these hydrogels was dim after freezing and the LED light brightness
of the hydrogel without DMSO became dimmer. The above experimental results indicate
that the conductivity of the hydrogel without DMSO is greatly affected. However, the
conductivity of the hydrogel with DMSO was not much affected. Hydrogel with DMSO
showed less deformation after freezing, and its toughness was better than the hydrogel
without DMSO, indicating that the addition of DMSO can improve the freezing resistance of
hydrogels. The reason why the hydrogel with DMSO shows a certain freezing resistance is
mainly due to the strong hydrogen bonding force between the sulfinyl group in DMSO and
water molecules, which makes the formation of ice crystals more difficult, and then makes
the double network cross-linking between PVA and water molecules more solid, making
the PVA-CNF composite hydrogel not easy to freeze and lose electrical properties [21].
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The water content inside the hydrogel will be lost during long-term use, which seri-
ously affects the structure and properties of the hydrogel. Therefore, moisture performance
is also an important factor in hydrogel strain sensors. Figure 13 shows the changes in the
quality and morphology of the two hydrogels after drying in the oven for 6 h. It can be seen
that the weight loss of the two gels is large because there is a large amount of free water on
the surface of the initial hydrogel, which is easy to evaporate and causes mass loss. After
6 h, the weight loss of the hydrogel without DMSO was 70%, while that of the hydrogel
with DSMO remained stable after 45% weight loss. This is due to the strong intermolecular
force between the substances in the hydrogel and the water molecules, which inhibits the
evaporation of water to a certain extent so that the hydrogel has better water retention
performance. The addition of DMSO can inhibit the formation of ice crystals, further
strengthen the hydrogen bonding force inside the hydrogel system, and slow down the
speed of water loss to a certain extent [21].
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2.7. Touch Properties of Hydrogels

The PVA/CNF hydrogel and non-conductive thin rod can be assembled into an
electronic pen, which can unlock the desktop (Figure 14a) and draw graphics on the screen
(Figure 14b–d). The ionic conductive hydrogel can be used as an electronic pen because
the free ions between the ionic conductive hydrogel and the touch screen can form a
coupling capacitance, reflecting the potential application of the hydrogel in the field of
human–computer interaction.
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3. Experimental Section
3.1. Materials

Polyvinyl alcohol-1750 (PVA) was purchased from Sinopharm Chemical Reagent Co.,
Ltd., Huangpu, Shanghai, China. Pulp Cellulose Nanofiber (CNF) was purchased from
Guilin Qi Hong Technology Co., Ltd., Guilin, Guangxi, China. Aluminum chloride hex-
ahydrate (AlCl3·6H2O), dimethyl sulfoxide (DMSO), and carbon nanotubes were supplied
by Shanghai Titan Scientific Co., Ltd., Xuhui, Shanghai, China. All the reagents were used
directly without further purification.

3.2. Preparation of the PVA-CNF Hydrogels

The conductive hydrogels were constructed as follows. Firstly, 20 g of a certain
concentration of cellulose nanofiber (CNF) suspension was prepared, then 20 g of DMSO
solvent was added to the CNF suspension, and the mixed solution was stirred on a magnetic
stirrer for 30 min to make it fully mixed. An amount of 3.6 g of polyvinyl alcohol (PVA)
particles and 1.2 g of AlCl3·6H2O and carbon nanotube (0.18 g) particles were added to
the above mixture and continued to be stirred uniformly with a magnetic stirrer. Then, the
mixture was continuously and vigorously stirred at 120 ◦C until the PVA was completely
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dissolved. Finally, the PVA/CNF mixture was settled in an oil bath without stirring to
remove bubbles, and then transferred to a PTFE mold and followed by freezing in the
refrigerator at 20 ◦C for 12 h. The freezing–thawing process was repeated for three cycles
to further enhance the mechanical properties of the hydrogel. The hydrogels with CNF
concentrations of 0 wt%, 1 wt%, 1.5 wt%,2 wt%, 2.5 wt% were denoted as PVA-CNF-0,
PVA-CNF-1, PVA-CNF-1.5, PVA-CNF-2, and PVA-CNF-2.5 hydrogels. The thickness of the
hydrogel was controlled by weighing the same mass of solution.

The PVA-CNF hydrogels with different Al3+ concentrations were prepared by chang-
ing AlCl3 concentration to 0.05 mol (0.24 g/20 mL), 0.075 mol (0.36 g/20 mL), 0.1 mol
(0.48 g/20 mL), and 0.125 mol (0.6 g/20 mL). These hydrogels were denoted as PVA-
CNF-AlCl3-0.05, PVA-CNF-AlCl3-0.075, PVA-CNF-AlCl3-0.1, and PVA-CNF-AlCl3-0.125
hydrogels. The compositions of the PVA-CNF hydrogels are listed in Table 1.

Table 1. Compositions of the hydrogels.

Sample PVA CNF AlCl3·6 H2O DMSO CNT

PVA-CNF-0 3.6 g 20 g (0.0 wt% CNF) 1.2 g 20 g 0.18 g
PVA-CNF-1 3.6 g 20 g (0.1 wt% CNF) 1.2 g 20 g 0.18 g

PVA-CNF-1.5 3.6 g 20 g (0.15 wt% CNF) 1.2 g 20 g 0.18 g
PVA-CNF-2 3.6 g 20 g (0.2 wt% CNF) 1.2 g 20 g 0.18 g

PVA-CNF-2.5 3.6 g 20 g (0.25 wt% CNF) 1.2 g 20 g 0.18 g
PVA-CNF-AlCl3-0.05 3.6 g 20 g (0.2 wt% CNF) 0.24 g 20 g 0.18 g

PVA-CNF-AlCl3-0.075 3.6 g 20 g (0.2 wt% CNF) 0.36 g 20 g 0.18 g
PVA-CNF-AlCl3-0.1 3.6 g 20 g (0.2 wt% CNF) 0.48 g 20 g 0.18 g

PVA-CNF-AlCl3-0.125 3.6 g 20 g (0.2 wt% CNF) 0.6 g 20 g 0.18 g
PVA-CNF 3.6 g 20 g (0.2 wt% CNF) 0.6 g 20 g(H2O) 0.18 g

3.3. Scanning Electron Microscope

The PVA-CNF hydrogel sample was processed by freeze-drying to obtain a dehydrated
hydrogel. The surface morphology of the PVA-CNF ionic conductive hydrogels was
observed by using a JEM-2200FS scanning electron microscope. The hydrogel samples were
dried before testing and sprayed with gold to study the pore structure of the hydrogels.

3.4. Fourier Transform Infrared Spectroscopy

The nanocellulose-reinforced ionic conductive hydrogel samples were dehydrated
by freeze-drying, and then the chemical structure of the dehydrated hydrogel samples
was tested by CX-9600 Fourier Infrared Spectroscopy (FTIR, Wuxi Chuangxiang Analytical
Instrument Co., Ltd., Jiangsu China). The samples were analyzed by spectral analysis
according to the standard. The wave number range was 300–800 nm, the scanning speed
was 500 nm/min, and the interval was 20 nm.

3.5. Mechanical Properties

The above-prepared nanocellulose reinforced ionic conductive hydrogel samples of
different specifications were cut respectively to make 400 mm × 80 mm × 2 mm sample
strips, and then the mechanical properties of the sample strips were tested by a universal
material testing machine. The loading speed of the testing machine was 20 mm/min.

3.6. Ionic Conductive Property

The voltage of the hydrogel self-powered strain sensor was recorded by a digital
multimeter, and the impedance value data of the hydrogel were obtained by a digital
bridge tester (LCR TH2822A).

The ionic conductive hydrogel sample (40 × 10 × 2 mm) was quantitatively stretched
and tested by a universal material testing machine. The relative resistance change of the
hydrogel under tensile strain was tested by an LCR digital bridge tester (LCR TH2822A).
The relative change in resistance (∆R/R0, where ∆R = R − R0) was calculated.
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3.7. Anti-Freezing Test

The 1 wt% DMSO-free PVA-CNF hydrogel was made and cut into a sample of
40 mm × 100 mm × 5 mm. At the same time, the prepared hydrogel sample was cut
out to make a sample of 40 mm × 100 mm × 5 mm. It was frozen for 24 h in a refrigerator
below −20 ◦C and then taken out for testing.

3.8. Moisture Retention Property Measurements

All samples were cut into a shape of 20 mm × 4 mm × 1 mm, and the hydrogel
samples were placed in an oven at 50 ◦C for 6 h. The weight of the hydrogel Wt was
measured every 1 h, and the initial mass was W0.

The calculation formula for the water retention rate is as follows:

Water retention rate = Wt/W0 × 100%

3.9. Sensor Characterization and Test

The above-prepared nanocellulose-reinforced ionic conductive hydrogel samples were
cut to make a 40 mm × 100 mm × 5 mm sample strip. The sample strip was tied to the
index finger with tape and the angle of the finger was bent (0◦ to 90◦). The resistance of the
hydrogel under different strains was recorded by an LCR digital bridge tester. The relative
resistance change formula is (R − R0)/R0 × 100%, where R is the dynamic resistance under
different strains, and R0 is the initial state resistance without strain.

4. Conclusions

In summary, ionic conductive hydrogels were prepared by a one-pot method using
CNF, PVA, CNT, DMSO, and AlCl3. The surface of PVA/CNF hydrogels has a three-
dimensional porous network structure, and the pore size is between several hundred
nanometers and one micron. At the same time, the gel has good tensile properties and
can withstand 333 times its weight without breaking. With the increase in CNF content,
the tensile strength and elongation at the break of the hydrogel increased. When the
content of CNF was added to 2%, the tensile strength and elongation at the break of the
hydrogel were 0.335 MPa and 206%, respectively. With the continuous increase in CNF
content, the tensile strength and elongation at break began to decrease. The hydrogel has a
certain conductivity under stretching, twisting, and bending, and the CNF hydrogel can be
assembled as an electrolyte into a self-powered battery with a battery voltage of 0.830 V.
The simple sensor made of nanocellulose-reinforced ionic conductive hydrogel has a stable
response to strain stress. The hydrogel can also be easily assembled into an electronic pen,
and the assembled electronic pen has good touch performance. Based on these results, we
believe that the developed hydrogel has good potential for high-performance wearable
devices in low-temperature environments.
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