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Abstract: Nowadays, the click reaction of azides with alkynes has evolved rapidly and become
one of the most efficient methods to synthesize 1,2,3-triazoles, which are an important class of N-
containing heterocycles. While the 1,4-selective click reaction of azides with alkynes is well established
to synthesize 1,4-substituted 1,2,3-triazoles, the corresponding 1,5-selective click reaction for the
generation of 1,5-substituted-1,2,3-triazoles is much less explored, and there is no systematic review
for the 1,5-selective click reaction. This timely review summarizes the discovery and development of
1,5-selective click reactions of azides with alkynes for the synthesis of 1,5-substituted 1,2,3-triazoles.
The 1,5-selective click reactions will be divided into three types according to the critical reactive
intermediates: metallacyclic intermediates, acetylide intermediate, and formal 1,5-selective azide-
alkyne cycloaddition. The related mechanistic studies will also be involved in this review.
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1. Introduction

Click reactions are a class of atom-economical synthetic methods discovered by a
group of chemists represented by K. Barry Sharpless [1]. Since the concept was presented,
click reactions have received a lot of attention and have played an important role in various
fields. Click reactions are an excellent category of biocompatible reactions with high
chemoselectivity, allowing only specific groups of substrates to be attached to biomolecules,
and therefore they are commonly used in chemical biology splicing reactions. In 2022,
Sharpless, Bertozzi, and Meldal won the Nobel Prize in chemistry for click reaction and
bioorthogonal chemistry [2].

Nowadays, click reactions have evolved rapidly and extended to various types instead
of being limited to a single specific reaction. Click reactions have also become an important
tool for the synthesis of 1,2,3-triazoles with high selectivity. The 1,2,3-triazoles are an im-
portant class of N-containing heterocycles with diverse industrial applications as corrosion
inhibitors, agrochemicals, dyes, photo stabilizers, and optical brighteners [3–7]. Due to their
structural properties and electronic effects, they have received a lot of attention [8,9]. The
Huisgen [3 + 2] cycloaddition of azides with alkynes is the most straightforward method
for the synthesis of 1,2,3-triazoles. However, the reaction generally results in a mixture of
1,4-substituted and 1,5-substituted products (Scheme 1) [10,11]. The enormous synthetic
potential of [3 + 2] cycloaddition reactions is limited by the obvious disadvantages, includ-
ing heating requirements, prolonged reaction times, and low selectivity resulting in the
formation of different isomers.

One of the most classical click reactions to form 1,2,3-triazoles is the Cu(I)-catalyzed
azide-alkyne cycloaddition reaction. It can be well resolved for the highly regioselective
synthesis of 1,4-disubstituted 1,2,3-triazoles with excellent yields. The use of click chemistry
allows two molecular building blocks to react selectively under mild reaction conditions,
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forming the desired products with few or no by-products. The highly selective generation
of 1,4-substituted 1,2,3-triazoles has been the focus of the studies on azide-alkyne cycloaddi-
tion reactions [12–14]. In contrast, studies on the generation of 1,5-substituted 1,2,3-triazole
reactions are relatively rare.
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Scheme 1. The 1,4- or 1,5-selective cycloaddition of azides with alkynes.

Fokin and Jia et al. discovered the synthesis of 1,5-disubstituted 1,2,3-triazoles by
using ruthenium complexes to catalyze the annulation of organic azides with terminal
alkynes in 2005 [15]. The full regioselective [3 + 2] cycloaddition between azides and
acetylenes is possible when acetylene is activated by a strong EWG group [16]. Afterward,
the syntheses of 1,5-disubstituted 1,2,3-triazoles were accomplished through many different
metal-mediated or metal-free catalytic click reactions [17–19]. Several reviews have summa-
rized metal-catalyzed or metal-free azide-alkyne 1,4-click reactions and the application of
1,2,3-triazoles [19–24]. Some 1,5-click reactions were sporadically incorporated into these
related reviews of 1,4-click reactions. To the best of our knowledge, there is no systematic
review to introduce the 1,5-selective click reaction of azides with alkynes. In this review, all
the methods reported for the direct synthesis of 1,5-substituted 1,2,3-triazole compounds
from azides and alkynes are described. Through this process, we have subdivided the
contents into several sections according to the reaction mechanism (Scheme 2) and outlined
the role of catalysts. This review aims to give a comprehensive and systematic summary of
the highly selective generation of 1,5-substituted 1,2,3-triazoles.

Scheme 2. The critical intermediates in 1,5-selective cycloaddition for the synthesis of 1,5-substituted
1,2,3-triazoles. (a) Cycloaddition via metallacyclic or acetylide intermediates (b) Formal cycloaddition
via metallacyclic or acetylide intermediates.
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2. 1,5-Selective Click Reaction of Azide with Alkyne via Metallacyclic Intermediates
2.1. Ruthenium-Catalyzed 1,5-Selective Click Reaction of Azide with Alkyne
2.1.1. Various Reaction Conditions of Ruthenium-Catalyzed 1,5-Selective Click Reaction of
Azide with Alkyne

In 2005, Fokin and Jia et al. first reported the synthesis of 1,5-substituted 1,2,3-triazoles
via the cycloaddition reactions of azides and alkynes catalyzed by Ru-based catalysts
(Scheme 3) [15]. The results show that the regioselectivity of the reactions highly de-
pends on the ligands in the Ru catalysts. It turns out that the Ru catalysts with Cp*
(Cp* = C5Me5) and Cl give better regioselectivity than those with Cp and Cl. Both aro-
matic and aliphatic alkynes can react with benzyl azides to give the corresponding 1,5-
disubstituted 1,2,3-triazoles.
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Two years later, Cintrat et al. reported that the Cp*RuCl(PPh3)2 catalyzed cycloaddi-
tion of N-benzyl N-tosyl ynamide with azides could provide 1,5-disubstituted 1,2,3-triazoles
in good yields [25]. The reaction can be carried out under mild conditions to produce 1,2,3-
triazoles with exclusive 1,5-regioselectivity (Scheme 4).
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In 2009, Hawker et al. reported the synthesis of 1,5-substituted 1,2,3-triazoles using the
same Cp*RuCl(PPh3)2 catalyst through the cycloaddition reaction of different azides with
but-3-yn-1-yl methanesulfonate (Scheme 5). Subsequently, 1,5-substituted 1,2,3-triazoles
can be converted into 1-substituted-5-vinyl-1,2,3-triazoles by the elimination of methane-
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sulfonic acid in the presence of sodium iodide and 1,8-diazabicyclo [5.4.0] undec-7-ene
(DBU). The 1-Substituted-5-vinyl 1,2,3-triazoles can act as monomers for living free radical
polymerization, which has the potential for imparting tunable properties in polymeric
materials [26].
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Scheme 5. Ru-catalyzed 1,5-selective cycloaddition of azides with but-3-yn-1-yl methanesulfonate.

The 1,2,3-triazoles possess good properties for medicinal chemistry. Wuest et al.
synthesized a series of (aryl-1,2,3-triazole-1-yl)-methanesulfonylphenyl derivatives by
Cp*RuCl(PPh3)2-catalyzed cycloaddition of 1-azido-4-methane-sulfonylbenzene and para-
substituted phenyl acetylenes (Scheme 6) [27]. This kind of 1,2,3-triazole can be used as
in vitro cyclooxygenase (COX) inhibitors.
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Scheme 6. Ru-catalyzed 1,5-selective cycloaddition of 4-MeO2S-substituted aromatic azide with
various phenyl acetylenes.

In addition to homogeneous Cp*RuCl(PPh3)2 catalyzed 1,5-selective cycloaddition
of azides with alkynes, the corresponding heterogeneous 1,5-selective cycloaddition was
also investigated. In 2013, Astruc et al. designed and synthesized Si(OMe)3-functionalized
triarylphosphine and immobilized Si(OMe)3-functionalized triarylphosphine coordinated
Ru(II) complexes into oxide magnetic nanoparticles. They found that the immobilized
heterogeneous Ru(II) catalyst 1 can efficiently realize the 1,5-selective cycloaddition of
benzyl azide with phenyl acetylene (Scheme 7) [28]. Catalyst 1 can be recovered by simply
applying an external magnetic field using a magnetic carrier. It can be recycled at least
five times with only a slight decrease in catalytic activity and selectivity, making it the first
recyclable catalyst for the Ru-catalyzed 1,5-selective cycloaddition.
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acetylene.

Organic azides with low molecular weight are considered to be highly energetic and
pose an explosive risk. To avoid handling the dangerous alkyl azides, Kann et al. reported
a one-pot method of alkynes with alkyl azides generated in situ from primary alkyl halides
and sodium azide (Scheme 8) [29]. Under microwave irradiation, the Cp*RuCl(PPh3)2-
catalyzed 1,5-selective cycloaddition can work smoothly.
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and terminal alkynes.

Interestingly, Fokin et al. found that the catalytic activity of ruthenium(II) tetramer
[Cp*RuCl]4 for 1,5-selective cycloaddition was superior to that of Cp*RuCl(PPh3)2 [30].
The cycloaddition reaction of most aryl azides with different substituents results in the
formation of corresponding 1,5-disubstituted 1,2,3-triazoles in good yields (Scheme 9). The
electron-rich and moderately electron-deficient aryl azides appear to be relatively favorable
for the reaction. A shorter reaction time is required when the reaction is carried out under
microwave irradiation than under normal conditions.
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Scheme 9. [Cp*RuCl]4-catalyzed 1,5-selective cycloaddition of azides with terminal alkynes.

A series of ruthenium(II) complexes, such as [Cp*RuCl]4 and [Cp*RuCl(PPh3)2], had been
reported as catalysts in azide-alkyne 1,5-selective cycloadditions. Due to synthetic availability
and stability, the [Cp*RuCl(COD)] catalyst was further studied. The 1,5-cyclooctadiene (COD)
ligand is more labile than other ligands, and the catalyst [Cp*RuCl(COD)] can work smoothly
at room temperature [31]. Organic azides react with terminal alkynes containing various
functionalities to give selectively 1,5-disubstituted 1,2,3-triazole products in the presence of a
[Cp*RuCl(COD)] catalyst (Scheme 10).
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Tamas et al. reported the synthesis of 1,5-disubstituted 1,2,3-triazole amino acids by
[Cp*RuCl2]x-catalyzed 1,5-selective cycloaddition of methyl 2-azidoacetate and N-Boc-
propargylamine (Scheme 11a) [32]. Recently, the [Cp*RuCl(COD)]-catalyzed 1,5-selective
cycloaddition of the chiral N-Boc-propargylamine with azide has been reported to produce
the chiral 1,5-disubstituted 1,2,3-triazole amino acid (Scheme 11b) efficiently [33]. These
1,5-disubstituted 1,2,3-triazole scaffolds can be utilized to synthesize peptidic foldamers.

In addition to the above-mentioned “CpRu” catalytic systems, non-Cp Ru complexes
were also investigated. A series of ruthenium azide complexes containing Tp ligands
were prepared. Lo et al. found the complex Tp(PPh3)(EtNH2)RuN3 (2, Tp = HB(pz)3,
pz = pyrazolyl) is an effective catalyst for the 1,5-selective cycloaddition of benzyl azide
with terminal alkynes (Scheme 12) [34]. The synthesis of 1,5-disubstituted 1,2,3-triazoles
catalyzed by 2 can tolerate a number of functional groups, and the reactions can undergo
in either organic or aqueous media.
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2.1.2. Mechanism of Ruthenium-Catalyzed 1,5-Selective Click Reaction of Azide with
Alkyne

The reaction mechanism of ruthenium-catalyzed 1,5-selective cycloaddition of azides
with alkynes was summarized (Scheme 13). Firstly, the spectator ligands in 3 are replaced
by azides and terminal alkynes to form the activated complex 4. This is followed by the
oxidative coupling to produce the ruthenacycle 5. Then 5 undergoes reductive elimination
to give the intermediate 6. Finally, the dissociation of the 1,5-substituted 1,2,3 triazole
and the coordination of spectator ligands in the Ru center of 6 can provide the starting
3 and complete the catalytic cycle. In 2008, Fokin and Jia et al. used DFT calculations
to investigate the catalytic mechanism [31]. Computational studies indicated that the
[Cp*RuCl]-catalyzed reactions of azides with alkynes involve an irreversible oxidative
coupling for the nucleophilic attack of ligand alkyl groups on the terminal electrophilic
nitrogen of ligand azides. The oxidative coupling step is the regioselectivity-determining
step of the whole process with an energy barrier of 4.3 kcal/mol. The rate-determining
step is the reductive elimination via the transition state TS5-6 with an energy barrier of
13.4 kcal/mol.

In 2012, Nolan et al. described detailed DFT studies which were in agreement with
the experimental results and suggested that acetylene binding precedes azide coordination
(Scheme 14) [35]. They identified previously unidentified intermediates 12 in which the
formed triazole is bound to the Ru metal center in a C-Ru-C metal cyclopropane manner.
Complex 12 eventually isomerizes to an N-bound triazole Ru species 13. Cp*Ru(PiPr3)Cl
exhibits better performance than 18-electron ruthenium catalysts, allowing the production
of 1,5-disubstituted 1,2,3-triazoles under mild conditions.
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2.2. Nickel-Catalyzed 1,5-Selective Click Reaction of Azide with Alkyne

The azide-alkyne cycloadditions catalyzed by [Cp*RuCl]-based catalysts usually need
to be carried out at elevated temperatures and are sensitive to water and air. Therefore, it
remains a challenge to find catalysts that are compatible with water under mild conditions.

A strategy to obtain 1,5-disubstituted 1,2,3-triazoles from available substrates and
inexpensive reagents via nickel catalysis in water and organic solvents at room temper-
ature was reported by Sung et al. (Scheme 15) [36]. This nickel-catalyzed azide-alkyne
cycloaddition is highly compatible with water as the only solvent and can be carried out in
air at room temperature. All the substrate ranges of azides, including fluorinated aromatics
and fused cyclic groups, are compatible with the reaction conditions. Both the hydroxyl
and ester functional groups remain intact, and for the substrate range of alkynes, aliphatic
and aromatic alkynes with different functional groups, including methoxy, amine, nitro,
chlorine, and methyl, are well tolerated.
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Scheme 15. Ni-catalyzed 1,5-selective cycloaddition of azides and alkynes.

They concluded the reaction involves the process of Cp2Ni→CpNi(Xantphos)→
Ni(Xantphos)2 and CpNi(Xantphos)→CpNi(Xantphos)+. Initially, both alkynes and azides
are coordinated to the Ni center to form intermediate 16. The C-N bond formed in complex
17 between the alkyne and azide determines 1,5 regioselectivity. Subsequent reductive
elimination leads to the formation of the target cyclization product and regenerates NiLn
species (Scheme 16). In 2020, the cycloaddition reactions of azides and asymmetric alkynes
were completed under nickel catalysis [37]. DFT calculations indicate that the cyclization
step via TS17 is the rate-determining step with an energy barrier of 25.5 kcal/mol.
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3. 1,5-Selective Click Reaction of Azide with Alkyne via Acetylide Intermediates
3.1. Transition-Metal-Free 1,5-Selective Click Reaction of Azide with Alkyne

In order to control the regioselectivity of the [3 + 2] cycloaddition reaction of azides
with terminal alkynes containing highly acidic C-H, a common idea is to form the corre-
sponding alkynyl carbanions, which then selectively undergo nucleophilic attack toward
the electrophilic end of the azides. The pioneer studies started in 1967 by Akimova et al.,
who used equivalent amounts of lithium reagents or magnesium acetylene reagents to
react with terminal alkynes [38]. The reaction had limitations in terms of functional group
compatibility and atomic economy. After the results had been dormant for 30 years, Sharp-
less et al. optimized the process to give a good yield and elaborated the mechanism of
this reaction and by-product generation (Scheme 17) [39]. The mechanism begins with the
nucleophilic attack of acetylide 18 on the terminal nitrogen atom of the azide to provide
intermediate 19. Then the cyclization process in 19 occurs to generate intermediate 20. The
1,5-disubstituted 1,2,3-triazoles can be obtained by hydrolysis. Sharpless et al. concluded
that, after the formation of cyclic intermediate 20, it could be captured with electrophilic
reagents to obtain the substituted 1,2,3-triazoles.

As shown in Scheme 18, the regioselective synthesis of 1-aryl-5-methyl-1,2,3-triazoles
can be achieved through N/C-heterocyclization of allenylindium bromide across aryl
azides [40]. The reaction can take place in an aqueous medium, and the synthesis of
1,5-disubstituted 1,2,3-triazoles can be carried out under mild reaction conditions with
moderate to good yields and very high regioselectivity. However, the alkyne is limited to
propargyl bromide, and only methyl-substituted 1,2,3-triazoles can be obtained.

In 2010, Fokin et al. developed a base-catalyzed cycloaddition that was insensi-
tive to both oxygen and water and did not require the involvement of metal reagents
(Scheme 19) [41]. These bases, including anhydrous sodium, potassium, cesium hydrox-
ides, aqueous tetramethylammonium, and benzyl-trimethylammonium hydroxides, can
catalyze the formation of 1,5-diaryl-substituted 1H-1,2,3-triazoles. The catalytic amounts
of tetramethylammonium hydroxide were used in the deprotonation of aryl acetylene to
initiate the cyclic reaction. Nevertheless, the substrates for this condition are restricted to
aryl alkynes, and the conversion efficiency is not very good for alkyl-substituted alkynes.
The proposed mechanism shows that the reversible deprotonation of the terminal alkyne
by the base produces an aryl acetylate, which then undergoes cyclization. The catalytic
cycle is completed by the protonation affording the final product.
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3.2. Zinc-Mediated 1,5-Selective Click Reaction of Azide with Alkyne

In 2013, Greaney et al. reported the regioselective synthesis of 1,5-substituted 1,2,3-
triazoles through zinc-mediated cycloaddition at room temperature (Scheme 20) [42]. The
range of alkynyl substrates includes alkyl and aryl terminal alkynes. A number of azides
with different functional groups, including esters, amides, ketones, nitriles, nitros, aryl
iodides, heterocycles, and ortho-ligands, can tolerate the zinc-mediated conditions. In
addition, diacetylene is also suitable.

DFT calculations have been used to clarify the regioselectivity of zinc-mediated [3
+ 2] cycloaddition of azides with alkynes [43]. Computational results indicate that the
catalytic cycle starts with the initial metalation of the alkyne. The regioselectivity of the
cycloaddition is controlled by the nucleophilicity of the terminal alkyne. The acetylide
fragment is coordinated with the Zn metal center and undergoes a cyclization reaction with
an energy barrier of 22.1 kcal/mol via TS23-24 (Scheme 21).
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3.3. Rare-Earth Metal Catalyzed 1,5-Selective Click Reaction of Azide with Alkyne

In 2008, Cui et al. reported the rare-earth metal-catalyzed cycloaddition of azides and
alkynes to afford 1,5-disubstituted 1,2,3-triazoles within 72 h at 60 ◦C (Scheme 22) [44].
Different aromatic alkynes can be applied for the efficient synthesis of 1,5-disubstituted
1,2,3-triazoles. However, only small amounts of cycloaddition products can be obtained
when aliphatic alkynes are utilized. The regioselectivity and conversion rate are also
influenced by the nature of azides.
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Scheme 22. Rare-earth metal catalyzed 1,5-selective cycloaddition of azides with alkynes.

Then Zhou et al. reported the rare-earth metal-catalyzed cycloaddition of terminal
alkynes with azides to provide a series of 1,5-disubstituted 1,2,3-triazoles with good to
excellent yields (Scheme 23) [45]. Catalysts containing different rare-earth metals, including
Sm, Nd, Y, and Gd, have been tested, and the Sm catalyst is the best choice.
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Scheme 23. Sm[N(SiMe3)2]3-catalyzed 1,5-selective cycloaddition of azides with terminal alkynes.

The proposed mechanism (Scheme 24) is different from the mechanism of Ru-catalyzed
1,5-selective cycloaddition. Initially, the C-H bond of the terminal alkyne can be activated to
produce Ln acetylide 26. Coordination and subsequent 1,1-insertion of azide into the Ln–C
bond of 27 generate intermediates 28 or 29. The intramolecular nucleophilic cyclization will
form triazolate complex 30. Intermediate 30 undergoes protonation with terminal alkyne
to generate the 1,5-disubstituded 1,2,3-triazloes, completing the catalytic cycle. Since the
amine nBuNH2 can act as both a proton source and ligand activation catalyst, the reaction
proceeding through path b cannot be excluded.
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Scheme 24. The mechanism of Sm[N(SiMe3)2]3-catalyzed 1,5-selective cycloaddition of azides with
alkynes.

Li et al. performed DFT calculations to investigate the mechanism of the path, namely
the samarium-catalyzed 1,5-regioselective azido-alkyne [3 + 2]-cycloaddition [46]. The
rate-determining step is the insertion of azide into the samarium phenylacetylide. The
calculations also infer that the addition of the samarium catalyst changes the distribution
of the electrostatic potential on the surface of the alkyne, determining the direction of
polarization and the formation of different intermediates, which ultimately control the
regioselectivity.

4. Formal 1,5-Selective Click Reaction of Azide with Alkyne
4.1. In Situ Generation of Terminal Acetylene

A base-mediated reaction of α- or β-vinyl bromides with azides for the synthesis of 1,5-
disubstituted 1,2,3-triazoles was investigated (Scheme 25) [47]. Strong bases are necessary
for the elimination of vinyl halides and the formation of alkynyl anions. Meanwhile, the
reaction of aryl vinyl bromides and aryl azides tends to give high yields.
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Scheme 25. Base-mediated synthesis of 1,5-disubstituted 1,2,3-triazole from azides and vinyl bro-
mides and proposed mechanism.

In 2019, Qin et al. found that in the presence of tBuOK, alcohols can react with azides to
synthesize 1,5-disubstituted 1,2,3-triazole products in excellent yields at room temperature
(Scheme 26) [48]. The mechanism of the formation of alkyne from alcohol has been reported
by Qin et al. [49]. SO2F2 is used to activate DMSO for the oxidative conversion of alcohols
to alkenyl sulfurofluoridates under basic conditions. Then the formation of alkynes through
the elimination of HOSO2F in alkenyl sulfurofluoridates is promoted by the base. After
transforming the alcohol into the corresponding terminal alkyne, deprotonation can occur
in the presence of a strong base to generate acetylide, which reacts with the azide to afford
the corresponding 1,2,3-triazole in situ. The reaction does not require a metal catalyst and
shows good compatibility with a large number of functional groups.
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mechanism.

4.2. Formal 1,5-Selective Click Reaction via Cycloaddition/Elimination
4.2.1. Cycloaddition/Elimination of Sulfonyl Group

There are few reports on the use of olefins to generate 1,2,3-triazoles in the last 20 years.
The main problem is that the generation of triazolines from olefins requires additional steps
of elimination or oxidation to generate 1,2,3-triazoles. In 2011, Pathak et al. reported a metal-
free and vinyl sulfone-based synthesis of 1,5-disubstituted 1,2,3-triazoles (Scheme 27) [50].
This convenient and versatile process eliminates the need for an inert gas atmosphere
and the use of high boiling point solvents. The strategy provides a practical route for
the synthesis of 1,5-disubstituted 1,2,3-triazoles using a combination of aryl/alkyl vinyl
sulfones and aryl/alkyl azides. Due to the polarization of the vinyl sulfone double bond, the
azide attacks the partially positively charged position, resulting in a cyclic intermediate. The
sulfinic acid is eliminated, then the 1,5-disubstituted 1,2,3-triazole is selectively produced.
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Pathak et al. showed that vinyl sulfones reacted with azidopyranosides to produce
1,5-disubstituted 1,2,3-triazoles (Scheme 28) [51]. The reaction was carried out in water at
elevated temperatures without any metal catalyst to give 1,5-disubstituted triazolylated
monosaccharides in high yields.
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Scheme 28. Synthesis of 1,5-disubstituted 1,2,3-triazolylated monosaccharides from azidopyranosides
and vinyl sulfones.

In 2015, they reported that the [3 + 2] cycloaddition reaction of vinyl sulfone derivatives
with azides under reflux conditions without metal catalyst could provide 1,5-disubstituted
1,2,3-triazolylated monofuranosides and difuranosides (Scheme 29) [52]. A new possibility
for linking furanosides with a stable triazole backbone is offered by the synthesis of these
1,5-disubstituted triazolylated monosaccharides as well as 1,5-disubstituted 1,2,3-triazole-
linked disaccharides.
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Scheme 29. Synthesis of 1,5-disubstituted 1,2,3-triazolylated monofuranosides.

Furthermore, Pathak et al. developed the one-pot three-component cycloaddition of
vinyl sulfones and sodium azide with various third components, including alkyl bromides,
-tosylates, -mesylates or aryl amines, -iodides, to offer a wide variety of 1,5-disubstituted
1,2,3-triazoles (Scheme 30) [53].
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Scheme 30. One-pot three-component synthesis of 1,5-disubstituted 1,2,3-triazoles.

4.2.2. Cycloaddition/Elimination of HNO2/HOAc Group

In the presence of Ce(OTf)3, organic azides undergo [3 + 2] cycloaddition with ni-
troalkenes. Then the elimination of nitro groups leads to the formation of 1,5-disubstituted
1,2,3-triazoles via aromatization (Scheme 31) [54]. This reaction produces 1,5-disubstituted
1,2,3-triazoles in good to excellent yields with good compatibility for tertiary amines, hy-
droxyls, and halogens. The advantages of this procedure are the high availability of starting
materials, the convenience of the experimental procedure, and the low cost of the catalyst.
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Scheme 31. Synthesis of 1,5-disubstituted 1,2,3-triazoles from azides and nitroolefins and proposed
mechanism.

In 2018, Maiuolo et al. reported the preparation of 1,5-disubstituted 1,2,3-triazole
derivatives via FeCl3-mediated azide-olefin cycloaddition in ionic liquids (Scheme 32) [55].
DFT calculations indicate that the first step of the reaction is the coordination of FeCl3 with
the nitroolefin compound to form an activated intermediate 31. Intermediate 31 reacts with
the azide to produce the triazoline intermediate via the transition state TS31-32. The last
step eliminates HNO2 to give 1,5-disubstituted 1,2,3-triazoles.
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Scheme 32. Synthesis of 1,5-disubstituted 1,2,3-triazole by azide-olefin cycloaddition and proposed
mechanism.

Elangovan et al. described the synthesis of 1,2,3-triazoles through [3 + 2] cycloaddition
under solvent-free and catalyst-free conditions (Scheme 33) [56]. The triazolines formed
from the cycloaddition of azides and olefins are unstable. The aromatized 1,2,3-triazoles
are obtained by the elimination of HNO2 in the absence of a catalyst. The aromatic stability
of the product and the good leaving ability of the NO2 group are the main driving forces.
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Scheme 33. The eliminative azide-olefin cycloaddition and oxidative azide-olefin cycloaddition of
azides and nitro alkenes.

In 2021, Karthikeyan et al. reported a simple and efficient catalyst-free cycloaddition
for the preparation of 1,5-disubstituted 1,2,3-triazoles from azides and nitro alkenes in an
aqueous base (Scheme 34) [57]. This cycloaddition proceeds under ultrasound irradiation
with the scope of broad substrates, simple work-up, and high regioselectivity.
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The generation of 1,5-substituted 1,2,3-triazoles through eliminating NO2 groups is an
important method for the synthesis of sugar scaffolds. In 2016, Tiwari et al. presented a
cycloaddition for the synthesis of 1,5-disubstituted triazolyl glycoconjugates from different
glycosyl azides with nitro-olefins with phase transfer catalysts, e.g., p-toluenesulfonic acid
(PTSA), tetrabutylammonium bromide (TBAB) (Scheme 35) [58].
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In 2021, Swamy et al. reported the cycloaddition/cyclization reactions for the syn-
thesis of 1,5-disubstituted 1,2,3-triazoles under metal-free conditions using β-acetoxy al-
lenoates [59]. A plausible pathway for the formation of 1,2,3-triazoles is shown in Scheme 36.
The allyl/alkyl nitrogen atom first attacks the β-position of the allenoates to give the inter-
mediate 33. Next, 33 undergoes an intramolecular addition to give the cycloaddition adduct
34. Finally, acetic acid is eliminated from intermediate 34 to form the final product 35.
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4.2.3. Cycloaddition/Elimination of Protection Group

Generally, 1,5-selective cycloaddition has limited use in solid-phase synthesis and
drug discovery for the synthesis of 1,2,3-triazoles. In 2004, Hlasta et al. found that 1-
trimethylsilylacetylene can react with azides immobilized on REM resin in a [3+2] cycload-
dition to yield the corresponding 1,4,5-substituted 1,2,3-triazoles [60]. The TMS group can
be removed by contacting with 10 equiv of HF (50% aq) in THF for 4 h at room temperature
to produce the 1,5-substituted 1,2,3-triazoles (Scheme 37). A small library (2 × 2 × 4 × 3) of
1,5-substituted 1,2,3-triazoles with an average purified yield of 68% was established through
the cycloaddition of azides on REM resin with acetylene.
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In 2012, Lin et al. studied the synthesis of 1,5-disubstituted 1,2,3-triazoles through
direct desilylation of TMS-alkynes (Scheme 38) [61]. The use of tBuOK as a desilylating
reagent results in the regioselective formation of 1,5-disubstituted 1,2,3-triazoles. When a
trace of water is added, this cycloaddition has good yields at room temperature. In this
process, desilylation and subsequent cycloaddition are necessary.
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Scheme 38. Synthesis of 1,5-disubstituted 1,2,3-triazoles from azides and TMS-alkynes.

Another synthetic route to 1,5-disubstituted 1,2,3-triazoles with high efficiency and
regioselectivity was developed using a thermal dipolar cycloaddition reaction between
trimethylsilylacetylenes and azides (Scheme 39) [62]. The TMS-modified 1,2,3-triazoles can
be desilylated using potassium fluoride and catalytic amounts of tetrabutylammonium
fluoride (TBAF) in a methanol solution.
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Scheme 39. Synthesis of 1,5-disubstituted 1,2,3-triazoles by one pot cycloaddition/desilylation.

Highly functionalized N-perfluoroalkyl-1,2,3-triazoles were efficiently synthesized
from azidoperfluoroalkanes [63]. Enamine 37 generated in situ could easily participate
in the azidecarbonyl [3 + 2] cycloaddition reaction, providing a simple method for the
synthesis of triazole frameworks with good to excellent yields. The basic hydrolysis and
decarboxylation of the ethoxycarbonyl-substituted 1,2,3-triazoles can form 1,5-disubstituted
1,2,3-triazoles in high yields (Scheme 40). The proposed mechanism can be summarized
as follows. Azide and enamine 37 undergo cycloaddition to form triazoline intermediate
38. After the 1,3-hydrogen shift, 38 rearranges to give 40. One molecule of amine is then
eliminated to complete the catalytic cycle.
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Scheme 40. Synthesis of 1,5-disubstituted 1,2,3-triazoles via hydrolysis and decarboxylation and
proposed mechanism.

4.3. Formal 1,5-Selective Click Reaction of Azide with Alkyne via Wittig Reaction

In 2016, Carlos et al. developed a simple and efficient method for the 1,5-selective
cycloaddition of azides with β-ketophosphonates (Scheme 41) [64]. The scope and diversity
of this protocol include the effective synthesis of 1-alkyl-substituted, 1-aryl-substituted,
5-alkyl-substituted, and 5-aryl-substituted 1,2,3-triazoles. The phosphoryl-stabilized car-
banion 41 is able to couple with the azide in a highly regioselective manner to form the
corresponding oxaphosphetane. Washing with water makes it easy to separate the desired
products as well as a free phosphate by-product.

Obushak et al. found that the reaction of aryl azides with phosphorus ketoylides was
a convenient method for the synthesis of 1,5-disubstituted 1,2,3-triazoles (Scheme 42) [65].
The 1,5-disubstituted 1,2,3-triazoles could be obtained by eliminating phosphorus-containing
compounds in near quantitative yields.
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4.4. Other Formal 1,5-Selective Click Reaction of Azide with Alkyne

Kumar et al. presented the first evidence that Cu(II) can catalyze the synthesis of
1,5-disubstituted 1,2,3-triazoles via the coupling of benzoyl derivatives and substituted
styryl carboxylic acids (Scheme 43) [66]. The first step of the reaction is the regioselective
cyclization of azide with cinnamic acid to form the cationic intermediate 42. Intermediate 42
undergoes a decarboxylation reaction to produce copper triazolide 44, which subsequently
loses a proton to give a copper complex of 1,4,5-trisubstituted 1,2,3-triazoles. In acidic
media, the copper complex 45 readily undergoes proton decomposition to produce 1,5-
disubstituted 1,2,3-triazoles and the Cu(II) species to complete the catalytic cycle. They
believed that the Cu(II) species could be regenerated from the Cu(I) species with oxygen
under acidic conditions. However, in the proposed mechanism, the origin of Cu(I) at
the very beginning and how air was involved in the catalytic cycle as an oxidant is not
mentioned and is still unclear.
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Chattopadhyay et al. reported the synthesis of pyridyl-substituted 1,5-disubstituted
1,2,3-triazoles by Mn-porphyrin catalyzed cycloaddition of tetrazole with terminal alkynes
(Scheme 44) [67]. The method is compatible with a wide range of substrates for the reactions.
A possible mechanism was proposed. Mn-bound complex 46 coordinates with azide to
form intermediate 47. Intermediate 47 readily undergoes a cycloaddition reaction in the
presence of terminal alkyne to produce intermediate 48, which then releases the click
product and regenerates the active species 46. The source of the 1,5-selectivity generated in
this reaction is the effect of steric hindrance.

Scheme 44. Synthesis of pyridyl-substituted 1,5-disubstituted 1,2,3-triazoles by Mn-porphyrin cat-
alyzed cycloaddition of tetrazoles with terminal alkynes and proposed mechanism.

5. Conclusions

In this context, we briefly described the discovery and overviews of 1,5-selective click
chemistry for the synthesis of 1,5-disubstituted 1,2,3-triazoles via metallacyclic intermediate,
acetylide intermediate, or the elimination of substituents. There has been growing interest
in 1,5-disubstituted 1,2,3-triazoles, and chemists have attempted and developed a number
of processes that can effectively control the regioselectivity of the cycloaddition reaction by
utilizing metal catalysts or controlling the substituent steric hindrance and electronic effect.

The 1,5-selective [3 + 2] cycloaddition of azides with alkynes is still an area that has
not yet been fully developed. Many interesting problems are still waiting to be solved. The
involvement of organometallic reagents can, of course, be effective in the rapid generation
of anions, but there are problems, such as insufficient compatibility of functional groups or
harsh reaction conditions unsuitable for chemical biology studies as well as metal residues.
With the development of DFT theoretical calculations, more and more scientists are focusing
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on understanding reaction mechanisms and sources of regioselectivity, but the mechanisms
are still unclear for most currently reported reactions.

The impact of 1,5-selective click chemistry is increasing tremendously day by day, not
only in the field of organic synthesis but also in drug discovery efforts, polymer chemistry,
and in different disciplines of material science. The cycloaddition reactions forming 1,5-
disubstituted 1,2,3-triazoles have found extremely successful applications in the synthesis
of nanostructures, protein conjugates, and polymeric materials due to their regiospecificity
and unique chemoselectivity. This provides more possibilities for building functionalized
and well-defined macromolecules and nanostructures that will be used in more areas.
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