
Citation: Su, R.; Zhu, W.; Liang, K.;

Wei, P.; Li, J.; Liu, W.; Ren, Y. Mnx+

Substitution to Improve

Na3V2(PO4)2F3-Based Electrodes for

Sodium-Ion Battery Cathode.

Molecules 2023, 28, 1409. https://

doi.org/10.3390/molecules28031409

Academic Editor: Gregorio F. Ortiz

Received: 31 December 2022

Revised: 27 January 2023

Accepted: 29 January 2023

Published: 1 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes
for Sodium-Ion Battery Cathode
Renyuan Su, Weikai Zhu, Kang Liang , Peng Wei *, Jianbin Li, Wenjun Liu and Yurong Ren *

School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent
Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent
Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou 213164, China
* Correspondence: weipeng@cczu.edu.cn (P.W.); ryrchem@cczu.edu.cn (Y.R.)

Abstract: Na3V2(PO4)2F3 (NVPF) is an extremely promising sodium storage cathode material for
sodium-ion batteries because of its stable structure, wide electrochemical window, and excellent
electrochemical properties. Nevertheless, the low ionic and electronic conductivity resulting from the
insulated PO4

3− structure limits its further development. In this work, the different valence states of
Mnx+ ions (x = 2, 3, 4) doped NVPF were synthesized by the hydrothermal method. A series of tests
and characterizations reveals that the doping of Mn ions (Mn2+, Mn3+, Mn4+) changes the crystal
structure and also affects the residual carbon content, which further influences the electrochemical
properties of NVPF-based materials. The sodiation/desodiation mechanism was also investigated.
Among them, the as-prepared NVPF doped with Mn2+ delivers a high reversible discharge capacity
(116.2 mAh g−1 at 0.2 C), and the capacity retention of 67.7% after 400 cycles at 1 C was obtained.
Such excellent performance and facile modified methods will provide new design ideas for the
development of secondary batteries.

Keywords: sodium-ion battery; Na3V2(PO4)2F3; manganese ions doping; carbon coating

1. Introduction

It is a big challenge to fulfill the rising demand for renewable energy with the current
market mainstream lithium-ion batteries (LIBs) due to their high cost and low-capacity
retention at high rates. Meanwhile, sodium-ion batteries (SIBs) occupy several advantages
over LIBs, for instance, rich resources, wide distribution, and low prices [1–5]. Therefore,
the SIBs were considered an extremely promising new energy-storage technology. However,
the radius of Na+ (1.02 Å) is larger than that of Li+ (0.76 Å), which requires large sodium-ion
transport channels, and inevitably causes volume change after long-term cycling [6]. More
importantly, the breakthrough point for the electrochemical performance of the battery
depends on the cathode materials. Therefore, considerable efforts have been put into
finding suitable cathode materials for SIBs to solve these problems [7].

In recent times, transition metal oxides [8–10], polyanionic compounds [11,12], Prus-
sian blue analogues [13,14], and organic compounds [15,16] make up the mainstream of
cathode materials for SIBs [17]. Among them, Na3V2(PO4)2F3 (NVPF) and Na3V2(PO4)3
(NVP) with the NASICON type phosphates are considered to be the most favorable cathode
materials owing to their three-dimensional open frameworks, which can boost sodium ion
transport by delivering large interstitial spaces [18]. NVPF has also been demonstrated to
possess a higher average working potential of ~3.9 V, and an ideal theoretical capacity of
128 mAh g−1, which is higher than that of NVP (~3.4 V, 117.6 mAh g−1) [17,19,20].

However, low electronic conductivity and sluggish Na+ diffusion limit the high rate
performance and long-term cycling life of the NVPF material [21,22]. To improve the
electrochemical performance, several methods are frequently used, heteroatom doping,
particle nanosizing, and carbon coating [23,24]. Carbon coating is the most straightforward
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strategy to construct an external conductive framework to increase the surface electronic
conductivity, while too much carbon coating prevents the electrolyte from being exposed to
the electrode material entirely. Particle nanosizing can limit the material scale to nanometer,
which can shorten the Na+ diffusion path and increase the exposure of electrodes to
electrolytes at the same time. However, this will also lead to cracking at the electrode
surface or particle agglomeration during cycling.

Heteroatom doping is a practical way to increase Na+ diffusion and structural stability.
The common practice is using ions with similar radius size to replace sodium ions, which
can increase the interplanar distance and facilitate the Na+ extraction/insertion [25,26].
However, limited by element species, fewer elements can be doped at sodium sites, and
vanadium sites taking place is also widely studied (e.g., Mn2+, Zr3+, Fe3+, Tix+). Some works
found that transition metal elements such as Mn, Fe, and Ti are often used to modulate the
width of the forbidden band. Moreover, transition metal ion doping has almost no effect on
the material structure, but restricts the growth of microstructures in specific directions to
obtain specific morphologies such as flakes and blocks, which generates more active sites
at the edges of the electrode material to boost the intrinsic electronic conductivity [27–29].

Zhang et al. investigate the effect of Tix+ (x = 2, 3, 4) doping on the NVPF compound
properties. The appropriate amount of Tix+ doping will inhibit the growth of NVPF crystals.
At the same time, the particle size of the research object increases with the increase of
the valence state, and the carbon content decreases with the increase of the valence state,
resulting in the optimal cycle performance and rate performance of NVPF-Ti2+ [30]. Starting
from the morphology design, Zhang et al. design a hollow microsphere structure of NVPF
materials consisting of thin nanoplates and nanoparticles through a tetraglycol-assisted
hydrothermal method, and then chemical vapor deposit is used to deposit a carbon layer
on the surface of the designed NVPF to further optimize the electrochemical performance
of the cathode materials with an initial reversible capacity of 122.9 mAh g−1 and a high
coulombic efficiency of 99.1% even after 500 cycles at 5 C [31]. However, the effect of
manganese ions with different valence states (Mnx+ x = 2, 3, 4) doping on the NVPF
materials to modify the morphology by hydrothermal method and, accordingly, affect the
electrochemical properties, has not been studied.

In this work, we report the synthesis of different valence states of manganese ions
(Mn2+, Mn3+, Mn4+) doping in NVPF materials using a one-step hydrothermal method
(hereafter referred to as NVM2PF@C, NVM3PF@C, NVM4PF@C). Moreover, the crystal
structure, morphology, and carbon connect of the doped samples are also studied. Among
them, NVM2PF@C exhibits an optimal initial discharge capacity of 116.2 mAh g−1 at
0.2 C and is maintained with a retention ratio of 67.7% even after 400 cycles at 1 C due to
microcuboid morphologies and uniform carbon coating.

2. Results and Discussion

Figure 1a shows the XRD patterns of various NVPF samples. All diffraction peaks well
correspond to tetragonal NVPF phases with a group of P42/mnm (JCPDS NO: 89-8485) [24,32].
For these samples, no impurity peaks are detected, indicating that a low dose of Mnx+

(x = 2, 3, 4) doping has no effect on the crystal structure of NVPF [33]. Moreover, no carbon-
related diffraction peaks are observed, indicating that the presence of carbon may exist in
the form of disordered carbon coating. In addition, embedding Mn ions can result in a
larger cell volume since the radius of Mn ions (0.97 Å) is larger than that of V ions (0.78 Å).
To verify this point, Jade software was used to study the influence of the doping of different
valence states of manganese ions on the lattice parameters and cell volume (Table S1). It
can be observed that all the samples doped with Mn ions show expansions both in cell
parameters and volume, confirming that Mn ions were doped into the crystal lattice of
NVPF successfully. Accordingly, the increased cell parameters and volume contribute to an
increased Na+ migration rate and Na+ storage performance [34].
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As shown in Figure 1b, the crystal structure of Na3V2(PO4)2F3 consists of bioctahedral
units [V2O8F3] and tetrahedral units [PO4]. [V2O8F3] bioctahedrons are connected by two
[VO4F2] octahedrons via F atoms, and the O atoms are all located on the [PO4] tetrahedrons.
The Na(1) is located on a triangular prismatic site surrounded by two F atoms and four O
atoms, and the other two extended triangular prismatic sites connected to the square prism
of the F atoms are denoted as Na(2) sites [35,36]. Turning to the three sodium ions in NVPF,
one pair of ions occupy the Na(1) site completely, while the remaining ion conquers half of
the two Na(2) sites to make it a whole ion [37]. The vanadium ions with a smaller ionic
radius are partially replaced by the Manganese ions with a larger ionic radius, broadening
the transport of sodium ions and improving the transportation efficiency of sodium ions.
At the same time, a low dose of Mn ions occupying the V sites shortens the bond length
of V-O and P-O and lengthens the Na-O bond, which improves the intrinsic electronic
conductivity [18].

The effects of Mnx+(x = 2, 3, 4) doping on morphologies of the NVPF materials can
be observed by SEM. Figure 2a depicts the morphology of the pristine NVPF@C. The
overall structures are in blocky forms, and many broken particles are attached to the intact
NVPF@C. From further high-magnification images in Figure 2b,c, it can be observed that
both NVM2PF@C and NVM3PF@C materials show microcuboid morphologies with a
length of about 2 µm. Compared with the pristine one, the modified materials are more
uniformly dispersed and smaller in size, indicating that the introduction of Mnx+ (x = 2, 3)
suppresses the crystal growth during a hydrothermal reaction. While in Figure 2d, the
morphology of NVM4PF@C is close to that of the unmodified NVPF@C and even becomes
more agglomerated and irregular.

More information about lattice fringes and carbon coating could be obtained by TEM.
As shown in Figure 3a, the pristine NVPF@C is in the form of block particles with a smooth
surface, and its lattice planes with a spacing of 0.543 nm correspond to the (002) plane
in tetragonal NVPF crystal. Simultaneously, the 3.9 nm thickness carbon coating can be
observed. Turning to the NVM2PF@C, the Mn2+-doped NVMPF@C presents the same
lattice planes (002) with the pristine NVPF@C material, and a thicker carbon layer (4.2 nm)
is shown in Figure 3b. Similarly, Figure 3c presents the Mn3+-doped NVMPF@C sample. In
particular, it can be seen that two lattice planes exist in the Mn4+-doped NVMPF@C with
the spacing of 0.545 nm and 0.279 nm corresponding to the lattice plane (002) and (222),
respectively, from Figure 3d. This phenomenon can be attributed to the strong oxide MnO2,
which not only deteriorates the growth of NVPF crystals to induce growth in specific
directions but also consumes a portion of citric acid leading to a 2.9 nm thickness carbon
coating [38].
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As shown in Figure 4, Raman spectra were characterized to investigate the carbon
coating state. Two distinct peaks can be seen at 1350 cm−1 and 1600 cm−1 [39,40], cor-
responding to the disordered band (D-band) and graphite band (G-band), respectively.
Furthermore, the D-band integral area to G-band integral area ratio (AD/AG) is used to
describe the degree of graphitization. Figure 4 also illustrates the AD/AG of the as-prepared
NVMx+PF@C (x = 0, 2, 3, 4) samples, and the NVM2+PF@C possesses the highest AD/AG
value of 2.81, indicating that Mn2+-doped sample contains more electronic conductive
disordered carbon [41].
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The valence states of the series samples were examined using X-ray photoelectron
spectroscopy (XPS) (Figure S1). From Figure S1a, the full XPS spectra show the charac-
teristic peaks corresponding to the Na, V, P, O, and F elements, which verifies the NVPF
material has been successfully synthesized. The high-resolution XPS spectra were used
to analyze the Mn element of pristine and Mnx+ (x = 2, 3, 4) doped ones. Figure S1b,c
show the F1s spectra of NVPF@C and NVM2PF@C. Compared with the pristine one, the
divalent manganese ions doped sample possesses an extra Mn-F peak, which confirms
the manganese ions were successfully doped into the pristine one [42]. Peaks at 653.8 eV
and 645.9 eV in Figure S1d are associated with Mn2+ 2p1/2 and Mn2+ 2p3/2, respectively,
both of which are characteristic peaks of Mn2+ 2p and only the peaks of Mn2+ can be
seen in the NVM2PF@C sample [43]. Figure S1e shows the XPS spectrum of NVM3PF@C,
excluding two characteristic peaks of Mn2+ 2p, the peak of Mn3+ locates at 641.8 eV [44].
In addition to the distinctive peaks of Mn2+ and Mn3+, Figure S1f also shows a typical
peak caused by Mn4+ at 649.6 eV. The reason for this phenomenon is that citric acid has a
reducing effect, and excess added citric acid can reduce Mn ions from a high valance state
to a low valance state. Consequently, all of the valence states of manganese ions can be
found in the NVM4PF@C sample. Similarly, both trivalent and divalent manganese ions
are present in the NVM3PF@C sample. For NVM2PF@C, only the divalent valence state
can be discovered, because the divalent is the lowest valence state of the manganese ion.
Therefore, the XPS energy spectra of the manganese ion present multivalent states.

The carbon content of NVPF@C and NVMPF@C was evaluated by thermogravimetric
analysis (TGA). As shown in Figure S2, the samples doped with different manganese ions
possess different carbon content, and the value of NVPF@C, NVM2PF@C, NVM3PF@C and
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NVM4PF@C is 4.77%, 5.09%, 4.62%, and 4.23%, respectively (Table S2). At the same time,
Figure S2 corroborates the presence of amorphous carbon coating and illustrates the slight
difference in carbon content coincides with the thickness of carbon coating observed by
TEM characterization. The XPS spectra also show that Mn4+ consumes the greatest amount
of citric acid of all the samples, making the NVM4PF@C sample have the lowest carbon
content (4.23%). The citric acid in the pristine and NVM2PF@C samples was used to reduce
V5+ to V3+ and acted as a carbon source, so these two samples have a high carbon content
of 4.77% and 5.09%, respectively. Turing to NVM3PF@C, whose carbon content (4.62%) is
between that of NVM2PF@C and NVM4PF@C samples.

Figure 5a shows the cyclic voltammetry (CV) curves of Mn-doped NVPF@C and pristine
NVPF@C materials measured in the voltage range of 2.5 to 4.3 V (vs. Na+/Na) at 0.1 mV s−1.
The redox peak positions for the NVM2PF@C electrode are at 3.596/3.758 V and 3.867/4.102 V,
which is assigned to the V3+/V4+ redox couple [40], as can be observed from the CV curves.
NVM2PF@C has a cathodic potential difference of 162 mV and an anodic potential difference
of 235 mV, which are 59 mV and 10 mV, respectively, less than the pristine NVPF@C electrode.
Additional details regarding the cathodic and anodic potential differences between various
samples were calculated, which is shown in Table S3. By comparison, the NVM2PF@C
electrode has the fewest cathodic and anodic potential differences, indicating a decreased
polarization and enhanced Na+ diffusion kinetics [45–47].
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Figure 5. Electrochemical performances of NVPF@C and NVMPF@C electrode materials; (a) CV
curves of different samples at 0.1 mV s−1; (b) charge-discharge curves of electrode materials; (c) cy-
cling performance at 0.2 C; (d) rate capability of electrode materials; (e) long-cycling performance of
NVM2PF@C at 1 C.
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Figure 5b shows the initial charge/discharge curves of NVPF@C, NVM2PF@C, NVM3PF@C,
and NVM4PF@C at 0.2 C. The pristine electrodes possess two obvious charge/discharge
plateaus, 3.57/3.79 V and 3.83/4.07 V. While, the charge/discharge plateaus of NVM2PF@C
corresponding to 3.60/3.76 V and 3.87/4.10V, which has a smaller polarization compared
with the NVPF@C. The result is consistent with the obtained data from the CV plots
and table. In addition, the divalent manganese ion doping electrode has the best ini-
tial discharge capacity of all the electrodes, as shown by the longer charge/discharge
plateau of NVM2PF@C than other samples, which is 116.2 mAh g−1 at 0.2 C, close
to the theoretical value (128 mAh g−1). While, the values of the other three ones are
106.8 mAh g−1, 108.1 mAh g−1, and 94.5 mAh g−1 corresponding to NVPF@C, NVM3PF@C,
and NVM4PF@C, respectively. Furthermore, the increased initial specific capacity is bene-
fiting from smaller particles, which can broaden the region in contact between the electrode
and electrolyte, thereby enhancing sodium ion transport [48,49].

The cycling performance of the as-prepared objects is depicted in Figure 5c (NVPF@C,
NVM2PF@C, NVM3PF@C, NVM4PF@C). The NVM2PF@C electrode shows the highest
initial discharge capacity of 116.2 mAh g−1 and remains 93.2 mAh g−1 at 0.2 C after 100 cy-
cles. The capacity retention is 80.2%. While, the NVPF@C, NVM3PF@C, and NVM4PF@C
electrodes display the initial discharge capacity of 106.8 mAh g−1, 108.1 mAh g−1, and
94.5 mAh g−1 after cycling, corresponding to 77.8%, 79.3%, and 73.9% capacity retention,
respectively (Table S4). Benefiting from the small particles with micro-sized distribution,
the NVM2PF@C and NVM3PF@C samples possess a favorable cycling performance. The
manganese ion doped samples induce zero-dimensional defects that can lead to more active
sites, larger sodium-ion transport channels, and a more stable crystal structure [50]. How-
ever, the tetravalent manganese ions doped sample shows an inferior result because of low
carbon content and agglomerated and broken particles, deteriorating the electrochemical
performance in contrast with the NVPF@C material.

Figure 5d displays the rate performance of the four electrodes. At the current rate of 0.2,
0.5, 1, 2, and 5 C, the capacity ranking presented by rate curves among the four samples is in
line with the cycling performance at 0.2 C (from first to fourth is NVM2PF@C, NVM3PF@C,
NVPF@C, and NVM4PF@C). The data reveal that both the NVPF@C materials doped with
divalent and trivalent manganese ions present high rate performance at different current
rates. The reason behind this phenomenon could be related to the enhanced structural
stability carried on by the partial replacement of manganese ions for vanadium sites. In
particular, the NVM2PF@C electrode possesses the optimal capacity compared with the
other three samples. Classical chemical structure theory states that structure determines
performance, during a high current rate, the structural stability is expressed as cycling
stability. When the rate was shifted from 5 C to 0.2 C, the capacities of NVM2PF@C
recovered to 99.3 mAh g−1, revealing an outstanding electrochemical reversibility. The
long-life cycling performance of the NVM2PF@C electrode is provided in Figure 5e. The
discharge capacity reaches 83.9 mAh g−1 and a retention ratio of 67.7% after 400 cycles at
1 C, indicating that the divalent manganese ions replacing part of the vanadium ions can
deliver better long-term cycling life.

The XRD pattern and the SEM images were used to study the phase analysis and
morphology changes of the NVM2PF@C cathode before and after 400 cycles at 1 C. The
diffraction peak positions of the NVM2PF@C all match well with the Aman space group
(JCPDS NO: 89-8485), and no impurity peaks can be observed in Figure S3. It can be
concluded that the NVM2PF@C electrode is still maintained in the NVPF phase, which
proves that divalent manganese ions doping is beneficial to structural stability and cycling
stability [51]. However, the diffraction peak positions of the NVM2PF@C sample after
cycling shift to lower angles, indicating that the cell parameters and the lattice spacing
get increased. This probably results from the sodium-ion transport channels that have
been further expanded after long cycling, which makes the crystal structure larger. Si-
multaneously, the relative intensity of the diffraction peaks after cycling is weaker than
that before cycling, demonstrating a slightly decreased crystallinity. This phenomenon is
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mainly associated with the deteriorated crystal structure, and the other possible reason
is the coating of mixed slurry (conductive agent and binder). The NVM2PF@C sample
exhibits a uniform cubic morphology when comparing the morphology before and after
cycling, despite the fact that a lot of broken particles have adhered to the surface of the
long-term cycling electrode. This outcome is consistent with the favorable reversible cycling
performance and the electrochemical performance analysis discussed above.

Electrochemical impedance spectroscopy (EIS) was used to future investigate the four
samples’ electrochemical behavior and kinetic reaction process. The Nyquist plots, as
illustrated in Figure 6a, consist of a semicircle at high frequency and a sloping line at low
frequency. The semicircle at high frequency is associated with the diffusive migration of
sodium ions via the solid electrolyte interface (SEI), and the sloping line at low frequency
is connected with the solid diffusion process of sodium ions inside the active material
particles. In the inset figure, the equivalent circuit is shown with Re, Rct, Rf, CPE1, CPE2,
and Zw, which stand for, electrolyte resistance, interfacial charge transfer resistance, film
resistance of Na+ diffusion, capacitance of the passivation film, double layer and Warburg
impedance, respectively [52]. The Rct of the NVM2PF@C electrode is 82.5 Ω (Table S5),
which is much lower than that of the other three (NVPF@C 110.0 Ω NVM3PF@C 91.7 Ω
NVM4PF@C 136.9 Ω), implying the Mn2+-doped NVPF@C possesses the enhanced Na+

transfer kinetic and higher electronic conductivity. The smaller the radius of the semicircle,
the less the sloping line’s angle of inclination is less than 45◦, which reflects the roughness
of the electrode surface. It seems that Mn-doped samples’ particle surface roughness and
specific surface area are increased.
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The coefficient diffusion of sodium ion (DNa+) could be obtained in view of Equation (1) [30]:

D =
R2T2

2A2n4F4C2σ2
(1)

The following Equation (2) can be used to compute the Warburg factor (σ) linked to
Z′. Where R is the gas constant, T is the absolute temperature, A is the surface area, n is
the number of electrons transferred per molecule, F is the Faraday constant, and C is the
concentration of Na+

Zre= Re+Rct+σω−1/2 (2)
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where
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stands for the angle frequency. The Warburg factor can be observed in Figure 6b,
which reveals the relationship between the linearly fitting Zre and ω−1/2 in the low fre-
quency, and the calculated results for the series of NVMx+PF@C are displayed in Table S5.
The NVM2PF@C electrode possesses the highest sodium-ion diffusion coefficient reaching
1.03 × 10−13 cm2 s−1. While the values of the others are much lower than that of the
NVM2PF@C. The uniform and porous grain morphology after a proper Mn2+ concentration
doping effectively reduces interfacial resistance and improves the Na+ diffusion kinetics.
At the same time, a low dose of the divalent manganese ion doping helps to stabilize
the Na+ diffusion channel and optimize the NASICON structure [37]. Furthermore, the
uniform carbon coating plays a very important part in the charge/discharge process, which
significantly increases the intrinsic electronic conductivity. Therefore, the NVM2PF@C
and NVM3PF@C electrodes have improvements in both reversible capacity and cycling
performance compared with the pristine NVPF@C electrode.

3. Experimental

The NVPF@C was prepared by a hydrothermal method. The components are NaF
(Macklin 99.5%), NH4H2PO4 (Macklin 99.5%), NH4VO3 (Macklin, 99.5%), C6H8O7 (Mack-
lin, Ar), and manganese source including (CH3COO)2Mn, (CH3COO)3Mn•2H2O and
MnO2(Macklin, Ar) in the molar ratio of 3:2:1.95:1.5:0.05. Firstly, NH4VO3 and C6H8O7
were dissolved in an appropriate amount of deionized water, stirring at 70 ◦C to obtain
a transparent solution. Then, NH4H2PO4, NaF, and manganese sources were put into
the above solution. The color of the solution changed from faint yellow to brick red after
30 min of stirring. Next, a 100 mL Teflon-lined autoclave was filled with the previously
prepared solution and heated at 200 ◦C for 12 h. After that, until the as-prepared samples
returned to 25 ◦C, the dark green product was obtained then centrifuged and washed to
acquire the precursor. The above precursor was put into a tube furnace for calcination in
Ar/H2. The first step was preheated at 300 ◦C for 4 h, and the second step was sintered
to 600 ◦C for 8 h. Then, the black powder product Na3V1.95Mn0.05(PO4)2F3@C (referred
to as NVMPF@C) was obtained. According to the different valence states of manganese
sources (Mn2+, Mn3+, Mn4+), a series of NVMPF@C materials (NVM2PF@C, NVM3PF@C,
NVM4PF@C) can be obtained.

Phase composite and crystal structure of all NVMx+PF@C (x = 0, 2, 3, 4) samples
were performed via X-ray diffraction (XRD). Jade software was used to study the lattice
parameters. X-ray photoelectron spectroscopy (XPS) analysis was identified by a Thermo
VG Scientific ESCALab 250. The Thermogravimetric (TG) data of the series of NVPF@C
samples were tested by Labsys Evo/seteram thermal analyzer. Raman spectra were ob-
tained by using a Raman spectrometer (LabRAM-HR) with an excitation wavelength of
532 nm. High Resolution field transmission electron microscopy (FETEM, a JEOL 2100)
and field emission scanning electron microscopy (FESEM, SUPRA55) were employed to
explore the surface morphology of the NVMx+PF@C and electrodes.

The active substance, conductive agent (Super p), and binder (PVDF) were weighed
at a mass ratio of 7:2:1 and thoroughly ground in a mortar. An appropriate amount of
NMP solvent was added drop by drop and mixed evenly. The above slurry was coated
on aluminum foil and put into a vacuum oven to evaporate solvent and water. After
12 h, the as-prepared electrode was cut into disks. In our experiment, the average mass
loading of the active materials was 1.2–1.5 mg cm−2 on a 12 mm disk. The batteries were
assembled in the argon-filled glove box (BRAUN). A proper amount of electrolyte (1 M
NaClO4 in EC:DMC = 1:1 with 5%FEC) was added to obtain sodium ion half-cell coin cells
(CR2032 type). Electrochemical performance measurements were evaluated by a battery test
system (LAND), and the potential range was set from 2.5 V to 4.3 V. Cyclic voltammogram
(CV, 2.5–4.3 V) was tested by an electrochemical workstation (CHI 600A) with a sweep
rate of 0.1 mV s−1. Electrochemical impedance spectroscopy (EIS) was investigated by
an electrochemical workstation (CHI 600A), and the frequency ranged from 0.1 MHz to
105 MHz.
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4. Conclusions

In summary, by using a single hydrothermal method, manganese ions with different
valence states doped NVPF@C were successfully synthesized. The manganese with differ-
ent valence states was used to investigate the effects of NVPF, such as morphologies, the
thickness of carbon coating layer, and electrochemical performance. It was found that the
Mn2+ can effectively guide the formation of microcuboid NVPF and restrict the size growth
of NVPF crystal. In addition, the Mn2+ doping strategy also improved the electrochemical
performance by lower Rct and larger Na+ diffusion kinetics. Thus, the NVM2PF@C sample
performed the best cycling and rate performance with the initial discharge capacity of
116.2 mAh g−1 and the capacity retention (67.7% after 400 cycles at 1 C). The improved
electrochemical performance is attributed to the uniform carbon coating and stable crystal
structure, indicating that divalent manganese ions doping NVPF@C can be a promising
cathode for SIBs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28031409/s1, Figure S1: Full XPS spectrum of NVPF@C;
high-resolution XPS spectra of NVPF@C and NVMPF@C; Figure S2: The TG curves of NVPF@C and
NVMPF@C; Figure S3: XRD and SEM images of NVM2PF@C before and after the cycles; Table S1:
Cell parameters of NVPF@C and NVMPF@C; Table S2: Carbon content of NVPF@C and NVMPF@C;
Table S3: Potential difference of NVPF@C and NVMPF@C; Table S4: Long-term cycling performance
of NVPF@C and NVMPF@C; Table S5: The impedance parameters from the simulated equivalent
circuit and sodium diffusion coefficients of NVPF@C and NVMPF@C.
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