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Abstract: The recent advent of two-dimensional (2D) materials has had a ground-breaking impact on
science and technology. To exploit in technology their unique thickness-dependent physicochem-
ical properties, the large-scale production of 2D materials is mandatory, but it represents an open
challenge still due to various pitfalls and severe limitations including the toxicity of state-of-the-art
solvents. Thus, liquid-phase exfoliation based on green and bioderived solvents represents an ideal
methodology for massive production. This is particularly crucial for introducing 2D materials in
technological applications such as the production of drinking water and agri-food industrial pro-
cesses. Here, we assessed the production of 2D nanosheets (specifically, graphene, WS2, MoS2) with
liquid-phase exfoliation assisted by eco-friendly solvents, with a comparative evaluation of green
solvents in terms of the yield and, moreover, the aspect ratio, defectivity, and crystalline quality of
the produced nanosheets. In particular, we focus on the most promising green solvents in terms
of the yield and the crystalline quality of the produced nanosheets: Polarclean, Iris, and Cyrene,
which were compared with acetone/water mixtures, isopropyl alcohol (IPA), triethanolamine (TEA),
aqueous solutions of urea, and an ethanol/water mixture as well as two toxic solvents largely used
for the production of 2D nanosheets: N-methyl-2-pyrrolidone (NMP) and N, N-dimethylformamide
(DMF). Remarkably, the density of defects was particularly low in the liquid-phase exfoliation with
Polarclean, as indicated by the Raman spectrum of graphene, with the I(D)/I(G) ratio below 0.1.
Furthermore, Polarclean and Iris also enable ink-jet printing with functional inks of 2D materials
based on green solvents due to their low dynamic viscosity at room temperature.

Keywords: Cyrene; Polarclean; Iris; green chemistry; 2D materials; liquid-phase exfoliation

1. Introduction

2D materials represent a promising platform for technology [1–7] because of their
unique physicochemical properties associated with the atomic thickness [8–20]. This implies
enormous versatility in various fields, ranging from electrochemical energy storage devices,
sensing, photonics, optoelectronics, and energy storage/production [21–25]. However, the
industrial exploitation of 2D materials implies the need to achieve the sustainable large-
scale production of 2D materials with high crystalline quality and unaltered electronic
properties [26,27]. As of mid-2022, the global graphene and graphene oxide installed
capacity undoubtedly exceeds 12,000 tonnes per year, but utilisation is low as the orders
lag significantly behind.

Taking China’s graphene industry as a case-study example, with the production vol-
ume of 2000 tonnes per year of graphene powders and 3.5 million m2 per year of graphene
films [28], its capability for economically scalable production is absolutely satisfactory. The
quality of the graphene products, nevertheless, differs tremendously in practice, as it is
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extremely dependent on the graphene sources, manufacturing techniques, and fabrication
condition monitoring.

Evident inconsistencies persist in the flake size and number of layers of commercially
available graphene samples, along with considerable differences in the defect density and
impurity content. These wide variations in quality have resulted in exaggerated reports on
the applications of graphene and complaints about unrepeatable performance.

While mechanical exfoliation suffers from non-scalable processes with scarce
reproducibility [29], chemical vapour deposition necessitates specific substrates allow-
ing for epitaxial growth [30–36], with consequent complications related to the etching of
2D layers from the substrate [37], resulting in flakes with degraded crystalline quality
with high amounts of defects and metallic impurities [38] and/or polymer residuals from
the transfer process, altering the physicochemical properties of transferred flakes of 2D
materials [39]. The removal of the substrate is also a challenging issue for the preparation
of graphene by Si sublimation from the SiC substrate [40].

While the bottom–up synthesis is evidently inadequate for massive production, the
top–down approach, implying exfoliation from parental bulk crystals, is in principle more
suitable for scale up [41–43]. However, one should consider that mechanical exfoliation fails
in reproducibility and scalability. On the other hand, liquid-phase exfoliation (LPE) [44,45]
represents a viable technique able to overcome such difficulties. Definitely, LPE is suitable
for scaling up by ensuring the massive production of highly crystalline 2D materials [46].
However, the quest of the most suitable solvent for the process remains an open issue to
date. Currently, the most commonly used solvents for LPE are N-methyl-2-pyrrolidone
(NMP) and N, N-dimethylformamide (DMF), due to the strong compatibility of their
values of surface tension and of the Hansen solubility parameters (HSP) with surface
energy and HSP for graphite and other 2D materials (Table 2). Unfortunately, NMP and
DMF have recently been listed as extremely hazardous substances for toxicity issues, with
subsequent restrictions on their use in both Europe and the United States of America [46–48].
Accordingly, the scientific community is engaged in a quest for environmentally friendly
solvents that are capable of replacing NMP and DMF for the LPE of 2D materials, with
appropriate effectiveness.

2. Materials and Methods

Materials: WS2 (CAS number 12138-09-9), MoS2 (CAS number 1317-33-5), and graphite
(CAS number 7782-42-5) were purchased from Sigma-Aldrich. Absolute ethanol and
N-methyl-2-pyrrolidone (NMP) were purchased from commercial chemical suppliers.

Methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (Rhodiasolv Polarclean) and
dimethyl 2-methylglutarate (Rhodiasolv Iris) were provided by Rhodiasolv, Solvay Nove-
care, Paris.

Exfoliation: The preparation of the methodology for the exfoliation of the layered
materials was performed by considering 0.05 g of the powders (WS2, MoS2, and graphite)
dispersed in 40 mL of the solvents under investigation (NMP, Rhodiasolv Polarclean,
Rhodiasolv Iris).

The solution was sonicated for 4 h in a sonicator bath (Labsonic LBD2 working at
40 kHz) with a thermostat built into it to prevent excessive temperature rise (set not to
exceed 25 ◦C). Next, it is necessary to completely remove the solvent used from the solution.
This mechanism is accomplished by numerous centrifugations.

The sequence of centrifugations started with an initial centrifugation at 5000 rpm for
20 min, at the end of which the supernatant was discarded and replaced with the same
amount of ethanol. The second step saw further centrifugations aimed at removing the
residue of the solvent used, with a final centrifugation at 1000 rpm.

This last centrifugation was performed to try to separate the thinner flakes from the
thicker part of the material that had not been exfoliated. At the end of this process, the
supernatant from the last step was taken for later characterisation.
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3. Results and Discussion

Among the ideal characteristics that the solvent must have, it is important to consider
their values of polarity, surface tension, viscosity, and toxicity [49]. In particular, a suitable
solvent for LPE should minimize the energy input required to overcome the van der Waals
forces for effective sheet separation [50]. This corresponds to the minimisation of the
enthalpy of mixing per unit of volume (∆H/V). In turn, it is related to the Helmholtz
energy of solvent (Fsolv), the thickness of the flakes (Tlayered), the free Helmholtz energy of
layered materials (Flayered), and the volume fraction (ϕ) through [51,52]:

∆H
V
∼ 2

Tlayered

(√
Fsolv −

√
Flayered

)2
φ (1)

with
Flayered= (σs − TSSur

)
(2)

where σs is the surface energy and SSur is the surface entropy.
Therefore, matching the surface tensions of the solvent (Table 1) and layered materials

(Table 2) is crucial to achieve an efficient LPE. However, another critical issue is related
to the dispersibility of the flakes and solvent, which depends on the specific molecular
interactions between the solvent and the solute. The evaluation of the dispersibility of both
nanosheets and the solvent can be carried out based on the assessment of HSP (Table 1),
which describes the interaction between the solvent and the solute. Precisely, HSP considers
the dispersion forces (δd), polarity interactions (δp), and hydrogen bonds (δh), respectively.
If the HSP of solvents has comparable values with the solute, the energy cost for their
dispersion is minimised.

Table 1. Surface tension and the Hansen solubility parameters for NMP, DMF, IPA, Cyrene, Polarclean,
and Iris.

Surface Tension
σs [mNm−1]

Hansen Solubility Parameters

δd [MPa1/2] δp [MPa1/2] δH [MPa1/2]

NMP 40.1 18.0 12.3 7.2
DMF 37.1 17.4 13.7 11.3
IPA 21.7 15.8 6.1 16.4

Acetone 58.1 15.5 10.4 7.0
Ethanol 46.1 15.8 8.8 19.4

Urea 30% in H2O 74.0 17.0 16.7 38.0
TEA 45.9 17.3 7.6 21.0

Cyrene 72.5 18.7 10.5 6.9
Polarclean 38.0 15.8 10.7 9.2

Iris 33.0 16.6 8.7 5.0

Table 2. Surface energy and Hansen solubility parameters for graphite, MoS2, and WS2.

Surface Energy
Esur [mNm−1]

Hansen Solubility Parameters

δd [MPa1/2] δp [MPa1/2] δH [MPa1/2]

Graphite [47] ≈62 ≈18 ≈9.3 ≈7.7
MoS2 [53] ≈70 17–19 6–12 4.5–8.5
WS2 [53] ≈75 16–18 5–14 2–19

Volatile organic compounds (VOCs such as isopropyl alcohol and ethanol), although
they appear as good alternatives to NMP and DMF, unfortunately, they suffer from in-
sufficient exfoliation yields, which are inevitably halved [54] due to the need to transfer
nanosheets from a suspension into NMP [55]. Moreover, their flash temperature is often
around 12–13 ◦C, which could result in being hazardous for industry.
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With regard to the possibility of using surfactants in aqueous media [56], most of them
are insulating and their residuals [57] are thus detrimental in many applications requiring
thermal and electrical conductivity.

Electrochemical exfoliation (both anodic and cathodic) in aqueous electrolytes has
emerged as a novel platform for the production of 2D materials [58]. However, for bulk
semiconductors or insulators, electrochemical exfoliation is ineffective in breaking the
interlayer van der Waals forces without including a conducting additive [59]. Furthermore,
reaching the monolayer regime through the electrochemical exfoliation of bulk materials
remains a severe hurdle [60]. Another problem is related to the unconventional opera-
tional electrochemical conditions, which imply the occurrence of oxygen and hydrogen
evolution stimulated by electrochemical polarisation [61]. Finally, electrochemical exfolia-
tion in aqueous electrolytes typically afford flakes of 2D materials with a high number of
defects [58,62].

Recently, TEA [63] and urea aqueous solutions [64] have been proposed as green
alternative media for the LPE of graphene and other layered materials. Regarding TEA,
though it shows good results in terms of the flakes’ microstructure and dispersion stability,
issues related to the yield of the process, and mainly to the chemical modification of
flakes induced by possible functionalisation [65,66] during the process are still open. In
addition, the very high dynamic viscosity (605.9 cP at T = 25 ◦C [67]) precludes the use of
such dispersions for the inkjet printing of 2D material-based inks, for which the viscosity
range is recommended to be 1–10 cP [68]. On the other hand, aqueous dispersions of
urea have shown encouraging results for graphite exfoliation, obtaining high quality
flakes. Nevertheless, the low yield of the process (2.4%), evidently related to the significant
difference in the surface energy (Table 1), makes urea inappropriate for scalability.

Among the various attempts in the literature, the most effective green solvents for the
LPE of 2D materials appear to be: (i) dihydrolevoglucosenone (Cyrene, CAS: 53716-82-8) [69];
(ii) methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (Rhodiasolv Polarclean, CAS:
1174627-68-9) [70]; and (iii) dimethyl 2-methylglutarate (Rhodiasolv Iris, CAS: 33514-22-6) [71]
(Figure 1).
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Figure 1. Comparison of the molecular structures of the solvents used: Cyrene, Iris, and Polarclean,
whose atomic structures are shown in (a,c,e) plain and (b,d,f) ball-and-stick layouts, respectively.

Cyrene (C6H8O3) has been considered in recent studies [69] to be the most viable
substituent to NMP as an organic solvent. It does not exhibit the amide functionality
associated with the reproductive toxicity of many of the common dipolar aprotic solvents.
This solvent limits the production of corrosive or polluting by-products at the end of its
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cycle due to the lack of chlorine. In addition, unlike other petrochemical dipolar aprotic
solvents, which, on decomposition, tend to release NOx, Cyrene has a flash point of 108 ◦C,
it is stable, and after biodegradation, it releases only carbon dioxide and water. However, it
should be mentioned that Cyrene has an acute toxicity (LD50 > 2000 mg/kg) and aquatic
toxicity (EC50 > 100 mg/L), which makes its use for drinking water production impossible.
Moreover, its use in inkjet printing is also impossible because of the high dynamic viscosity
(14.5 cP at T = 20 ◦C).

Polarclean (C9H17NO3) could represent a more effective candidate for the massive
production of 2D materials by LPE, based on results in [70]. It does not show toxicity
up to 1000 mg/ (kg day), it is biodegradable, and non-mutagenic, thus being safer than
oxygenated solvents such as VOCs. The water solubility of Polarclean is more than 490 g/L
under room temperature conditions (25 ◦C) and it has a melting point at an ambient pressure
of 160 ◦C. Currently, Polarclean is mostly used for the solubilisation of agrochemicals as
well as for crop protection and animal nutrition [72]. Recently, the use of Polarclean has
been extended to the production of polymeric membranes for ultrafiltration and water
desalination for the production of drinking water [73], the synthesis of bio-based aliphatic
polyurethanes [74], the dimerisation of abietic acid [75], and for copper-catalysed azide–
alkyne cycloaddition [76].

Polarclean is absolutely compatible for use in drinking water production or for the
agrifood industry. Moreover, its dynamic viscosity of 9.78 cP (at T = 23 ◦C) makes it suitable
for ink-jet printing, contrary to Cyrene.

Another promising eco-friendly solvent could be Iris (C8H14O4), considering the very
recent findings [71]. Iris has an excellent safety profile: it is nontoxic, biodegradable,
non-carcinogenic, and non-irritating. This solvent has the lowest of the toxicity levels
investigated; in fact, its dosage can be as high as 2000 mg/(kg day) without any detectable
toxicity. The enormous potential of this solvent also lies in its flash point being as low as
90.8 ◦C, which reduces the flammability risks, and moreover, facilitates the removal of the
solvent by evaporation. Its solubility in water is greater than 25 g/L at a temperature of
23 ◦C. With a dynamic viscosity value as low as 2.85 cP at 20 ◦C, it suitable for use in inkjet
printing, like for Polarclean.

Table 3 reports the density, the boiling point, and the dynamic viscosity at room
temperature of the various solvents used for LPE.

Table 3. Density, boiling point, and dynamic viscosity at 25 ◦C for NMP, DMF, IPA, acetone, ethanol,
aqueous urea solutions, Cyrene, Polarclean, and Iris.

Solvent Density
[g/cm3]

Boiling Point
[◦C]

Dynamic
Viscosity

at 20 ◦C [cP]

NMP 1.03 202 1.66
DMF 0.94 153 0.92
IPA 0.78 82 2.01

Acetone 0.78 56 0.32
Ethanol 0.79 78 1.09

Urea 30% in H2O 1.32 135 1.40
TEA 1.13 335 404

Cyrene 1.25 226 14.5
Polarclean 1.04 280 9.78

Iris 1.05 222 2.85

To assess the quality of the nanosheets of the 2D materials produced by LPE with a
specific solvent, it is straightforward to evaluate the lateral size (checked by electron micro-
scopies such as scanning electron microscopy (SEM) and transmission electron microscopy,
TEM) and thickness (checked by atomic force microscopy, AFM) of the nanosheets of the
same set of layered materials: graphite, MoS2, and WS2. Figure 2 shows the microscopi-
cal images and statistical analysis to assess the lateral size of flakes produced with LPE
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assisted by Polarclean and Iris. Remarkably, NMP-assisted LPE resulted in the formation
of flakes with sharp edges and defined angles (similarly to the case of Polarclean), with an
average lateral size of around 3–4 nm, which emerged from the analysis of the distribution
(Figure 2f). However, the thickness analysis by AFM measurements revealed the incom-
plete exfoliation. Definitely, when comparing the collected microscopical images, it was
evident that the flakes exfoliated with Polarclean (in the case of WS2) and Iris (in the case
of MoS2) were thinner (see the AFM experiments in [70,71]) than those obtained with NMP
with the same experimental procedure.
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Figure 2. Comparison of the representative high-resolution SEM images and statistical analysis
determined from the images. Exfoliated nanolayers with the LPE of WS2, assisted by (a) Iris,
(b) Polarclean (taken from [70] with permission), (c) NMP. Lateral scale size distribution analysis of
WS2 with (d) Iris, (e) Polarclean (taken from [70] with permission), (f) NMP.

Remarkably, the use of these innovative green solvents did not alter the electronic
properties of the 2D materials, as inferred from the UV–VIS absorption spectra in Figure 3
(exhibiting excitons for both MoS2 and WS2, being 2D semiconductors [70,71]). Repeating
the UV–VIS spectra in a timescale of months also enabled us to secure the stability of the
produced functional inks.

Figure 3a–d reports the representative AFM measurement and statistical thickness
distribution for the case study example of WS2 produced by LPE with Polarclean and
Iris. In both cases, the average thickness was around 5 nm, thus confirming the efficient
exfoliation in atomically thin layers.

X-ray diffraction (XRD) is the most reliable technique to check the integrity of the
atomic structure after the breakage of van der Waals bonds. Figure 3f reports the crystal
structure of MoS2 nanosheets obtained by Iris-assisted LPE with respect to the bulk MoS2.

The appearance of the (002) peak at 14.4◦ in the XRD pattern of exfoliated MoS2
nanosheets secured their good crystallinity, congruent with the hexagonal structure of the
bulk crystal, with peaks matching ICDD ref no. 04-003-3374.

The performances of Polarclean as an exfoliation medium for 2D materials was directly
compared with the case of the most diffuse state-of-the-art solvent (i.e., NMP). Therefore,
we also performed LPE under the same operating conditions for NMP (see Methods for the
experimental procedures). While the lateral size was comparable, the statistical analysis on
thickness revealed a bimodal distribution for 2D materials produced by NMP-assisted LPE,
which peaked around 4 and 30 nm, corresponding to thin and thick flakes, respectively.
Remarkably, ~85% of flakes exfoliated by Polarclean had a thickness <5 nm. One can
deduce the prevalence of ultrathin flakes (1–3 layers) in Polarclean-assisted LPE. In contrast,
the use of NMP in the same processing conditions produced flakes with an ~76% of
thickness >5 nm, thus evidencing a largely incomplete exfoliation of the bulk crystal in
NMP-assisted LPE.
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Figure 3. Representative AFM image of MoS2 flakes in (a) Polarclean (taken from [70] with permission)
and (c) Iris. The height profile along the white solid line is reported in the inset. Analysis of the
thickness distribution (b,d) was determined from the AFM measurements. (e) UV–VIS spectrum of
the MoS2 nanosheets produced by Iris-assisted LPE. (f) XRD pattern of the (black curve) powdered
MoS2 bulk crystals and (red curve) exfoliated nanosheets of MoS2.

More insights on the quality of the nanosheets produced by LPE with Polarclean and
Iris were provided by X-ray photoelectron spectroscopy (XPS), as illustrated in Figure 3 for
the case-study example of MoS2. The core-level spectra of the bulk and exfoliated MoS2 are
shown in Figure 4. The Mo-3d core levels are split into J = 5/2 and 3/2 components shifted
by 3.1 eV. Specifically, the Mo-3d core levels had two different contributions from pristine
(fully coordinated atoms) and defective MoS2 (with sulphur vacancies), with a binding
energy (BE) of 229.8 and 229.2 eV for the J = 5/2 component, respectively. Moreover, a
minority component located at lower BE was associated with the presence of the defects due
to a redistribution of the charge. Explicitly, the charge localised on the more electronegative
sulphur atom, once it is desorbed, is redistributed on the first neighbouring atoms to
increase the Coulomb screening effect [77,78]. Particularly, one could note in the Mo-3d
spectra the lack of MoO3-derived spectral components, which should be present at a BE of
232.4 eV for the J = 5/2 component [79]. Therefore, one can infer that both Polarclean and
Iris do not act as oxidation agents for MoS2 nanosheets, and congruently, Polarclean/Iris-
assisted LPE process do not favour the oxidation of MoS2 flakes. Concerning the S-2p core
levels, they were split in J = 1/2 and 3/2 components shifted by 1.2 eV. Two well-distinct
contributions associated with pristine and defective MoS2 were observed at a BE of 162.5
and 161.5 eV for the J = 3/2 component, respectively, as in previous reports [80–82]. No
trace of the sulphur-oxide phases was found, in contrast to the case of WS2, for which
spectral contributions from both SO4 and SO3 exist.
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Figure 4. (a) The Mo-3d and (b) S-2p core levels of the bulk MoS2 and MoS2 nanosheets produced by
LPE with Polarclean (taken from [70] with permission) and Iris. The component at a BE of 226.7 eV in
the Mo-3d core level (in panel a) was related to the overlap of the S-2s core level. The photon energy
was 1486.6 eV (Al Kα), and the spectra were normalised to the maximum.

A direct comparison between the XPS spectra of the Iris and Polarclean LPE-MoS2
only showed a higher presence of defects in the case of the MoS2 exfoliated with Iris.

Concerning the exfoliation of graphene flakes with Polarclean, amazingly, the distri-
bution of the lateral size reached an average value as high as 10 µm, absolutely one of
the largest reported to date for the LPE of nanosheets starting from bulk graphite [12,19].
The related Raman spectrum (Figure 5) exhibited D and G bands at 1331 and 1581 cm−1,
respectively. One should consider that whereas the G peak resulted from the E2g optical
phonon of graphene [83], the D band is produced by breathing modes of six-atom rings
and necessitates a defect for its activation [84]. Consequently, the I(D)/I(G) ratio is a gen-
erally accepted probe of structural defects in the graphene layer [85]. Outstandingly, in
the case of the Polarclean-assisted LPE of graphene, the I(D)/I(G) was 0.07 × 0.01. There-
fore, one can guess a density of defects of only (8 ± 2) ×109 cm−2, congruently with the
exceptional crystalline order of exfoliated graphene flakes (without indication of defects)
in the HR-TEM images in [70]. For the cases of other solvents, the density of defects for
graphene exfoliated by LPE was (6± 2)×1010, (5± 2)×1010, (1.0± 0.3)×1011, (9± 3)×1010,
(4± 1)×1010, (2.6± 0.7)×1011, (6± 2)×1010, (7± 2)×1010 defects·cm−2 with NMP [69,86],
Cyrene [69], IPA [87], DMF [88], acetone/water [89], ethanol/water [90], TEA [63], and
aqueous solution of urea [64], respectively. Evidently, graphene flakes exfoliated with
Polarclean displayed a density of defects lower by about one order of magnitude compared
to LPE assisted by other solvents.
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Figure 5. Comparison of the Raman spectrum for graphene exfoliated in the liquid phase
with NMP [69], Cyrene [69], IPA [87], DMF [88], acetone/water [89], ethanol/water [90],
TEA [63], and aqueous solution of urea [64], and Polarclean [70]. Data were taken from the
above-mentioned references.

The inspection of the intensity of the D′ band could offer further clues on the density of
defects. Comparable to the D band, the D′ mode is a double resonance due to the transverse
optical (TO) phonons at K or K′, activated by defects, with the difference that it involves
an intravalley rather than intervalley process [85]. Notably, the intensity of the D′ band
at 1615 cm−1 was suppressed for the case of the Polarclean-assisted LPE of graphene, in
contrast with the case of other solution processing methods (Figure 5).

4. Conclusions

Here, we assessed the choice of solvents for LPE for the production of atomically
thin layers of van der Waals crystals. The most competitive solvents, both in terms of
environmental sustainability and operability, were examined and compared with those
that are more widely used, but unfortunately resulted in being harmful to human health.
The most promising eco-friendly solvents in terms of the yield and crystalline quality of
the produced nanosheets are Polarclean, Iris, and Cyrene. Among these solvents, one can
note that the density of defects is exceptionally low in Polarclean-assisted LPE, as inferred
by the Raman spectroscopy in graphene, with the I(D)/I(G) ratio of only 0.07. Moreover,
Polarclean and Iris also enable ink-jet printing with functional inks of 2D materials based
on green solvents.

The superior performances in LPE, together with the absence of any toxicity issue and
its biodegradability, make green solvents such as Polarclean and Iris ideal candidates for
the sustainable large-scale production of 2D materials. Naturally, they can also replace
solvents commonly employed for other processing methods beyond sonication such as
shear mixing [91] or wet-jet mill [92], particularly promising for industrial scale up. The
efficiency of the green LPE process is crucial in order to combine intrinsic benefits for
environmental health and safety with the optimisation of the performance. Undeniably, the
introduction of a green solvent for LPE will also expand the growing market of 2D materials
towards fields nearly unexplored (e.g., recovery of minerals from seawater, concentration
of fruit juices, production of drinking water, etc.) to date, as a result of the toxicity of
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the state-of-the-art solvents for LPE, with subsequent superb impact on the commercial
potential of their technological applications.
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