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Abstract: Four novel indane derivatives, anisotindans A–D (1–4), were isolated from the roots of
Anisodus tanguticus. Their structures were established using comprehensive spectroscopic analyses,
and their absolute configurations were determined by electronic circular dichroism (ECD) calculations
and single-crystal X-ray diffraction analyses. Anisotindans C and D (3 and 4) are two unusual indeno-
furan analogs. ABTS•+ and DPPH•+ assays of radical scavenging activity reveal that all compounds
(1–4) are active. Specifically, the ABTS•+ assay results show that anisotindan A (1) exhibits the best
antioxidant activity with an IC50 value of 15.62 ± 1.85 µM (vitamin C, IC50 = 22.54 ± 5.18 µM).
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1. Introduction

Anisodus tanguticus (Maxim.) Pascher is a folk medicine commonly used in northwest
and southwest China [1,2]. The roots of A. tanguticus can relieve pain and spasms, promote
blood circulation, remove blood stasis, stop bleeding, and strengthen muscles. Moreover,
they are often used in the clinical treatment of pain, ulcer, colitis, gallstone, traumatic
injury, catagma, hemorrhage, anesthesia, and motion sickness [3–5]. Due to its scarce plant
resources, wild A. tanguticus was once listed as a class II protected endangered plant in the
List of National Key Protected Wild Plants (the first batch). However, the implementation
of long-term environmental protection strategies and the establishment of several planting
bases in Ganzi and Aba (Sichuan Province) have significantly improved the plant resources
of this species over the past years. Today, A. tanguticus is considered an important economic
plant due to its high content of tropane-type alkaloids. Moreover, this plant is currently the
natural resource of anisodamine, anisodine, hyoscine, and cuscohygrine.

In light of their significant biological activities, such as anti-shock effect [6], ameliora-
tion of hypoxic injury [7], cardioprotective effect [8], and alleviation of angina symptoms [9],
the tropane-type alkaloids in A. tanguticus have been extensively researched. However,
few studies are available on the non-alkaloid components of the plant. Previously, we had
isolated a series of compounds from A. tanguticus, including four new sesquiterpenoids
with an unprecedented skeleton [10,11]. In this study, four novel indane derivatives
(1–4) were isolated (Figure 1). Indanes are generally characterized by anti-tumor [12],
anti-microbial [13–15], anti-inflammatory [16,17], neuroprotective [18], and antioxidant
activities [19], and, thus, they have been used to develop various drugs, such as indacaterol,
aprindine, and donepezil. Knowing that indanes have significant free radical scavenging
activity [19], the scavenging activity of compounds 1–4 is analyzed herein using ABTS•+

and DPPH•+ assays.
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Anisotindan A (1) was obtained as colorless crystals, and based on HR-ESI-MS anal-
ysis, its molecular formula is C13H18O3, with five degrees of unsaturation (m/z 245.1157, 
calcd. for C13H18O3Na, 245.1154). The 1H NMR spectrum of 1 displays signals correspond-
ing to ortho-coupled aromatic protons [δH 6.77 (1H, d, J = 8.4 Hz) and 6.59 (1H, d, J = 8.4 
Hz)], an oxymethylene group [δH 3.48 (1H, dd, J = 10.8, 6.0 Hz) and 3.45 (1H, dd, J = 10.8, 
6.0 Hz)], two aliphatic methylene groups [δH 2.91 (1H, dd, J = 15.0, 9.0 Hz), 2.76 (1H, dd, J 
= 15.0, 9.0 Hz), and 2.82 (2H, m)], one aliphatic methine group [δH 2.65 (1H, m)], two ter-
tiary methyl groups [δH 2.09 (3H, s) and 1.19 (3H, s)], and three exchangeable protons [δH 
7.77 (1H, s), 3.70 (1H, t, J = 6.0 Hz), and 3.28 (1H, s)]. The 13C NMR and DEPT spectra 
exhibit carbon resonance signals that can be assigned to the protonated units listed above, 
as well as to five quaternary carbons (δC 154.4, 144.3, 134.7, 120.4, and 73.7). Comprehen-
sive 2D NMR analysis reveals 1H-1H COSY correlations of H2-1/H-2/H2-3 and H-6/H-7, in 
conjunction with HMBC correlations of H2-1 with C-3, C-3a, C-7, and C-7a, and of H2-3 
with C-3a and C-4 in the indane framework of 1 (Figure 2). Based on the HMBC correla-
tions from H2-1 and H2-3 to C-2′; from H-2 to C-1′, C-2′, and C-3′; from H2-1′ to C-2, C-2′, 
and C-3′; from H3-3′ to C-2, C-1′, and C-2′; from OH-2′ to C-2, C-2′, and C-3′; and from OH-
1′ to C-1′ and C-2′, as well as the 1H-1H COSY correlation of H2-1′/OH-1′, a 1,2-dihydroxy-
isopropyl unit is established at C-2. The HMBC correlations of H3-4′ with C-3a, C-4, and 
C-5, and of OH-5 with C-4, C-5, and C-6 indicate that a methyl group and a hydroxy group 
are substituted at C-4 and C-5, respectively. Finally, single-crystal X-ray crystallography 
analysis [Flack parameter = 0.02(13)] reveals that the absolute configuration of 1 is 2R,2′S 
(Figure 3). 
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Figure 1. Structures of the novel indanes (1–4) isolated from A. tanguticus.

2. Results
2.1. Structure Elucidation

Anisotindan A (1) was obtained as colorless crystals, and based on HR-ESI-MS analysis,
its molecular formula is C13H18O3, with five degrees of unsaturation (m/z 245.1157, calcd.
for C13H18O3Na, 245.1154). The 1H NMR spectrum of 1 displays signals corresponding
to ortho-coupled aromatic protons [δH 6.77 (1H, d, J = 8.4 Hz) and 6.59 (1H, d, J = 8.4 Hz)],
an oxymethylene group [δH 3.48 (1H, dd, J = 10.8, 6.0 Hz) and 3.45 (1H, dd, J = 10.8,
6.0 Hz)], two aliphatic methylene groups [δH 2.91 (1H, dd, J = 15.0, 9.0 Hz), 2.76 (1H,
dd, J = 15.0, 9.0 Hz), and 2.82 (2H, m)], one aliphatic methine group [δH 2.65 (1H, m)],
two tertiary methyl groups [δH 2.09 (3H, s) and 1.19 (3H, s)], and three exchangeable
protons [δH 7.77 (1H, s), 3.70 (1H, t, J = 6.0 Hz), and 3.28 (1H, s)]. The 13C NMR and
DEPT spectra exhibit carbon resonance signals that can be assigned to the protonated units
listed above, as well as to five quaternary carbons (δC 154.4, 144.3, 134.7, 120.4, and 73.7).
Comprehensive 2D NMR analysis reveals 1H-1H COSY correlations of H2-1/H-2/H2-3
and H-6/H-7, in conjunction with HMBC correlations of H2-1 with C-3, C-3a, C-7, and
C-7a, and of H2-3 with C-3a and C-4 in the indane framework of 1 (Figure 2). Based on the
HMBC correlations from H2-1 and H2-3 to C-2′; from H-2 to C-1′, C-2′, and C-3′; from H2-1′

to C-2, C-2′, and C-3′; from H3-3′ to C-2, C-1′, and C-2′; from OH-2′ to C-2, C-2′, and C-3′;
and from OH-1′ to C-1′ and C-2′, as well as the 1H-1H COSY correlation of H2-1′/OH-1′, a
1,2-dihydroxyisopropyl unit is established at C-2. The HMBC correlations of H3-4′ with
C-3a, C-4, and C-5, and of OH-5 with C-4, C-5, and C-6 indicate that a methyl group and
a hydroxy group are substituted at C-4 and C-5, respectively. Finally, single-crystal X-ray
crystallography analysis [Flack parameter = 0.02(13)] reveals that the absolute configuration
of 1 is 2R,2′S (Figure 3).
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Anisotindan B (2) was obtained as a white powder, and its molecular formula was
found to be C13H18O3, the same as 1. As shown in Table 1, the 1H and 13C NMR data of 2
are highly similar to those of 1, which suggests that the former might be an epimer of the
latter. This is further confirmed by 2D NMR analysis (HSQC, 1H-1H COSY, and HMBC).
Thus, compound 2 may be identified as (2S,2′S)-2 or its enantiomer. A comparison of the
calculated and experimental ECD data (Figure 4) reveals that the absolute configuration of
compound 2 is 2R,2′R.

Table 1. 1H and 13C NMR data for compounds 1–4 in acetone-d6 (δ in ppm, J in Hz).

No.
1 a 2 a 3 b 4 b

δH δC δH δC δH δC δH δC

1 2.91 dd (15.0, 9.0)
2.76 dd (15.0, 9.0) 33.5 2.82 dd (15.0, 9.0)

2.78 dd (15.0, 9.0) 34.1

2 2.65 m 47.5 2.66 m 47.5 3.58 dd (8.4, 0.7)
3.36 d (8.4) 77.9 3.61 dd (9.1, 0.7)

3.37 d (9.1) 78.1

3 2.82 m 33.4 2.84 overlapped 32.8 80.5 80.4
3a 144.3 144.7 2.91 m 55.5 2.91 overlapped 55.4

4 120.4 120.5 2.95 dd (15.4, 9.1)
2.73 dd (15.4, 4.2) 33.3 2.91 overlapped

2.76 dd (20.3, 9.8) 33.8

4a 145.1 134.7
5 154.4 154.4 120.1 6.81 d (7.7) 122.5
6 6.59 d (8.4) 113.6 6.59 d (8.4) 113.6 156.5 6.74 d (7.7) 116.6
7 6.77 d (8.4) 122.2 6.78 d (8.4) 122.2 6.70 d (8.4) 114.7 155.0

7a 134.7 134.4
8 6.97 d (8.4) 123.9 122.3

8a 134.1 143.3
8b 5.47 d (6.3) 88.1 5.61 d (6.3) 87.2

1′ 3.48 dd (10.8, 6.0)
3.45 dd (10.8, 6.0) 69.8 3.49 dd (10.2, 6.0)

3.46 dd (10.2, 6.0) 69.9 1.32 s 20.9 1.30 s 20.7

2′ 73.7 73.7 2.09 s 12.1 2.22 s 12.0
3′ 1.19 s 22.9 1.17 s 22.8
4′ 2.09 s 12.4 2.09 s 12.4

OH-3 3.83 s 3.87 s
OH-5 7.77 s 7.76 s
OH-6 8.10 s
OH-7 7.92 s
OH-1′ 3.70 t (6.0) 3.71 t (6.0)
OH-2′ 3.28 s 3.29 s

a Data were measured at 600 MHz for 1H and 150 MHz for 13C. b Data were measured at 700 MHz for 1H and
175 MHz for 13C.
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Anisotindan C (3) was obtained as colorless crystals, and it has the molecular formula
C13H16O3, with six degrees of unsaturation (two fewer protons than compounds 1 and 2), as
evidenced by HR-ESI-MS analysis (m/z 243.0996, calcd. for C13H16O3Na, 243.0997). The 1H
and 13C NMR spectra of compound 3 suggest that this compound is an analog of compound
2. Indeed, comparison of the NMR data corresponding to the two compounds reveals that
a methylene group in 2 is replaced by an oxymethine group [δH 5.47 (1H, d, J = 6.3 Hz), δC
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88.1] in compound 3. In addition, the signal of the exchangeable hydrogen proton (OH-1′)
is observed in the 1H NMR spectrum of compound 2, but not in the spectrum of 3. This
indicates that compound 3 is an ether derivative of compound 2. The 2D NMR spectra of
compound 3 confirmed its planar structure, especially the HMBC correlation of H-8b to C-2
(Figure 2). Moreover, H-3a, H-8b, and OH-3 in 3 have the same orientation, as evidenced
by the enhancement of H-3a and OH-3 signals upon the irradiation of H-8b in 1D NOE
spectroscopy analysis. The small coupling constant between H-3a and H-8b (J3a,8b = 6.3 Hz)
also indicates that H-3a and H-8b are cis oriented [20]. Single-crystal X-ray diffraction
analysis [Flack coefficient 0.08(7)] (Figure 3) shows that the absolute configuration of 3 is
3R,3aS,8bS.

Anisotindan D (4) is an isomer of compound 3, as indicated by HR-ESI-MS, 1H, and 13C
NMR data. Comparison of the 1H and 13C NMR spectra of the two compounds reveals that
the compound 4 is an isomer of compound 3. As shown in Figure 2, the 1H-1H COSY and
HMBC correlations reveal the presence of the 3,3a,4,8b-tetrahydro-2H-indeno [1,2-b]furan
skeleton. In addition, the HMBC correlations of OH-3 with C-2, C-3, and C-1′; OH-7 with
C-6, C-7, and C-8; and of H3-2′ with C-7, C-8, and C-8a confirm that two hydroxy groups
and a methyl group are substituted at C-3, C-7, and C-8, respectively. Based on the NOE
correlations of H-8b with H-3a and OH-3, as well as the small coupling constant between
H-3a and H-8b (J3a,8b = 6.3 Hz), H-3a, H-8b, and OH-3 in 4 have the same orientation. As
shown in Figure 4, the calculated ECD spectrum of (3S,3aR,8bR)-4 is consistent with the
experimental spectrum, and thus, the absolute configuration of compound 4 is 3S,3aR,8bR.

2.2. Antioxidant Activities

As shown in Table 2, compounds 1, 2, 3, and 4 exhibit ABTS free radical scavenging
activities, with IC50 values of 15.62 ± 1.85, 40.92 ± 7.02, 43.93 ± 9.35, and 32.38 ± 6.29 µM,
respectively. The activity of compound 1, the most potent scavenger, is even stronger than
that of vitamin C (VC, IC50 = 22.54 ± 5.18 µM). Based on the DPPH•+ assay, compound
1 also has an antioxidant effect, with an IC50 value of 68.46 ± 17.34 µM. However, the
remaining compounds do not exhibit antioxidant activity, even at concentrations as high as
100 µM. Interestingly, the antioxidant activities of epimers 1 and 2 are quite different, despite
the similar structures of the two compounds (differ only in the absolute configuration
of C-2′).

Table 2. ABTS•+ and DPPH•+ scavenging activities of compounds 1–4 a.

IC50 for ABTS•+ Scavenging
Assay (µM)

IC50 for DPPH•+ Scavenging
Assay (µM)

1 15.62 ± 1.85 68.46 ± 17.34
2 40.92 ± 7.02 >100
3 43.93 ± 9.35 >100
4 32.38 ± 6.29 >100

VC 22.54 ± 5.18 10.19 ± 1.38
a All values are represented as Mean ± SD, n = 3.

3. Discussion

Indanes are a class of small organic molecules with a benzocyclopentane skeleton that
can be substituted with 4-aminobenzylidene, gallic acid, piperidine, cyclohexadienone, or
nucleobase to form indane analogs with diverse structures and significant activity [21].
Many reports are available in the literature regarding the synthesis of indane analogs via
Friedel–Crafts-type, Michael-type, and Heck-type cyclization reactions [21,22]. However,
reports on naturally occurring indanes are scarce. Notably, A. tanguticus seems to contain
several indane derivatives, including rare polyhydroxy indenofurans.

Oxidative stress, a condition induced by the excessive generation of free radicals, is
considered to be an important cause of human disease and aging. Indeed, the accumulation
of reactive species in cells can lead to DNA damage, as well as protein and lipid degrada-
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tion, which affects normal physiological functions [23]. Therefore, antioxidants play an
important role in the prevention and treatment of diseases, and their development has
attracted increasing attention [24–26]. Knowing that polyhydroxy compounds are potent
antioxidants, and that they are widely present in plants [27,28], this study investigates the
polyhydroxy (two or three hydroxy groups) indane derivatives in A. tanguticus. In total,
four novel compounds are isolated, and their antioxidant activities are evaluated using
ABTS•+ and DPPH•+ assays. The obtained results reveal that all four indane derivatives
(1–4) identified herein have good free radial scavenger activities, with 1 being the most
active compound. Comparison of the structures of compounds 1–4 suggests that the strong
activity of compound 1 may be attributed to the OH-1′ substitution and the configuration
of C-2′. However, ABTS•+ and DPPH•+ assays are just simplified methods for estimating
antioxidant activity, which do not reflect the actual antioxidant activity [29]. Unfortunately,
further studies on the antioxidant activity of compounds 1–4 could not be carried out due
to their limited sample quantities.

Indene analogs generally have significant neuroprotective effects [21]. Indeed, donepezil,
a second-generation AChE inhibitor, is used to treat Alzheimer’s disease due to its signif-
icant cholinesterase inhibitory activity. In light of this information, as well as the strong
AChE inhibitory effect of the A. tanguticus extract [30], the AChE inhibitory activity of
the compounds isolated herein is also analyzed in this study using the modified Ellman
method [31] and donepezil as a positive control. However, none of the compounds show
inhibitory activity against AChE, even at concentrations as high as 100 µM.

4. Materials and Methods
4.1. General Experimental Procedures

Optical rotation was measured using a Rudolph Autopol I automatic polarimeter
(Rudolph Research Analytical, Hackettstown, NJ, USA). ECD and IR spectra were recorded
on an Applied Photophysics Chirascan CD spectrometer (Applied Photophysics Ltd.,
Leatherhead, UK) and an Agilent Cary 600 FT-IR microscope instrument (Agilent Tech-
nologies Inc., Santa Clara, CA, USA), respectively. X-ray crystallographic analyses were
performed on a Bruker D8 Quest diffractometer (Bruker Corporation, Billerica, MA, USA).
Meanwhile, NMR and HR-ESI-MS spectra were acquired on a Bruker Avance NEO 600 or a
Bruker Avance NEO 700 spectrometer (solvent peaks used as the references) and a Waters
Synapt G2 HDMS (Waters Corporation, Milford, MA, USA) or a Bruker timsTOF MS instru-
ment, respectively. The melting points were measured on a BÜCHI M-565 melting point
apparatus (BÜCHI Labortechnik AG, Flawil, Switzerland). MPLC separations were carried
out using a BÜCHI Pure C-805 instrument. HPLC separations were performed on an
Agilent 1220 instrument with a Welch Ultimate XB-C18 column (10 × 250 mm2, 5 µm) or a
Daicel Chiralpak AD-H column (4.6× 250 mm2, 5 µm). TLC was carried out using silica gel
GF254 plates (Anhui Liangchen Silicon Material Co. Ltd., Lu’an, Anhui, China), whereas
column chromatography separations were performed on silica gel (200–300 mesh, Yantai
Institute of Chemical Technology, Yantai, Shandong, China), Sephadex LH-20 (40–70 µm,
Amersham Pharmacia Biotech AB, Uppsala, Sweden), or ODS (40 µm, Acchrom Technology
Co. Ltd., Beijing, China).

4.2. Plant Material

The roots of A. tanguticus (Maxim.) Pascher (Solanaceae) were collected from Aba
Tibetan and Qiang Autonomous Prefecture in Sichuan Province, China, during the month
of October in 2017. The collected samples were identified by Dr. Ji-hai Gao (Chengdu Uni-
versity of TCM, Chengdu, Sichuan, China) and deposited at Chengdu No. 1 Pharmaceutical
Co. Ltd. in Chengdu, Sichuan, China.

4.3. Extraction and Isolation

The powdered roots of A. tanguticus (500 kg) were dampened with ammonia, and then
extracted with diethoxymethane (6× 500 L) under countercurrent extraction for 2 h at room
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temperature. The extracting solution was partitioned with 20% sulfuric acid, affording
aqueous and organic phases. The organic phase was concentrated under reduced pressure
to yield a residue (3 kg). Part of the residue (1 kg) was suspended in H2O and successively
partitioned with petroleum ether and EtOAc. The EtOAc fraction (60 g) was subjected
to silica gel column chromatography and eluted with petroleum ether–EtOAc (50:1–1:1)
and EtOAc–MeOH (1:0–0:1) to afford 9 fractions (Fr.1–Fr.9). Among them, Fr.7 (17.9 g)
was chromatographed over a Sephadex LH-20 column (petroleum ether–CH2Cl2–MeOH,
5:5:1) to give 12 subfractions (Fr.7-1–Fr.7-12). Subfraction Fr.7-11 (2.8 g) was separated into
six subfractions (Fr.7-11-1–Fr.7-11-6) on a Sephadex LH-20 column (MeOH–H2O, 80:20).
Subsequently, subfraction Fr.7-11-4 (153 mg) was separated by silica gel chromatography
(CH2Cl2–Me2CO, 20:1–1:1) and reverse-phase semi-preparative HPLC (40% MeOH in H2O)
into several mixtures, including a mixture of compound 3 and 4 (9 mg, tR = 28.7 min). The
pure compounds were chirally separated on a Daicel Chiralpak AD-H column using normal-
phase HPLC (n-hexane/ethanol, 5:1). Compound 3 (4 mg) was eluted at 9.5 min, whereas
compound 4 (4 mg) was eluted at 14.3 min. Fr.7-12 (500 mg) was first separated by silica gel
column chromatography into five subfractions (Fr.7-12-1–Fr.7-12-5), using CH2Cl2–MeOH
(100:1–10:1) as the mobile phase. Thereafter, Fr.7-12-1 (150 mg) was purified by preparative
TLC (CH2Cl2–MeOH, 17:1) and reverse-phase semi-preparative HPLC (50% MeOH in
H2O), followed by normal-phase HPLC (n-hexane/ethanol, 3:1) to afford compounds
1 (5 mg, tR = 11.8 min) and 2 (2 mg, tR = 6.5 min).

4.4. Physicochemical Properties and Spectroscopic Data of Compounds 1–4

Anisotindan A [(2R)-5-Hydroxy-4-methyl-2-((2S)-1,2-dihydroxyisopropyl)indane] (1):
colorless crystals; mp 174–176 ◦C; [α]20

D −17.0 (c 0.02, MeOH); UV (MeCN) λmax (log ε) 282
(2.89), 218 (3.57), 199 (4.32) nm; ECD (MeCN) 194 (∆ε −3.15), 283 (∆ε −0.24) nm; IR νmax
3358, 2922, 2852, 1658, 1634, 1604, 1541, 1470, 1384, 1263, 1049, 1031, 940, 862, 807 cm−1;
1H NMR (acetone-d6, 600 MHz) and 13C NMR (acetone-d6, 150 MHz) data, see Table 1;
(+)-HR-ESI-MS m/z 245.1157 [M + Na]+ (calcd. for C13H18O3Na, 245.1154). The original UV,
IR, (+)-HR-ESI-MS, 1H NMR, 13C NMR, DEPT, HSQC, 1H-1H COSY, and HMBC spectra
are shown in Figures S3–S11, Supplementary Material.

Anisotindan B [(2R)-5-Hydroxy-4-methyl-2-((2R)-1,2-dihydroxyisopropyl)indane] (2):
white powder; [α]20

D −15.0 (c 0.02, MeOH); UV (MeCN) λmax (log ε) 283 (2.96), 218 (3.65), 199
(4.47) nm; ECD (MeCN) 197 (∆ε −4.58), 282 (∆ε −0.50) nm; IR νmax 3424, 2935, 2850, 1659,
1631, 1603, 1455, 1349, 1266, 1160, 1071, 1027, 940, 811 cm−1; 1H NMR (acetone-d6, 600 MHz)
and 13C NMR (acetone-d6, 150 MHz) data, see Table 1; (+)-HR-ESI-MS m/z 245.1148 [M +
Na]+ (calcd. for C13H18O3Na, 245.1154). The original UV, IR, (+)-HR-ESI-MS, 1H NMR,
13C NMR, DEPT, HSQC, 1H-1H COSY, and HMBC spectra are shown in Figures S12–S20,
Supplementary Material.

Anisotindan C [(3R,3aS,8bS)-3,6-Dihydroxy-3,5-dimethyl-3,3a,4,8b-tetrahydro-2H-
indeno[1,2-b]furan] (3): colorless crystals; mp 209–211 ◦C; [α]20

D +19.0 (c 0.03, MeOH);
UV (MeCN) λmax (log ε) 279 (2.83), 221 (3.70), 200 (4.54) nm; ECD (MeCN) 191 (∆ε −4.19),
204 (∆ε 0.55), 209 (∆ε −0.97), 230 (∆ε 2.49) nm; IR νmax 3357, 3278, 2921, 2850, 1659, 1633,
1603, 1470, 1426, 1383, 1353, 1271, 1243, 1152, 1132, 1024, 970, 934, 893, 816, 754, 705 cm−1;
1H NMR (acetone-d6, 700 MHz) and 13C NMR (acetone-d6, 175 MHz) data, see Table 1;
(+)-HR-ESI-MS m/z 243.0996 [M + Na]+ (calcd. for C13H16O3Na, 243.0997). The original UV,
IR, (+)-HR-ESI-MS, 1H NMR, 13C NMR, DEPT, HSQC, 1H-1H COSY, HMBC, and 1D NOE
spectra are shown in Figures S21–S30, Supplementary Material.

Anisotindan D [(3S,3aR,8bR)-3,7-Dihydroxy-3,8-dimethyl-3,3a,4,8b-tetrahydro-2H-
indeno[1,2-b]furan] (4): white powder; [α]20

D −53.0 (c 0.05, MeOH); UV (MeCN) λmax (log
ε) 285 (3.28), 218 (3.86), 199 (4.58) nm; ECD (MeCN) 193 (∆ε 2.32), 207 (∆ε −7.37), 231 (∆ε
2.28) nm; IR νmax 3356, 3270, 2921, 2851, 1659, 1633, 1498, 1469, 1429, 1382, 1333, 1266,
1180, 1051, 1023, 974, 919, 882, 815, 717, 707 cm−1; 1H NMR (acetone-d6, 700 MHz) and
13C NMR (acetone-d6, 175 MHz) data, see Table 1; (+)-HR-ESI-MS m/z 243.0997 [M + Na]+

(calcd. for C13H16O3Na, 243.0997). The original UV, IR, (+)-HR-ESI-MS, 1H NMR, 13C NMR,
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DEPT, HSQC, 1H-1H COSY, HMBC, and 1D NOE spectra are shown in Figures S31–S40,
Supplementary Material.

4.5. X-ray Crystallographic Data of Compounds 1 and 3

Crystals of 1 and 3 were obtained from MeOH. Intensity data were collected on a
Bruker D8 Quest diffractometer equipped with an APEX-II CCD using Cu Kα radiation.
Crystallographic data for the reported structures have been deposited at the Cambridge
Crystallographic Data Centre (CCDC). Copies of the data can be acquired free of charge
from CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336-033; e-mail:
deposit@ccdc.cam.ac.uk).

Crystal data for 1: C13H18O3, M = 222.27, colorless crystals, monoclinic, a = 6.7889(2) Å,
b = 8.5863(2) Å, c = 10.5065(3) Å, a = 90◦, β = 106.502(1)◦, γ = 90◦, V = 587.21(3) Å3, space
group P21, T = 293(2) K, Z = 2, µ(Cu Kα) = 0.713 mm−1, 10,969 reflections measured, 2125 in-
dependent reflections (Rint = 0.0395). Final R indices (I > 2σ(I)): R1 = 0.0344, wR2 = 0.0810.
Final R indices (all data): R1 = 0.0385, wR2 = 0.0844. The goodness of fit on F2 was 1.093.
Flack parameter = 0.02(13). CCDC number: 2232633.

Crystal data for 3: C13H16O3, M = 220.26, colorless crystals, orthorhombic, a = 6.156(3) Å,
b = 9.879(4) Å, c = 18.688(9) Å, a = 90◦, β = 90◦, γ = 90◦, V = 1136.4(9) Å3, space group P212121,
T = 273(2) K, Z = 4, µ(Cu Kα) = 0.736 mm−1, 41,583 reflections measured, 2086 independent
reflections (Rint = 0.0513). Final R indices (I > 2σ(I)): R1 = 0.0347, wR2 = 0.0924. Final R
indices (all data): R1 = 0.0367, wR2 = 0.0951. The goodness of fit on F2 was 1.056. Flack
parameter = 0.08(7). CCDC number: 2232632.

4.6. ECD Calculation

The details of ECD calculation of compounds 2 and 4 are shown in Texts S1 and S2,
Figures S1 and S2, and Tables S1 and S2, Supplementary Material.

4.7. Antioxidant Activity

The ABTS and DPPH free radical scavenging assays were used to estimate the antioxi-
dant activities of the isolated compounds.

4.7.1. ABTS•+ Assay

The free radical scavenging capacity of compounds 1–4 was measured using the
ABTS•+ decoloration method. First, 20 of mL ABTS•+ solution (7 mM) and 20 mL of
potassium persulfate solution (2.45 mM) were prepared with ultra-pure water. The prepared
solutions were mixed and stored in the dark at 23 ◦C for 16 h to obtain ABTS•+ stock
solution. Two milliliters of this solution were subsequently diluted (20 times) with 95%
ethanol solution to obtain the ABTS•+ working solution with an absorbance of 0.70 ± 0.02 at
734 nm. Thereafter, compound solutions (80 µL) of varying concentrations were mixed
with 400 µL of the ABTS•+ working solution and added into 96-well plates, with 150 µL in
each well. After 6 min incubation in the dark at 23 ◦C, the absorbance (OD) of each sample
was measured at 734 nm. Using vitamin C as the positive control and 95% ethanol solution
as the blank control, the scavenging rate of ABTS free radicals was calculated according
to the following equation: (%) = (1 − As/Ac) × 100%, where As and Ac are the average
OD values of the drug group and the blank control group, respectively. All tests were
performed in triplicate.

4.7.2. DPPH•+ Assay

DPPH•+ solution (0.1 mM) was prepared with 95% ethanol, and 250 µL of the solution
was mixed with compound solutions (250 µL) of varying concentrations. The mixtures
were transferred into 96-well plates, with 150 µL in each well. After the reaction at 25 ◦C
for 30 min, the absorbance (OD) was measured at 517 nm, and the DPPH free radical scav-
enging rate was calculated according to the following equation: (%) = (1 − As/Ac) × 100%,
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where As and Ac are the average OD values of the drug group and the blank control group
(95% ethanol solution), respectively. All tests were performed in triplicate.

5. Conclusions

In this study, four new indanes (1–4), anisotindans A–D, were extracted from the
roots of A. tanguticus. Their structures were identified by NMR and single-crystal X-ray
crystallography analyses, as well as ECD calculations. Meanwhile, their antioxidant activity
was estimated using ABTS and DPPH free radical scavenging assays. The obtained results
show that anisotindans C and D (3 and 4) are two unusual indenofuran analogs, and that
compounds 1–4 exhibit significant antioxidant capacity, especially compound 1, the ABTS
radical scavenging capacity of which is greater than that of vitamin C. The preliminary
structure–activity relationship analysis conducted herein suggests that the variation in
antioxidant activity of indanes may be attributed to differences in OH-1′ substitution and
C-2′ configuration.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/xxx/s1, Figures S1 and S2 are the optimized conformers of (2S,2′S)-2 and (3R,3aS,8bS)-4;
Figures S3–S40 are UV, IR, HR-ESI-MS, 1D NMR, and 2D NMR spectra of compounds 1–4; Table S1.
Energy analysis for the conformers of (2S,2′S)-2; Table S2. Energy analysis for the conformers of
(3R,3aS,8bS)-4; Text S1 and S2 are the ECD calculation of compounds 2 and 4 [32–36].
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