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Abstract: The unique environment within the core of carbaporphyrinoid systems provides a plat-
form to explore unusual organometallic chemistry. The ability of these structures to form sta-
ble organometallic derivatives was first demonstrated for N-confused porphyrins but many other
carbaporphyrin-type systems were subsequently shown to exhibit similar or complementary proper-
ties. Metalation commonly occurs with catalytically active transition metal cations and the resulting
derivatives exhibit widely different physical, chemical and spectroscopic properties and range from
strongly aromatic to nonaromatic and antiaromatic species. Metalation may trigger unusual, highly
selective, oxidation reactions. Alkyl group migration has been observed within the cavity of metalated
carbaporphyrins, and in some cases ring contraction of the carbocyclic subunit takes place. Over
the past thirty years, studies in this area have led to multiple synthetic routes to carbaporphyrinoid
ligands and remarkable organometallic chemistry has been reported. An overview of this important
area is presented.

Keywords: porphyrinoids; carbaporphyrins; azuliporphyrins; benziporphyrins; organometallic
complexes; rearrangements; oxidations; aromaticity

1. Introduction

Porphyrins are extraordinarily effective ligands that form coordination complexes to
virtually every metal or metalloid element [1]. Although this versatility may be diminished
upon core modification, porphyrin analogues still give remarkably diverse metalated
derivatives [2]. When one or more of the nitrogen atoms within the porphyrin core are
replaced by carbon atoms, the resulting carbaporphyrins [3] commonly form organometallic
derivatives with late transition metals, including catalytically important cations such
as nickel(II), palladium(II), platinum(II), silver(III) and gold(III) [4]. In these systems,
the metal cation is constrained within a highly ordered coordination sphere, and this
can lead to unusual reactivity, including selective oxidation reactions. The best known
porphyrinoids of this type are the so-called N-confused porphyrins (NCP, 1) [5–12], and
these can easily be prepared by a one-pot procedure from pyrrole and benzaldehyde [13,14].
However, many other intriguing carbaporphyrinoid systems such as carbaporphyrins 2 and
3 [15], azuliporphyrins 4 [16], benziporphyrins 5 [17,18], oxybenziporphyrins 6 [19], and
tropiporphyrins 7 [20] have been reported (Figure 1) and these exhibit diverse structural and
spectroscopic properties, unusual reactivity, and varying degrees of aromatic, nonaromatic
and antiaromatic characteristics. Carbaporphyrinoids have attracted widespread interest
and have been the subject of a number of reviews [19–30]. This article focuses on the
formation and reactivity of metalated carbaporphyrinoids that have carbon-metal bonds
within 16-atom macrocyclic cavities. Methods used to prepare these fascinating ligands
will be briefly discussed and the reactivity of different families of carbaporphyrinoids will
be presented. N-Confused porphyrins are included in these discussions but will be covered
in less depth as this area has been covered in some detail elsewhere [5–12]. Contracted and
expanded systems are also briefly discussed.
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Figure 1. Selected carbaporphyrinoids.

2. Synthetic Routes to Carbaporphyrinoid Systems

Although N-confused porphyrins (NCPs) were first reported in 1994 [31,32], specu-
lations on the formation of porphyrin analogues with inverted pyrrole units were made
over 50 years earlier. Calvin and coworkers speculated that by-products formed in the
Rothemund reaction could correspond to isomers of meso-tetraphenylporphyrin 8 (TPP,
Scheme 1) in which one or two of the pyrrole rings have been inverted, although some
more bizarre suggestions were also made [33]. Subsequently, the major by-product in the
synthesis of TPP from pyrrole and benzaldehyde was shown to be the related chlorin 9 [34],
and the reported UV-vis spectra for Calvin’s porphyrin-like fractions do not resemble
the spectra later obtained for NCP [31,32]. Pauling also speculated about the existence
of this type of porphyrin isomer around the same time, although these musings were
not published until they were discovered among his papers in 2011 [35]. These prescient
speculations had been all but forgotten when Latos-Grażyński and Furuta, in 1994, in-
dependently isolated modest yields of NCPs from reactions of aromatic aldehydes with
pyrrole under acid-catalyzed conditions. Lindsey, Geier and coworkers later developed
an efficient synthesis of tetraphenyl NCP with yields of up to 40% using methanesulfonic
acid as the catalyst (Scheme 2) [13,14]. Early investigation by Latos-Grażyński, Furuta and
others demonstrated the propensity of this system to form organometallic derivatives [5–8].
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Scheme 1. Rothemund synthesis of meso-tetraphenylporphyrin and a chlorin byproduct.
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The ‘3 + 1’ variant of the MacDonald condensation provides an effective route to
porphyrin analogues such as carbaporphyrins [36,37]. This approach was first used by
Johnson to prepare 21-oxa- (10a), 21-thia- (10b), 21,23-dioxa- (10c), 21,23-dithia- (10d) and
21-oxa-23-thiaporphyrins (10e) (Scheme 3) [38]. The strategy involved reacting tripyrrane
11a and related species 11b,c with furan or thiophene dialdehydes 12 in the presence of
HBr. Although this approach gave the first examples of core modified porphyrins, no
further applications of the ‘3 + 1’ route were made for nearly 25 years. This was due in
part to tripyrranes being relatively inaccessible at that time, although an efficient route to
these intermediates was subsequently reported by Sessler in 1987 [39]. The ‘3 + 1’ strat-
egy provided access to previously unknown heteroporphyrins, but thiaporphyrin 10b
was isolated as an isomeric mixture [38]. Johnson noted that even at 60 MHz, proton
NMR spectroscopy showed that additional peaks were present, and this was attributed
to “traces of other isomers formed by cleavage recombination reactions” [38]. Recently,
syntheses of oxa-, thia- and selenaporphyrins from tripyrranes 13 and 14 and heterocyclic
dialdehydes 12a–c were reported using trifluoroacetic acid (TFA) as the catalyst, and this
methodology afforded pure heteroporphyrins 15a–c and N-methylheteroporphyrins 16a–c
that were free from isomeric impurities (Scheme 3) [40]. In the mid-1990’s, the ‘3 + 1’
route was applied to the synthesis of porphyrins and b-annulated porphyrins [36,41–47].
Using trifluoroacetic acid as a catalyst, isomerically pure porphyrin products were gen-
erally obtained [46], although exceptions have been noted [48]. In addition, two groups
independently utilized this approach to prepare carbaporphyrinoid systems. Berlin and
Breitmaier prepared a benziporphyrin 17 by reacting isophthalaldehyde with tripyrrane
13 in the presence of HBr in acetic acid [49], while Lash reported the synthesis of oxy-
benziporphyrin 18 [19] by condensing 4-formylsalicylaldehyde with 13 in the presence
of TFA, followed by oxidation with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)
(Scheme 3). Benziporphyrin 17 was mistakenly reported to have multiple tautomeric forms
that failed to interconvert on the NMR timescale [49], but the results were subsequently
shown to be due to the presence of isomeric impurities [15,50,51]. This problem persisted
in early attempts to prepare carbaporphyrins using the HBr-catalyzed conditions [52,53].
However, pure carbaporphyrins were obtained when TFA was used as a catalyst, and
these conditions have allowed the synthesis of structurally diverse carbaporphyrinoid
structures (Scheme 4) [15,19,40,50,54–75]. Tripyrrane analogues have also been used to pre-
pare porphyrin analogues, including heterotripyrranes [76,77], azulitripyrranes [61,78–80],
benzitripyrranes [81–84], and pyritripyrranes [85] (Scheme 5). Although less commonly
used, MacDonald ‘2 + 2’ syntheses of carbaporphyrinoids have been reported, including
meso-unsubstituted NCP 19 [86], azuliporphyrin 20 [87], and neo-confused porphyrins such
as 21 and 22 [88–90] (Scheme 6).

One pot syntheses of meso-tetraarylbenziporphyrins [91,92] and azuliporphyrins [93–95]
have also been reported (Scheme 7). Benzenedicarbinols 23 react with pyrrole and aro-
matic aldehydes in the presence of BF3.Et2O to give, following an oxidation step, benzi-
porphyrins 24 [91]. This approach was also used to prepare p-benziporphyrins 25 from
1,4-benzenedicarbinols, albeit in low yield [96]. Azulene 26 favors electrophilic substitution
at the 1,3-positions, which are analogous to the α-positions of pyrroles, and this charac-
teristic has been utilized in the preparation of calix[4]azulenes 27 [97,98], azulitripyrranes
28 [78], and meso-tetraarylazuliporphyrins 29 [93–95] (Scheme 7). Reaction of azulene or
6-substituted azulenes, with three equivalents of pyrrole and four equivalents of an aryl
aldehyde in the presence of BF3.Et2O in chloroform, followed by oxidation with DDQ, gave
azuliporphyrins 29 in up to 20% yield [93–95]. Given that the reaction requires the selective
formation of eight covalent bonds between a 1:3:4 mixture of three different reagents, the
outcome of the chemistry is remarkable.



Molecules 2023, 28, 1496 4 of 82Molecules 2023, 28, x FOR PEER REVIEW 4 of 82 
 

 

 

Scheme 3. Example of MacDonald-type ‘3 + 1’ syntheses of porphyrin analogues. 

 

Scheme 4. Synthesis of carbaporphyrinoid systems using MacDonald-type ‘3 + 1’ condensations. 

YN

HO2C

N

Me

Et

H
H

X

OHC

CHO

Me

Et

YN

X N

Me

Et

Me

Et

HO2C
HBr

12

a. X = O
b. X = S

11

R1

R2 R1

R2

10

a. X = O, Y = NH, R1 = Me, R2 = Et; 

b. X = S, Y = NH, R1 = Me, R2 = Et; 

c. X = Y = O, R1 = R2 = H; 

d. X = Y = S, R1 = R2 = H; 

e. X = O, Y = S, R1 = R2 = H

a. Y = NH, R1 = Me, R2 = Et

b. Y = O, R1 = R2 = H

c. Y = S, R1 = R2 = H

NN

HO2C

N

Me

Et

H
H

X

OHC

CHO

Me

Et

NN

X N

Me

Et

Me

Et

HO2C

1. TFA

12

a. X = O
b. X = S
c. X = Se

Et

Et
R1

R2

15 R = H  16 R = Me
a. X = O, b. X = S, c. X = Se13 R = H, 14 R = Me

R

R

2. [O]

N

N

N

Me

Et

Et

EtEt

Me

H

N

N

N

Me

Et

Et

EtEt

Me

O

H
H

OHC

CHO

OHC

CHO

OH

For 13

17

18

1. TFA

2. [O]

N

N

N

Me

Et

R

REt

Me

O

H

H

N

N

N

Me

Et

Et

EtEt

H

NNH

HN

Me

Et Et

Et

Me

Et

NN

N

Me

Et R

R

Et

Me

H
H

Benziporphyrin

Oxybenziporphyrins

Tropiporphyrins

Carbaporphyrin aldehydes
(R= H or Me)

NNH

N

HN

HNN

N

N

NNH

HN

Me

Et Et

Et

Me

Et

Carbachlorins

NNH

HN

Me

Et Et

Et

Me

Et

N

N

N

Me

Et

Et

EtEt

H

OMe

MeO

R

N

N

N

N
Me

Et

Et

EtEt

Me

H

H

O
OPh

R

HNN

N
N

N

R

Me

Me

R

Me

Et Et

Et

Et

Me

Me

Me

Et

EtEt

Me

Me

Et

R’’

R’’

HN

HNNH

HO2C

HO2C

R’

Me

Me

R’

Tripyrranes

CHO

OHOHC

OHC

OEt

OHC

CHO

OHC

CHO

OHC

CHO
MeO

OMe
R

Me

Et

Et

Et

OHC

CHO

N

OHC

CHO

R

NN

OHC CHO

R

OHC CHO

N

PhOC(O)Cl

CHO

CHOHO

N

OHC

CHO

H

R

CHO

Dimethoxybenziporphyrins
R = H or Me

Inverted pyriporphyrin

NNH

HN

Me

R’ R’’

R’’

Me

R’

Benzocarbaporphyrins

CHO

OH

HN

N

N

N

Me

R

Et

EtR

Me

O

N CHO

CHO

O

N

N

N

Me

Et

Et

EtEt

H

Naphthiporphyrin

Me

N

N

N

Me

Et

Et

EtEt

Me

O

H

H

Oxynaphthiporphyrin

CHO

CHO

OH

OHC

CHO

Oxyquinoliziniporphyrin

N-Confused
porphyrins

Pyrazoloporphyrins

N

N

N

Me

R’ R’’

R’’

Me

R’

R

H

Azuliporphyrins

N

N

N

Me

Et

Et

EtEt

Me

H

H

Cl

R

R

OHC

CHO

R

CHOH

CHO

Cl

Tetrahydrobenziporphyrin

N

N

N

Me

Et

Et

EtEt

H

Me

O

R

H

Antiaromatic 
22-oxybenziporphyrins

OH

R CHO

OHC

Scheme 3. Example of MacDonald-type ‘3 + 1’ syntheses of porphyrin analogues.

Molecules 2023, 28, x FOR PEER REVIEW 4 of 82 
 

 

 

Scheme 3. Example of MacDonald-type ‘3 + 1’ syntheses of porphyrin analogues. 

 

Scheme 4. Synthesis of carbaporphyrinoid systems using MacDonald-type ‘3 + 1’ condensations. 

YN

HO2C

N

Me

Et

H
H

X

OHC

CHO

Me

Et

YN

X N

Me

Et

Me

Et

HO2C
HBr

12

a. X = O
b. X = S

11

R1

R2 R1

R2

10

a. X = O, Y = NH, R1 = Me, R2 = Et; 

b. X = S, Y = NH, R1 = Me, R2 = Et; 

c. X = Y = O, R1 = R2 = H; 

d. X = Y = S, R1 = R2 = H; 

e. X = O, Y = S, R1 = R2 = H

a. Y = NH, R1 = Me, R2 = Et

b. Y = O, R1 = R2 = H

c. Y = S, R1 = R2 = H

NN

HO2C

N

Me

Et

H
H

X

OHC

CHO

Me

Et

NN

X N

Me

Et

Me

Et

HO2C

1. TFA

12

a. X = O
b. X = S
c. X = Se

Et

Et
R1

R2

15 R = H  16 R = Me
a. X = O, b. X = S, c. X = Se13 R = H, 14 R = Me

R

R

2. [O]

N

N

N

Me

Et

Et

EtEt

Me

H

N

N

N

Me

Et

Et

EtEt

Me

O

H
H

OHC

CHO

OHC

CHO

OH

For 13

17

18

1. TFA

2. [O]

N

N

N

Me

Et

R

REt

Me

O

H

H

N

N

N

Me

Et

Et

EtEt

H

NNH

HN

Me

Et Et

Et

Me

Et

NN

N

Me

Et R

R

Et

Me

H
H

Benziporphyrin

Oxybenziporphyrins

Tropiporphyrins

Carbaporphyrin aldehydes
(R= H or Me)

NNH

N

HN

HNN

N

N

NNH

HN

Me

Et Et

Et

Me

Et

Carbachlorins

NNH

HN

Me

Et Et

Et

Me

Et

N

N

N

Me

Et

Et

EtEt

H

OMe

MeO

R

N

N

N

N
Me

Et

Et

EtEt

Me

H

H

O
OPh

R

HNN

N
N

N

R

Me

Me

R

Me

Et Et

Et

Et

Me

Me

Me

Et

EtEt

Me

Me

Et

R’’

R’’

HN

HNNH

HO2C

HO2C

R’

Me

Me

R’

Tripyrranes

CHO

OHOHC

OHC

OEt

OHC

CHO

OHC

CHO

OHC

CHO
MeO

OMe
R

Me

Et

Et

Et

OHC

CHO

N

OHC

CHO

R

NN

OHC CHO

R

OHC CHO

N

PhOC(O)Cl

CHO

CHOHO

N

OHC

CHO

H

R

CHO

Dimethoxybenziporphyrins
R = H or Me

Inverted pyriporphyrin

NNH

HN

Me

R’ R’’

R’’

Me

R’

Benzocarbaporphyrins

CHO

OH

HN

N

N

N

Me

R

Et

EtR

Me

O

N CHO

CHO

O

N

N

N

Me

Et

Et

EtEt

H

Naphthiporphyrin

Me

N

N

N

Me

Et

Et

EtEt

Me

O

H

H

Oxynaphthiporphyrin

CHO

CHO

OH

OHC

CHO

Oxyquinoliziniporphyrin

N-Confused
porphyrins

Pyrazoloporphyrins

N

N

N

Me

R’ R’’

R’’

Me

R’

R

H

Azuliporphyrins

N

N

N

Me

Et

Et

EtEt

Me

H

H

Cl

R

R

OHC

CHO

R

CHOH

CHO

Cl

Tetrahydrobenziporphyrin

N

N

N

Me

Et

Et

EtEt

H

Me

O

R

H

Antiaromatic 
22-oxybenziporphyrins

OH

R CHO

OHC

Scheme 4. Synthesis of carbaporphyrinoid systems using MacDonald-type ‘3 + 1’ condensations.



Molecules 2023, 28, 1496 5 of 82Molecules 2023, 28, x FOR PEER REVIEW 5 of 82 
 

 

 

Scheme 5. MacDonald-type ‘3 + 1’ syntheses of carbaporphyrinoids from tripyrrane analogues. 

C

CHO

OH
H

XN

HN

Me

Et

Me

Et

1. TFA
2. DDQ

HN

XNH

Y

Y

Et

Me

Me

Et

a. X = O; Y = CO2H
b. X = S; Y = H

OHC

CHO

N

N

X

Me

Et

Et

Me

O

H

X = O or S

OH

240

N

N

CO2t-Bu

CO2t-Bu

Et

Me

Me

Et
N

N

HN

Et

Me Et

Et

Et

Me

1. TFA

2. DDQ or FeCl3

R

H
H

R

HN

OHC

CHO

Et

Et

a. R = H; b. R = t-Bu; c. R = Ph

N

N

X

Et

Me

Et

Me

a. X = O, b. X = S, c. X = Se

R

X

OHC

CHO

1. TFA

2. FeCl3

NH

HNX

YZ

Ph

Ph
HN

OHC

CHO

Et

Et

1. TFA
2. DDQ

174

N

N

N

X

YZ

HPh

Ph

Et

Eta. X = N, Y = Z = N
b. Y = N, X = Z = CH
c. Z = N, X = Y = CH

NH

HN

Ph

Ph
HN

OHC

CHO

Et

Et

1. TFA
2. DDQ

N

N

HN

Ph

Ph

Et

Et
a. R = Y = H
b. R = t-Bu, Y = H
c. R = H, Y = OMe
d. R = Me, Y = OMe

R

Y

Y

Y

R
Y

N

N

CO2t-Bu

CO2t-Bu

Et

Me

Me

Et

MeO

H
H

SN

HN

Me

Et

Me

Et

O

NNH

HN

Me

Et

Me

Et

Tropone-fused carbaporphyrin

O

Et

Et

TFATFA

NH

HN

CO2H

CO2H

Et

Me

Et

Me

OH

HO

R

a. R = H, b. R = Me
252a

NN

N

O

Et

Me Et

Et

Et

Me
HO1. TFA

2. FeCl3

H

H

a. X = O, b. X = S, c. X = Se

R

251 NN

N

O

Et

Me Et

Et

Et

Me
O

H

H

Me

HO

XN

N

O

Et

Me

Et

Me
O

H

Me

HO

PhI(OCOCF3)2PhI(OCOCF3)2

R = Me

R = Me

1. TFA
2. FeCl3

HN

OHC

CHO

Et

Et

HN

OHC

CHO

Et

Et

X

OHC

CHO

1. TFA
2. DDQ

Heterotripyrranes

Azulitripyrranes

Methoxyazulitripyrrane

Resorcinol-derived benzitripyrranes

Benzitripyrranes Pyritripyrranes

PyriporphyrinsBenziporphyrins and 
dimethoxybenziporphyrins

Azuliporphyrins

Heterocarbaporphyrins
Hetero-oxybenziporphyrins

S

OHC

CHO

Heteroazuliporphyrins

Scheme 5. MacDonald-type ‘3 + 1’ syntheses of carbaporphyrinoids from tripyrrane analogues.



Molecules 2023, 28, 1496 6 of 82
Molecules 2023, 28, x FOR PEER REVIEW 6 of 82 
 

 

 

Scheme 6. MacDonald ‘2 + 2’ syntheses of carbaporphyrinoids. 

One pot syntheses of meso-tetraarylbenziporphyrins [91,92] and azuliporphyrins [93–

95] have also been reported (Scheme 7). Benzenedicarbinols 23 react with pyrrole and ar-

omatic aldehydes in the presence of BF3.Et2O to give, following an oxidation step, ben-

ziporphyrins 24 [91]. This approach was also used to prepare p-benziporphyrins 25 from 

1,4-benzenedicarbinols, albeit in low yield [96]. Azulene 26 favors electrophilic substitu-

tion at the 1,3-positions, which are analogous to the α-positions of pyrroles, and this char-

acteristic has been utilized in the preparation of calix[4]azulenes 27 [97,98], azulitripyr-

ranes 28 [78], and meso-tetraarylazuliporphyrins 29 [93–95] (Scheme 7). Reaction of az-

ulene or 6-substituted azulenes, with three equivalents of pyrrole and four equivalents of 

an aryl aldehyde in the presence of BF3.Et2O in chloroform, followed by oxidation with 

DDQ, gave azuliporphyrins 29 in up to 20% yield [93–95]. Given that the reaction requires 

the selective formation of eight covalent bonds between a 1:3:4 mixture of three different 

reagents, the outcome of the chemistry is remarkable. 

  

Scheme 7. Direct syntheses of meso-tetraaryl carbaporphyrinoids. 

N

N

HN

Me

Et Et

Me

Et

MeN

Et

Me

HOHC CHO

NH

HO2C

HN

CO2H

Me

Et Et

Me

HCl-AcOH

20

NN

N

N

NN

OHC CHOH H

Et

Et Et

Et
Me

Me Et

Et

Et

Et

H
H

Me

19

N
N

Me

Me

Me

H

H
HCl-AcOH

N

OHC

HN

CHO

R1

R2

NH

HO2C

HN

CO2H

Me

Et Et

Me

HNN

N

N

Me

R R

Me

R1

R2 N

OHC

HN

R1

R1

MeO2C

CHO

HNN

N

N

MeO2C

Me

R R

Me

R1

R1

HNNH

HO2C CO2H

Me

R R

Me

1. p-TSA
2. FeCl3

1. p-TSA

2. [O]

[O]

21 22

N

N

N
H

CH

CH
R

OH

Ar1

OH

Ar1

R

Ar2Ar1

Ar2

Ar1

23

N
H

Ar2CHO

BF3
.Et2O

N

N

HN

BF3.Et2O

Ar

Ar

Ar

Ar

NH

HN

HN

Ar

Ar

Ar

Ar

29

Azuliporphyrinogen

R

R26

24

N

N

CO2t-Bu

CO2t-Bu

Et

Me

Me

Et

28

R

N

AcOCH2

CO2t-Bu

Et

Me

H

H
H

AcOH

D

R = H, t-Bu, or Ph

R

(CH2O)n

R

RR

R

Florisil

Calix[4]azulenes

1

23

4

5

6
7

8

Pyrrole
ArCHO

Azulitripyrranes

Ar1

3 Pyrrole

2 Ar2CHOAr1

HO
N

N

N
H

Ar1

Ar1

Ar2

Ar2
25

2) DDQ

1)
1) BF3.Et2O

2) DDQ

p-Benziporphyrin

OH

27

DDQ

Scheme 6. MacDonald ‘2 + 2’ syntheses of carbaporphyrinoids.

Molecules 2023, 28, x FOR PEER REVIEW 6 of 82 
 

 

 

Scheme 6. MacDonald ‘2 + 2’ syntheses of carbaporphyrinoids. 

One pot syntheses of meso-tetraarylbenziporphyrins [91,92] and azuliporphyrins [93–

95] have also been reported (Scheme 7). Benzenedicarbinols 23 react with pyrrole and ar-

omatic aldehydes in the presence of BF3.Et2O to give, following an oxidation step, ben-

ziporphyrins 24 [91]. This approach was also used to prepare p-benziporphyrins 25 from 

1,4-benzenedicarbinols, albeit in low yield [96]. Azulene 26 favors electrophilic substitu-

tion at the 1,3-positions, which are analogous to the α-positions of pyrroles, and this char-

acteristic has been utilized in the preparation of calix[4]azulenes 27 [97,98], azulitripyr-

ranes 28 [78], and meso-tetraarylazuliporphyrins 29 [93–95] (Scheme 7). Reaction of az-

ulene or 6-substituted azulenes, with three equivalents of pyrrole and four equivalents of 

an aryl aldehyde in the presence of BF3.Et2O in chloroform, followed by oxidation with 

DDQ, gave azuliporphyrins 29 in up to 20% yield [93–95]. Given that the reaction requires 

the selective formation of eight covalent bonds between a 1:3:4 mixture of three different 

reagents, the outcome of the chemistry is remarkable. 

  

Scheme 7. Direct syntheses of meso-tetraaryl carbaporphyrinoids. 

N

N

HN

Me

Et Et

Me

Et

MeN

Et

Me

HOHC CHO

NH

HO2C

HN

CO2H

Me

Et Et

Me

HCl-AcOH

20

NN

N

N

NN

OHC CHOH H

Et

Et Et

Et
Me

Me Et

Et

Et

Et

H
H

Me

19

N
N

Me

Me

Me

H

H
HCl-AcOH

N

OHC

HN

CHO

R1

R2

NH

HO2C

HN

CO2H

Me

Et Et

Me

HNN

N

N

Me

R R

Me

R1

R2 N

OHC

HN

R1

R1

MeO2C

CHO

HNN

N

N

MeO2C

Me

R R

Me

R1

R1

HNNH

HO2C CO2H

Me

R R

Me

1. p-TSA
2. FeCl3

1. p-TSA

2. [O]

[O]

21 22

N

N

N
H

CH

CH
R

OH

Ar1

OH

Ar1

R

Ar2Ar1

Ar2

Ar1

23

N
H

Ar2CHO

BF3
.Et2O

N

N

HN

BF3.Et2O

Ar

Ar

Ar

Ar

NH

HN

HN

Ar

Ar

Ar

Ar

29

Azuliporphyrinogen

R

R26

24

N

N

CO2t-Bu

CO2t-Bu

Et

Me

Me

Et

28

R

N

AcOCH2

CO2t-Bu

Et

Me

H

H
H

AcOH

D

R = H, t-Bu, or Ph

R

(CH2O)n

R

RR

R

Florisil

Calix[4]azulenes

1

23

4

5

6
7

8

Pyrrole
ArCHO

Azulitripyrranes

Ar1

3 Pyrrole

2 Ar2CHOAr1

HO
N

N

N
H

Ar1

Ar1

Ar2

Ar2
25

2) DDQ

1)
1) BF3.Et2O

2) DDQ

p-Benziporphyrin

OH

27

DDQ

Scheme 7. Direct syntheses of meso-tetraaryl carbaporphyrinoids.

Stepwise routes to meso-substituted carbaporphyrinoids are also known (Scheme 8).
For example, benzenedicarbinols 23 react with excess pyrrole and BF3.Et2O to afford ben-
zitripyrranes 30 and these condense with heterocyclic dicarbinols 31 to afford a series of
heterobenziporphyrins 3283 Dimethoxythiabenziporphyrins 3384 and inverted pyripor-
phyrins 34 [85,99], where a pyridine subunit has been incorporated with the nitrogen
orientated towards the periphery of the macrocycle (N-confused pyriporphyrins), were
prepared similarly. In an innovative application of this strategy, a ferrocene-embedded
tripyrrane analogue 35 was used to generate tetraphenylcarbaporphyrin 36 [100]. The
ferrocene unit acts as a protected cyclopentadienyl moiety and spontaneously demetalates
to give the macrocyclic product. Tripyrrane analogues have been widely applied to the
synthesis of expanded porphyrinoid systems [101].
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Scheme 8. Stepwise syntheses of meso-tetraaryl carbaporphyrinoids.

An alternative route to carbaporphyrins and their heteroanalogues from carbatripyrrins
has been developed (Scheme 9) [102]. Carbatripyrrin 37a and oxacarbatripyrrin 37b can
be prepared in three steps from technical grade indene. Condensation with pyrrole and
furan dialdehydes gave moderate yields of macrocyclic products 38 [102,103] and related
carbaporphyrins with fused phenanthrene [102], acenaphthylene, pyrene and chrysene
units [104] were also obtained. In addition, dioxacarbaporphyrin 39 was generated when
dioxocarbatripyrrin 40 was reacted with pyrroledicarbaldehyde 41 [105]. Unfortunately,
many of carbaporphyrins prepared by this strategy are poorly soluble due to the absence
of substituents. This problem can be overcome by reacting 37a and 37b with furan, thio-
phene, selenophene and tellurophene dicarbinols 31a–d in the presence of boron trifluoride
etherate, followed by oxidation with DDQ, to give a series of relatively soluble diphenyl-
heterocarbaporphyrins 42a–h, including the first examples of porphyrin analogues with
four different elements within the macrocyclic core [102,103,106]. Telluracarbaporphyrin
42d proved to be prone to air oxidation and afforded the hydroxytellurophene derivative 43.

A cyclopentadiene analogue of the tripyrranes 44 similarly reacted with a thiophene di-
carbinol to give low yields of heterocarbachlorin 45a (Scheme 10) [107,108]. Oxidation with
DDQ afforded the related thiacarbaporphyrin 46a in 25% yield together with the quinone
addition product 47. Very recently, related oxacarbachlorins 45b and oxacarbaporphyrins
46b were prepared in a similar fashion [109].
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Finally, it may also be possible to convert specific carbaporphyrin-like systems into
other classes of carbaporphyrinoids. The best-known strategy of this type involves oxida-
tive ring contraction of azuliporphyrins 4 to give benzocarbaporphyrins (Scheme 11) [110].
Reaction of azuliporphyrin 4 with tert-butyl hydroperoxide in the presence of base initiates
nuclophilic attack from a peroxide anion, and subsequent Cope rearrangement and elimina-
tion affords mixtures of benzocarbaporphyrins 48 and related aldehydes 49a,b [61]. Tetrary-
lazuliporphyrins 29 similarly give the related meso-substituted benzocarbaporphyrins
50 [93–95]. The same strategy has been applied to the synthesis of carbachlorins 51 from
azulichlorins 52 [111] and carbatriphyrin(1.2.1)s 53 from azulitriphyrins 54 [112]. Ring
contraction reactions triggered by metalation are discussed in later sections of this review.
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Scheme 11. Oxidative ring contraction of azuliporphyrinoids.

3. Organometallic Chemistry of N-Confused Porphyrins

N-Confused porphyrins are particularly proficient at forming organometallic deriva-
tives and can act as dianionic or trianionic ligands (Figure 2). As the confused nitrogen, i.e.,
the external nitrogen atom, bears a proton in tautomer 1B, replacement of the two internal
protons facilitates the incorporation of transition metal dications. However, replacement
of all three protons in tautomer 1A would provide a suitable environment for trications.
Although tautomer 1A is slightly more stable than 1B and is favored in nonpolar solvents,
1B is sufficiently close in energy to be accessible and in fact it is the primary species in
polar aprotic solvents such as DMF and DMSO [113]. The earliest report on the formation
of an organometallic derivative for NCP 1 (Ar = p-tolyl) involved reaction with nickel(II)
chloride to give a nickel(II) complex 55 in which one of the NH protons had been relocated
onto the external nitrogen (Scheme 12) [32]. As is the case for tautomer 1B, this structure is
cross-conjugated and exhibits greatly reduced aromatic characteristics. Reaction of 55 with
methyl iodide gave the C-methylated nickel(II) complex 56 together with a dialkylated
nickel(III) species 57 (Scheme 12) [114]. Complex 56 can be considered to be derived from
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an dianionic ligand corresponding to tautomer 1c (Figure 2). Metal complexes formally de-
rived from tautomer 1B have been reported for Pd(II) [115], Pt(II) [116–118], Cu(II) [119,120],
Mn(III) [121], Co(II) [122], Rh(IV) [123,124] and Mo(II) [125]. Reaction of 3-ethoxy-NCP
58 with NiCl2 gave unstable nickel(II) complex 59 and this gradually air oxidized to
give oxygen bridged nickel(III) complex 60 together with nickel(II) carbaporpholactam
61 [126]. When intermediate 59 was oxidized with (bis(trifluoroacetoxy)iodobenzene (PIFA)
in chloroform-ethanol, nickel(III) 3,21-diethoxyNCP 62 was generated.
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Figure 2. Three tautomers of N-confused porphyrin and formal representations of the corresponding
di- and trianionic ligands.
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Scheme 12. Synthesis of nickel(II) and nickel(III) NCPs.

Copper(II) and copper(III) complexes of NCP have been reported (Scheme 13) [119,120]. Re-
action of NCP 1 or 21-methylNCP 63 with copper(II) acetate afforded copper(II) complexes
64a and 64b, respectively. Tetrakis(pentafluorophenyl) NCP 1c also generated copper(II)
complex 64c but this was readily converted into the corresponding copper(III) complex
65 upon treatment with 1.5 equivalents of DDQ [120]. However, this species is somewhat
unstable and solutions in CHCl3 or CH2Cl2, 65 gradually converted back into 64c.
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Scheme 13. Copper complexes of N-confused porphyrins.

Tetraphenyl NCP 1a reacted with silver(I) trifluoroacetate to give silver(III) complex
65 (Scheme 14) [127]. NCP acts as a trianionic ligand in this case and the silver(I) cation is
transformed into the Ag(III) complex. This is believed to occur via a disproportionation
reaction: 3 Ag+ → 2 Ag3+ + 2 Ag◦ [128]. The macrocycle retains a porphyrin-like 18π
electron delocalization pathway and 65 exhibits strongly diatropic properties. The related
gold(III) complex 66 cannot be obtained directly from 1, but instead it is necessary to
initially carry out a monobromination with N-bromosuccinimide to form 21-bromoNCP 67
and subsequent reaction with 3.3 equiv of AuCl.SMe2 then gives 66 [129]. Gold(III) complex
66 exhibited unique luminescent properties at room temperature. Silver(III) NCPs have
modified reactivity that enables unusual structural transformations to occur (Scheme 15).
For instance, reaction of 65a with dimethylamine results in oxidative addition to afford
21-dimethyl NCP 66 [130]. Oxidation with one equivalent of DDQ produced internally
bridged NCPs 67a and 67b. Reaction of 1a with potassium diphenylphosphide afforded
21-diphenylphosphanyl-NCP 68 (Scheme 15) [131]. Oxidation of 68 with DDQ generated
the related diphenylphosphoryl-NCP 69 but attempts to metalate this compound with
silver(I) acetate led to elimination of the phosphoryl unit and conversion back to silver(III)
NCP 65a. Thiophosphorylation was also observed when 68 was reacted with elemental
sulfur (S8)131. Another intriguing transformation occurs when silver(III) NCP 65a is treated
with lithium hydroxide and methyl or ethyl iodide [132]. Under these conditions, cleavage
of the confused ring, together with demetalation, occurs to produce a novel ethynyl-linked
triphyrin 70. This system, named porphyriyne, has a porphyrin-like UV-vis spectrum with
a Soret band at 418 nm, and the proton NMR spectrum demonstrates the presence of a
strong diamagnetic ring current [132].
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Scheme 15. Synthesis of new porphyrinoids from silver(III) NCPs.

As noted above, NCPs can act as dianionic or trianionic ligands and afford metal
complexes A–C (Figure 3) formally related to tautomers 1A–C (Figure 2), respectively.
NCPs give rise to diverse coordination complexes. In addition to silver(III) and gold(III)
complexes, type B complexes include Co(III) [122], Rh(III) [123,124], and Sb(V) [133] deriva-
tives. Many examples of type D complexes, which lack direct carbon-metal bonds, have
been reported including zinc [134], manganese(II) and iron(II) derivatives [135–137]. The
manganese(II) and iron(II) derivatives react with molecular oxygen to produce internally
oxo-bridged complexes of type E. NCPs can also coordinate at the external nitrogen and
this facilitates the formation of diverse structures. For instance when NCP 1b was reacted
with palladium(II) acetate in refluxing toluene, aryl-bridged dimers 71a and 71b were
formed, together with the organometallic palladium(II) complex 72 (Scheme 16) [115]. The
remarkable coordination chemistry of NCPs has been widely reviewed elsewhere and more
detailed descriptions fall outside of the scope of the current review.
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Figure 3. Coordination modes exhibited by N-confused porphyrins.
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Scheme 16. Palladium complexes of N-confused porphyrins.

Although less well studied, metalated derivatives of meso-unsubstituted NCPs have
also been investigated [56,62]. Much of the initial work on related carbaporphyrinoid
systems was carried out on meso-unsubstituted structures and for this reason complexes
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of meso-unsubstituted NCPs allow valuable comparisons to be made. NCP 73 reacted
with nickel(II) acetate in DMF at 145 ◦C to give the corresponding nickel(II) complex 74
(Scheme 17) [56]. This complex exhibited greatly reduced aromatic character, but when TFA
was added to a solution of 74 in CDCl3 a strong diamagnetic ring current was generated.
An internal CH resonance was observed at −4.93 ppm, while the external meso-protons
gave rise to four singlets between 9.37 and 10.01 ppm. The new species was identified as a
C-protonated nickel complex 74 with an 18π electron delocalization pathway. Protonation
is reversible, but cation 74 slowly demetalated in the presence of TFA to give protonated 73.
Similar C-protonation was subsequently reported for copper(II) and nickel(II) complexes
of tetraphenyl-NCP [119]. N-Methyl and N-phenyl NCPs 75 also gave nickel(II) and
palladium(II) complexes, 76 and 77, respectively, and addition of TFA to solutions of
these organometallic derivatives similarly afforded aromatic C-protonated species 76H+

and 77H+, respectively (Scheme 18) [62]. Higher concentrations of TFA were required to
protonate palladium complexes 77 compared to the 76, but the resulting palladium cations
77H+ proved to be far more stable under acidic conditions [62]. NCPs 75 reacted with
silver(I) acetate to give silver(III) carbaporpholactams 78 and these proved to be highly
diatropic compounds (Scheme 18). The proton NMR spectrum for a solution of 78a in
CDCl3 showed the meso-protons as four downfield 1H singlets between 9.10 and 9.86 ppm.
NCP 75a also reacted with gold(III) acetate to give a low yield of the related gold(III)
complex 79 [62].

Molecules 2023, 28, x FOR PEER REVIEW 13 of 82 
 

 

meso-unsubstituted NCPs allow valuable comparisons to be made. NCP 73 reacted with 

nickel(II) acetate in DMF at 145 °C to give the corresponding nickel(II) complex 74 

(Scheme 17) [56]. This complex exhibited greatly reduced aromatic character, but when 

TFA was added to a solution of 74 in CDCl3 a strong diamagnetic ring current was gener-

ated. An internal CH resonance was observed at −4.93 ppm, while the external meso-pro-

tons gave rise to four singlets between 9.37 and 10.01 ppm. The new species was identified 

as a C-protonated nickel complex 74 with an 18π electron delocalization pathway. Proto-

nation is reversible, but cation 74 slowly demetalated in the presence of TFA to give pro-

tonated 73. Similar C-protonation was subsequently reported for copper(II) and nickel(II) 

complexes of tetraphenyl-NCP [119]. N-Methyl and N-phenyl NCPs 75 also gave nickel(II) 

and palladium(II) complexes, 76 and 77, respectively, and addition of TFA to solutions of 

these organometallic derivatives similarly afforded aromatic C-protonated species 76H+ 

and 77H+, respectively (Scheme 18) [62]. Higher concentrations of TFA were required to 

protonate palladium complexes 77 compared to the 76, but the resulting palladium cations 

77H+ proved to be far more stable under acidic conditions [62]. NCPs 75 reacted with sil-

ver(I) acetate to give silver(III) carbaporpholactams 78 and these proved to be highly dia-

tropic compounds (Scheme 18). The proton NMR spectrum for a solution of 78a in CDCl3 

showed the meso-protons as four downfield 1H singlets between 9.10 and 9.86 ppm. NCP 

75a also reacted with gold(III) acetate to give a low yield of the related gold(III) complex 

79 [62]. 

 

Scheme 17. Protonation of a nickel(II) N-confused porphyrin complex. 

 

Scheme 18. Metalloporphyrinoids derived from 2-methyl and 2-phenyl NCPs. 

4. X-Confused Heteroporphyrins 

O-confused oxaporphyrins and S-confused thiaporphyrins, collectively known as X-

confused heteroporphyrins, have similar structures to NCPs but possess inverted furan 

or thiophene units in place of the confused pyrrole moiety (Figure 4) [138]. Although X-

confused heteroporphyrins are cross-conjugated and only weakly aromatic, dihydro-O-

confused oxaporphyrins are chlorin analogues that possess macrocyclic aromaticity due 

to the presence of 18π electron delocalization pathways. Pyrrole-appended O-confused 

porphyrinoid 80 reacted with nickel(II) chloride or palladium(II) chloride in the presence 

73

NN

H
N

N

Me

Et Et

Et

Et

Me

Ni

Me

NN

N

N

Me

Et Et

Et

Et

Me

Me

H

Ni

H

slow
73H2

2+

74 74H+

Ni(OAc)2

DMF  145 oC

30 min
NNH

N

HN

Me

Et Et

Et

Et

Me

Me

TFA

NN

N

N

Me

Et Et

Et

Et

Me

Au

75

NN

N

N

Me

Et Et

Et

Et

Me

H

R

a. R = Me
b. R = Ph

Me

O

79

Ni(OAc)2

or Pd(OAc)2 NN

N

N

Me

Et Et

Et

Et

Me

M

R

76  M = Ni

77  M = Pd

NN

N

N

Me

Et Et

Et

Et

Me

M

R

H

76H+

77H+
Au(OAc)3

NN

N

N

Me

Et Et

Et

Et

Me

Ag

R

O

AgOAc

78

TFA

Scheme 17. Protonation of a nickel(II) N-confused porphyrin complex.

Molecules 2023, 28, x FOR PEER REVIEW 13 of 82 
 

 

meso-unsubstituted NCPs allow valuable comparisons to be made. NCP 73 reacted with 

nickel(II) acetate in DMF at 145 °C to give the corresponding nickel(II) complex 74 

(Scheme 17) [56]. This complex exhibited greatly reduced aromatic character, but when 

TFA was added to a solution of 74 in CDCl3 a strong diamagnetic ring current was gener-

ated. An internal CH resonance was observed at −4.93 ppm, while the external meso-pro-

tons gave rise to four singlets between 9.37 and 10.01 ppm. The new species was identified 

as a C-protonated nickel complex 74 with an 18π electron delocalization pathway. Proto-

nation is reversible, but cation 74 slowly demetalated in the presence of TFA to give pro-

tonated 73. Similar C-protonation was subsequently reported for copper(II) and nickel(II) 

complexes of tetraphenyl-NCP [119]. N-Methyl and N-phenyl NCPs 75 also gave nickel(II) 

and palladium(II) complexes, 76 and 77, respectively, and addition of TFA to solutions of 

these organometallic derivatives similarly afforded aromatic C-protonated species 76H+ 

and 77H+, respectively (Scheme 18) [62]. Higher concentrations of TFA were required to 

protonate palladium complexes 77 compared to the 76, but the resulting palladium cations 

77H+ proved to be far more stable under acidic conditions [62]. NCPs 75 reacted with sil-

ver(I) acetate to give silver(III) carbaporpholactams 78 and these proved to be highly dia-

tropic compounds (Scheme 18). The proton NMR spectrum for a solution of 78a in CDCl3 

showed the meso-protons as four downfield 1H singlets between 9.10 and 9.86 ppm. NCP 

75a also reacted with gold(III) acetate to give a low yield of the related gold(III) complex 

79 [62]. 

 

Scheme 17. Protonation of a nickel(II) N-confused porphyrin complex. 

 

Scheme 18. Metalloporphyrinoids derived from 2-methyl and 2-phenyl NCPs. 

4. X-Confused Heteroporphyrins 

O-confused oxaporphyrins and S-confused thiaporphyrins, collectively known as X-

confused heteroporphyrins, have similar structures to NCPs but possess inverted furan 

or thiophene units in place of the confused pyrrole moiety (Figure 4) [138]. Although X-

confused heteroporphyrins are cross-conjugated and only weakly aromatic, dihydro-O-

confused oxaporphyrins are chlorin analogues that possess macrocyclic aromaticity due 

to the presence of 18π electron delocalization pathways. Pyrrole-appended O-confused 

porphyrinoid 80 reacted with nickel(II) chloride or palladium(II) chloride in the presence 

73

NN

H
N

N

Me

Et Et

Et

Et

Me

Ni

Me

NN

N

N

Me

Et Et

Et

Et

Me

Me

H

Ni

H

slow
73H2

2+

74 74H+

Ni(OAc)2

DMF  145 oC

30 min
NNH

N

HN

Me

Et Et

Et

Et

Me

Me

TFA

NN

N

N

Me

Et Et

Et

Et

Me

Au

75

NN

N

N

Me

Et Et

Et

Et

Me

H

R

a. R = Me
b. R = Ph

Me

O

79

Ni(OAc)2

or Pd(OAc)2 NN

N

N

Me

Et Et

Et

Et

Me

M

R

76  M = Ni

77  M = Pd

NN

N

N

Me

Et Et

Et

Et

Me

M

R

H

76H+

77H+
Au(OAc)3

NN

N

N

Me

Et Et

Et

Et

Me

Ag

R

O

AgOAc

78

TFA
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4. X-Confused Heteroporphyrins

O-confused oxaporphyrins and S-confused thiaporphyrins, collectively known as
X-confused heteroporphyrins, have similar structures to NCPs but possess inverted furan
or thiophene units in place of the confused pyrrole moiety (Figure 4) [138]. Although
X-confused heteroporphyrins are cross-conjugated and only weakly aromatic, dihydro-O-
confused oxaporphyrins are chlorin analogues that possess macrocyclic aromaticity due
to the presence of 18π electron delocalization pathways. Pyrrole-appended O-confused
porphyrinoid 80 reacted with nickel(II) chloride or palladium(II) chloride in the presence of
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anhydrous potassium carbonate to afford the corresponding metal complexes 81a and 81b,
respectively (Scheme 19) [139]. O-Confused porphyrinoid 80 exhibits macrocyclic aromatic-
ity and proton NMR spectroscopy shows that it possesses a strong diatropic ring current.
However, nickel(II) and palladium(II) complexes 81 have substantially reduced diatropicity
due to the furan unit introducing a cross-conjugated element. When 80 was reacted with
silver(I) acetate in acetonitrile, a fully aromatic silver(III) complex 82a was formed but
when ethanol was added to the reaction mixture, the related ethoxy-derivative 82b was
generated [139]. Addition of TFA facilitated elimination of ethanol to give the highly
diatropic cation 83. The aromatic properties exhibited by this species can be attributed to
electron-donation from the pyrrole substituent (resonance structure 83′). Porphyrinoid 80
also reacted copper(II) acetate in refluxing THF to give copper(III) complex 84 in quan-
titative yield (Scheme 19) [140]. This organometallic complex also gave a proton NMR
spectrum that was consistent with an aromatic macrocycle, although the downfield shifts
to the external protons were reduced compared to silver(III) complex 82a. In the presence
of oxygen, 84 was initially converted into copper(II) complex 85 but further exposure to
O2 resulted in oxidative cleavage to give tripyrrinone complex 86 (Scheme 19). Addition
of bromine to 85 generated an aromatic cation 87 that was analogous to silver(III) cation
83. When copper(III) complex 84 was treated with hydrogen peroxide in the presence of
KOH, an oxygen atom was inserted into the macrocyclic core to give 88, and this could be
demetalated with hydrochloric acid to afford hydroxyporphyrinoid 89.
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Ethoxy-O-confused porphyrinoid 90 reacted with silver(I) acetate to give the silver(III)
organometallic complex 91, and subsequent addition of TFA led to elimination of ethanol
to afford cationic complex 92 (Scheme 20) [141]. This species was unstable and slowly
converted into the carbaporpholactone 93, most likely due to nucleophilic attack from
water followed by oxidation. As silver(I) is lost during this process, silver(III) complex 93
may be responsible for the observed oxidation. Porphyrinoid lactone 93 could be remet-
alated with silver(I) acetate to give the silver(III) complex 94. Reaction of 94 with methy-
lamine or dimethylamine resulted in demetalation and the formation of amino-derivatives
95 [130], while treatment with sodium diphenylphosphide afforded the phosphine deriva-
tive 96 [142]. This derivative was oxidized with DDQ to produce the corresponding
phosphonate 97, and further reaction with copper(II) acetate in the presence of air afforded
a nonaromatic copper(II) complex 98. However, treatment of 97 with silver(I) acetate led to
loss of the phosphonyl group and regeneration of the silver(III) complex 94 [142].
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Scheme 20. Synthesis and reactivity of Ag(III) and Cu(II) O-confused porphyrinoids.

S-Confused thiaporphyrin 99 acts as a monoanionic ligand when reacted with cad-
mium(II) chloride in chloroform or zinc(II) chloride in THF to give coordination complexes
100a and 100b possessing axial chlorides (Scheme 21) [143]. Coupling between the pro-
tons and carbon-13 nuclei of the thiophene unit and the NMR active cadmium isotopes
(111Cd and 113Cd) suggest that there is a strong agostic interaction between the metal and
thiophene units despite the absence of a formal carbon-metal bond. This interpretation is
supported by the X-ray crystallographic data. Organometallic nickel(II) and palladium(II)
complexes 101 were also obtained from 99, demonstrating that S-confused thioporphyrins
can also act as dianionic ligands [25].
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Scheme 21. Metal complexes of S-confused thiaporphyrins.

5. Organometallic Chemistry of True Carbaporphyrins

Carbaporphyrins retain the porphyrin framework but replace one of the nitrogens with
a carbon atom. In early studies, the term “true carbaporphyrins” was introduced [22,144]
to differentiate structures such as 102–110 (Figure 5) [15,58,67,71,72,102,104] from other
carbaporphyrinoid systems including N-confused porphyrins and azuliporphyrins. This
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definition includes ring fused structures such as 103–110 in much the same way as benzo-
porphyrin would be considered to be a “true porphyrin” [145,146]. Much later, another
author considered only 102 to be a true carbaporphyrin [108] but given that the original
definition predates this by at least a dozen years, we suggest that our definition is more
appropriate. In any case, the reactivity, aromaticity, and spectroscopic properties of carba-
porphyrins are no more affected by ring fusion of this type than they are by introducing
electron-withdrawing substituents [69]. Early investigations into the metalation of carba-
porphyrins were performed on benzocarbaporphyrins 111 (Scheme 22) due in part to the
relative accessibility of these porphyrinoids. Initially, attempts were made to react first row
transition metal cations, including Ni(II), Cu(II) and Co(II), were unsuccessful, although
111 was shown to undergo a regioselective oxidation in the presence of 500 equivalents
of iron(III) chloride in alcohol solvents to give ketal derivatives 112 (Scheme 22) [147,148].
Ketals 112 gave intense long wavelength absorptions and proved to be effective agents in
the treatment of leishmaniasis [149,150]. Subsequently, reaction of benzocarbaporphyrins
at room temperature with silver(I) acetate generated silver(III) complexes 113 in excellent
yields [144,151]. Silver(III) carbaporphyrin complexes retain highly diatropic character-
istics and the proton NMR spectra for 112a showed the resonances for the meso-protons
downfield near 10 ppm. The UV-vis spectra for these stable organometallic derivatives
were also porphyrin-like and gave a strong Soret band at 437 nm [144,151]. The X-ray
crystal structure for benzocarbaporphyrin 111b showed that the indene unit was tilted by
approximately 15◦ relative to the mean macrocyclic plane, but when the silver(III) cation
replaces the three inner hydrogens complex 112b takes on a near planar conformation.
meso-Unsubstututed benzocarbaporphyrin 111b also reacted with gold(III) acetate to give
low yields of the corresponding gold(III) complex 113 (Scheme 22) [151]. Reaction of 111a
with [Rh(CO)2Cl]2 generated rhodium(I) complex 114 and this underwent oxidation in
refluxing pyridine to afford rhodium(III) carbaporphyrin complex 115a [152]. Prior to
this study, rhodium(III) N-confused porphyrins had been prepared in the same way [124].
When 111a was heated with [Ir(COD)Cl]2, a closely related iridium(III) complex 115b was
generated [152]. Interestingly, iridium(III) complexes of NCPs are not currently known.
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Scheme 22. Metalation of meso-unsubstituted carbaporphyrins.

Related carbaporphyrins undergo similar metalation reactions (Scheme 23) [153].
Naphthocarbaporphyrin 117 reacted with silver(I) acetate to give 118 [71], while treatment
with [Rh(CO)2Cl]2 afforded rhodium(I) complex 119 [154]. As seen for the benzocarba-
porphyrin series, heating 119 with pyridine afforded the corresponding rhodium(III) com-
plex 120. Carbaporphyrin diester 121 reacted with AgOAc to produce silver(III) complex
122a [69], while metalation with Au(OAc)3 afforded an excellent yield of gold(III) complex
122b [69]. The electron-withdrawing ester moieties appear to stabilize the macrocycle and
this inhibits oxidation reactions. Reaction of 121 with [Rh(CO)2Cl]2 gave rhodium(I) com-
plex 123 and this was converted into the related rhodium(III) derivative 124 in refluxing
pyridine [152]. Carbachlorin 125, which is protected from oxidation on the carbocyclic
ring by the presence of a gem-diester unit, formed silver(III) complex 126 with AgOAc [69].
Carbachlorins 125 and 127 also gave rhodium(I) complexes 128 and 129, respectively, with
[Rh(CO)2Cl]2 [154]. Although the NMR spectra showed that single products had been
formed, in both cases two different structures 128a,b and 129a,b were consistent with the
available data (Scheme 24). X-ray crystal structures could not be obtained, and it was not
possible to determine which specific isomers had been formed. Finally, carbachlorin 130
was shown to react with 3.5 equiv of AgOAc to give silver(III) carbachlorin 131. How-
ever, the reaction occurred relatively slowly compared to carbaporphyrins [67]. When a
larger excess of AgOAc was used, a low yield of impure carbaporphyrin complex 132 was
isolated.

meso-Tetraarylbenzocarbaporphyrins 50 also reacted with silver(I) acetate to give the
silver(III) complexes 133 (Scheme 24) [151]. Reaction with gold(III) acetate in refluxing
pyridine gave much better results for this series, affording gold(III) derivatives 134 in
67–83% yield [151]. The presence of meso-substituents appears to protect the macrocycle
from oxidative degradation. Reaction of benzocarbaporphyrins 50 with Re2(CO)10 and
potassium carbonate in refluxing 1,2,4-trichlorobenzene gave oxorhenium(V) complex 135
and oxygen-bridged rhenium(VII) complex 136 [155]. The structures of these complexes
were confirmed by X-ray crystallography. The formation of such unusual derivatives indi-
cates that benzocarbaporphyrins may prove to have untapped potential in the formation of
organometallic complexes.
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Carbaporphyrins generally act as trianionic ligands. In an attempt to convert this sys-
tem into a dianionic ligand, the introduction of N-alkyl substituents was investigated [156].
Reaction of benzocarbaporphyrin 111a with methyl or ethyl iodide in the presence of
potassium carbonate gave a mixture on N- and C-substituted benzocarbaporphyrins 137
and 138, respectively (Scheme 25) [156]. The major products 137 were alkylated at position
22; no trace of alkylation at the 23-position to give 139 was observed. N-Alkyl carbapor-
phyrins 137 were heated with palladium(II) acetate in acetonitrile with the expectation that
palladium(II) complexes 140 would be generated (Scheme 25). However, the metalation
reaction occurred with concomitant alkyl group migration to give C-alkyl palladium(II)
complexes 141. When the reaction was stopped after a few minutes, complexes 140a,b
were observed but attempts to purify these derivatives by column chromatography were
unsuccessful as partial conversion to 141 always took place. It was suggested that alkyl
group migration could involve a [1,5] sigmatropic rearrangement [156], but a stepwise
mechanism involving a transient Pd-alkyl species is now favored [157]. Palladium(II)
complexes 141 retain strongly diatropic characteristics. In the proton NMR spectrum for
141a, the meso-protons gave two downfield 2H singlets at 9.56 and 10.27 ppm, while the
internal methyl group afforded an upfield 3H resonance at −3.21 ppm [156]. In order to
further examine this chemistry, 23-methylbenzocarbaporphyrin 139a was prepared from
an N-methyltripyrrane [157]. Reaction of 139a with Pd(OAc)2 in refluxing acetonitrile gave
an N-methyl complex 142 that could be isolated and fully characterized. When the reaction
mixture was heated under reflux for 16 h, the rearranged C-methyl derivative 141a was
generated. N-Methyl-carbaporphyrin aldehyde 143 similarly reacted with Pd(OAc)2 to give
palladium(II) N-methyl complex 144 [40]. This compound could be isolated and character-
ized, but longer reaction times gave C-methyl derivative 145. Alkylation of carbaporphyrin
diester 121 with methyl iodide and potassium carbonate in refluxing acetone afforded 21-
methylcarbaporphyrin 146 [69]. Reaction with Pd(OAc)2 generated palladium(II) complex
147, while treatment with Ni(OAc)2 gave nickel(II) complex 148 [69]. N-Methyl carbachlo-
rin 149 was also reacted with Pd(OAc)2 and gave a low yield of the rearranged palladium(II)
complex 150 [67]. It was proposed that this conversion involves a sequential metalation-
oxidation-rearrangement process and yields were substantially improved when the oxidant
FeCl3 was present. Attempts to isolate the intermediary carbachlorin complex 151 were
unsuccessful. Reactions of 22-, 21- and 23-methylcarbaporphyrins 137a, 138a and 139a
with di-µ-chlorotetracarbonyldirhodium(I) were also investigated [157]. Conventional
rhodium(I) complexes 152 were obtained for 137a and 138a, but the presence of a 23-methyl
group in 139a blocks the formation of this type of structure. However, when 139a was
heated with [Rh(CO)2Cl]2 in toluene, an usual rhodium(III) complex 153 was isolated in
31% yield. The identity of this structure was confirmed by X-ray crystallography. In this
case, the methyl group has again migrated onto the internal carbon atom but is converted
into a bridging methylene unit. Hence, alkyl group migration is not limited to palladium(II)
carbaporphyrins. In the proton NMR spectrum for 153, the methylene bridge gave rise to a
broadened doublet at −3.22 ppm while the meso-protons appeared downfield as two 2H
singlets at 9.51 and 10.13 ppm. These data demonstrate that the macrocycle retains strongly
aromatic properties and also shows that 103Rh (100% natural abundance, I = 1

2 ) is coupling
to the methylene unit.
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Scheme 25. Pd(II), Ni(II) and Rh complexes of internally alkylated carbaporphyrins.
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Directly reacting benzocarbaporphyrins 111 with palladium(II) acetate or palladium(II)
chloride primarily led to decomposition. However, tetraphenylcarbaporphyrin 36 has been
shown to react with PdCl2 to generate palladium complex 154 (Scheme 26) [100,158].
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Scheme 26. Palladium(II) complex of tetraphenylcarbaporphyrin.

Carbaporphyrins favor tautomers such as 155 and 155B that have three hydrogens
within the macrocyclic cavity, two of which are attached to nitrogen atoms. The aromatic
character associated with carbaporphyrins can be attributed, at least in part, to the presence
of the 18π electron circuit shown in bold for these structures (Figure 6). Less favored tau-
tomers 155′ and 155B′ can be considered that possess internal methylene units, although
these have not been observed experimentally. While these still have 18π electron delocal-
ization pathways, benzocarbaporphyrin tautomer 155B′ can also introduce a 22π electron
circuit that incorporates the fused benzo-unit. Density functional theory (DFT) calculations
indicate that this delocalization pathway is favored [159,160]. Palladium(II) complexes of
type 156 and 156B effectively freeze in place the conjugation pathways found in tautomers
155′ and 155B′ and this allows extended aromatic circuits to be probed. In order to further
assess how ring fusion modifies the aromatic character of carbaporphyrins, syntheses of
naphtho [2,3-b]-21-carbaporphyrin 157 and anthro[2,3-b]-21-carbaporphyrin 158 have been
developed (Scheme 27) [71,160].
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Figure 6. Carbaporphyrin tautomers and extended aromatic conjugation pathways in palladium(II)
complexes.
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Scheme 27. Palladium(II) complexes of naphtho- and anthrocarbaporphyrins.

Naphthocarbaporphyrin 157 was prepared by reacting diformylbenzoindane 159
with tripyrrane 11 (R = Et) in the presence of TFA, followed by oxidation with DDQ
(Scheme 27) [71]. Very recently, anthracene-fused carbaporphyrin 158 was synthesized from
11 (R = n-hexyl) and the related dialdehyde 160 [160]. Reaction of 157 and 158 with methyl
iodide and potassium carbonate in refluxing acetone gave N-methylcarbaporphyrins 161
and 162, respectively, and subsequent metalation afforded, following an alkyl group mi-
gration, palladium(II) complexes 163 and 164 [71,160]. As anticipated, the spectroscopic
data indicated that the aromatic conjugation pathway was extended through the fused
rings facilitating 26π and 30π electron pathways. This analysis was supported by DFT
calculations. The placement of the internal alkyl substituent necessitates a relocation of
the π-delocalization pathway and thereby traps the structures in an arrangement that
corresponds to tautomers 155N′ and 155A′. The global conjugation pathways all follow
Hückel’s rule, but the 1H NMR spectra indicate that the aromatic ring currents decrease as
the size of the delocalization pathways increase (Table 1). When considering palladium
complexes 150, 141, 163 and 164, which correspond to the series shown in Figure 6, 156,
156B, 156N and 156A, the degree of deshielding to the external protons and shielding to the
internal methyl groups decreases as the extent of π-conjugation increases. For instance, the
resonance for the internal methyl substituent shifts downfield from −4.46 to −1.45 ppm as
the size of the aromatic circuit increases, while the external meso-protons move upfield from
values of 10.00 and 10.42 ppm in 150 to 8.84 and 9.54 ppm in 164. The extended conjugation
also leads to substantial bathochromic shifts in the electronic absorption spectra. The
longest wavelength absorption for benzo-complex 141a appears at 697 nm but this shifts to
772 nm in naphtho-derivative 163 and to 841 nm in anthracene-version 164 [71,160]. These
insightful observations have been confirmed with NICS calculations and anisotropy of
induced current density (AICD) plots [160].

Table 1. Selected proton NMR chemical shifts (ppm) for palladium(II) carbaporphyrins.

150 141 163 164

5,20-H 10.42 10.27 9.85 9.54

10,15-H 10.00 9.56 9.13 8.84

7,18-Me 3.49 3.33 3.16 3.05

21-Me −4.46 −3.21 −2.18 −1.45

Heterocarbaporphyrins have also been synthesized with furan, thiophene, selenophene
and tellurophene rings replacing of pyrrole units [76,77,106,161]. Monoheterocarbapor-
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phyrins act as dianionic ligands [77]. 23-Oxacarbaporphyrin 165 reacted with nickel(II)
acetate, palladium(II) acetate or platinum(II) chloride in DMF to give the corresponding
organometallic derivatives 166 (Scheme 28), although only low yields of the platinum(II)
complex were isolated [76,77]. As expected, these metallo-derivatives retained strongly
diatropic characteristics. 23-Thiacarbaporphyrin 167 similarly afforded palladium(II) com-
plex 168, and 22-oxacarbaporphyrin 169 also reacted with palladium(II) acetate to give
palladium(II) complex 170 [162]. X-ray diffraction analysis demonstrated that palladium(II)
complexes 166b and 170 are both near planar. Addition of TFA to solutions of 168 led to
the formation of an aromatic cation 168H+ (Scheme 28) [84]. Thiacarbachlorin 171 and
thiacarbaporphyrin 172 have also been reported to give palladium(II) complexes 173 and
174, respectively [108].
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Scheme 28. Metal complexes of oxa- and thiacarbaporphyrins.

Diphenyl oxa-, thia-, selena- and telluracarbaporphyrins 175a–d reacted with Pd(OAc)2 in
acetonitrile-chloroform to give a series of palladium(II) complexes 176a–d (Scheme 29) [106,161].
Oxa-, selena- and telluracarbaporphyrin complexes 176a,c,d were characterized by X-ray
crystallography. The macrocyclic conformation for oxacarbaporphyrin complex 176a is
essentially planar [161]. However, the selenophene ring in 176c is pivoted from the mean
macrocyclic plane by 36.0◦ [161], while the tellurophene unit in 176d is twisted away by
49.2◦ [106]. Nevertheless, the proton NMR spectra for all four complexes showed that they
retained highly diatropic characteristics, although the UV-vis absorptions were broadened
and shifted to longer wavelengths as the size of the heteroatoms increased from S to Se to Te.
It is remarkable that a metal complex can be formed when a core atom as large as tellurium
is present. Oxacarbaporphyrin reacted with nickel(II) acetate in refluxing DMF to afford
the corresponding nickel(II) complex 177a [161]. However, good results were only obtained
when the reaction was performed under nitrogen. In the presence of air, oxidative demeta-
lation occurred to give 21-oxocarbaporphyrinoid 178a [161]. When pure 177a was heated
with DMF, the metalated product was converted into the carbonyl derivative and this
demonstrates that oxidation only occurs following the introduction of nickel(II). Thiacarba-
porphyrin 175b also reacted with nickel(II) acetate under nitrogen to give nickel complex
177b in 85% yield. In the presence of air, low yields of thiacarbaporphyrin oxidation prod-
uct 178b were formed. Ketones 178 are tautomers of 21-hydroxyheterocarbaporphyrins 179
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but are only weakly aromatic. The system has 20 and 24 π-electron pathways, structures
178a and 178b that could result in antiaromatic character, but dipolar contributors such
as 178′ provide 18π electron circuits that promote a degree of aromatic character [161].
Recently, oxacarbaporphyrin 180 was reported to undergo air oxidation to form a similar
nonaromatic keto-structure 181 [109]. In addition, oxacarbachlorin 182 was oxidized with
silver(I) acetate to give a structurally related aromatic derivative 183; in this case, the
competing antiaromatic pathways are no longer present [109].
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Scheme 29. Metalation and oxidation of heterocarbaporphyrins.

6. Organometallic Chemistry of Azuliporphyrins

Azuliporphyrins 184 (Scheme 30) have substantially reduced diatropic character com-
pared to carbaporphyrins due to the presence of a cross-conjugated azulene unit [16,53].
However, a degree of aromatic character is retained as the proton NMR spectra for meso-
unsubstituted azuliporphyrins shows that the inner CH proton has been shifted upfield
compared to azulene to approximately +3 ppm. Nevertheless, fully aromatic carbapor-
phyrins commonly give a resonance for this CH at −7 ppm. The intermediary aromatic
properties of azuliporphyrins have been attributed to electron-donation from the seven-
membered ring which can take on a degree of tropylium character [53,163]. Unlike carbapor-
phyrins, azuliporphyrins are dianionic organometallic ligands. Azuliporphyrins 184 have
been shown to react with nickel(II) acetate, palladium(II) acetate or platinum(II) chloride to
give good yields of the corresponding metal complexes 185a–c (Scheme 30) [164,165]. These
stable organometallic derivatives have increased diatropicity and the meso-proton reso-
nances are shifted further downfield than the values observed for free base azuliporphyrins.
The largest effects are observed for palladium(II) complexes 185b, which are considered
to be the most aromatic macrocycles for this series. The meso-protons for platinum com-
plex 185c showed sidebands due to transannular coupling with 195Pt (4JPt,H = 4.4–5.6 Hz).
meso-Unsubstituted azuliporphyrins 184 could also be converted into iridium(III) com-
plexes 186 [166] and rhodium(III) complexes 187 [167] (Scheme 30). Reaction of 184 with
[IrClCOD]2 in refluxing o- or p-xylene gave benzoyliridium(III) complexes 186, albeit in
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relatively low yields, although no reaction was observed in refluxing toluene. A tert-butyl
substituted complex gave crystals that were suitable for X-ray diffraction analysis, and
this confirmed the presence of an axial aroyl unit. The macrocycle proved to be near
planar and the iridium coordination environment had a 5-coordinate square pyramidal
geometry. It was suggested that an iridium(III) chloride macrocyclic complex was initially
formed and that this reacted with the solvent to form a benzyl iridium(III) species [166].
The proton NMR spectra showed that the benzene protons were strongly shielded by the
porphyrinoid system. Further oxidation with molecular oxygen presumably converts the
axial ligand into the observed benzoyl units. Reaction of 184 with [Rh(CO)2Cl]2 in refluxing
o-, m- or p-xylene gave rhodium(III) complexes 187 with axial benzyl ligands. Again, no
reaction was observed in toluene, possibly due to the lower boiling point of this solvent.
Oxidation of the coordinated methylene units was not observed for the rhodium series.
X-ray crystal structures were obtained for the products from all three xylene isomers and
these demonstrated that the porphyrinoid macrocycles were planar with the methylbenzyl
ligands occupying an orthogonal binding site [167]. The proton NMR spectra showed the
coordinated methylene resonances as upfield doublets near −1.9 ppm (2JRhH = 2.6–3.8 Hz).
A related rhodium(III) complex 188 with an axial CH2C(O)CH3 unit was obtained when
the crude rhodium(III) intermediate 189 was reacted with acetone and basic alumina in
toluene. Reaction of azuliporphyrins 184 with copper(II) salts led to an oxidative met-
alation to form copper(II) complexes 190 [168], possibly via a copper(II) organometallic
intermediate 185 (M = Cu). The structure of 190 is nonplanar and the oxyazulenyl unit
is pivoted 31.76◦ relative to the plane described by the core nitrogen atoms. Attempts to
form cobalt complexes of 184 by reacting it with CoCl2.6H2O or Co2(CO)8 were unsuc-
cessful and instead 21-oxyazuliporphyrin 191 was generated [168]. Although reactions
of 184 with Cu(II) or cobalt reagents were carried out under nitrogen, trace amounts of
molecule oxygen appeared to be responsible for the formation of these oxygenated products.
Oxyazuliporphyrin 191 is the keto-tautomer of 21-hydroxyazuliporphyrin. X-ray crystal-
lography conclusively demonstrated the identity of 191 and while a 24π electron pathway
is present, proton NMR spectroscopy indicates that the system is essentially nonaromatic.
Protonation of this system afforded an aromatic cation. Oxyazuliporphyrin 191 acts as a
dianionic ligand and reacted with nickel(II) acetate or palladium(II) acetate to afford metal
complexes 192a and 192b [168]. These derivatives are structurally equivalent to copper(II)
complexes 190 and the X-ray crystal structures for palladium(II) complex 192b (R = t-Bu)
was virtually superimposable with the structure obtained for copper(II) complex 190 (R = t-
Bu). Reaction of 184 with silver(I) acetate led to the formation of silver(III) complexes of
benzocarbaporphyrins (Scheme 30) [168]. Oxidative ring contraction of azuliporphyrins to
benzocarbaporphyrins is well known and results in the formation of structures with unsub-
stituted benzo-units and related aldehydes [110]. The introduction of a formyl substituent
at position 21 generally only occurs to a minor extent due to steric effects. Metalation
of azuliporphyrin 184 to form a silver(III) complex triggers the ring contraction but the
resulting regioselectivity is greatly altered. For 184 (R = H), 21-formyl derivative 193b
is the major product, albeit in 20% yield, while two other products, 193a and 193c, were
each isolated in <4% yield. tert-Butylazuliporphyrin 184 (R = t-Bu) gave 194a as the ma-
jor product in 31% yield, but a greater than expected yield (12%) of sterically crowded
benzocarbaporphyrin aldehyde 194b was also isolated. A mechanism was proposed to
explain the observed results (Scheme 31). Formation of a silver(I) complex, followed by
complexation of molecular oxygen, would give 195 and a subsequent internal redox reac-
tion would produce silver(III) complex 196 with an axial peroxide ligand. Alternatively,
silver(III) azuliporphyrin cation 197 might be formed initially, followed by formation of
the peroxide derivative. The location of the axial peroxide unit facilitates nucleophilic
attack at the nearby 21-position and subsequent Cope rearrangement and elimination of
water gives the observed aldehyde product [168]. Examples of heteroazuliporphyrins
with furan, thiophene or selenophene subunits have also been synthesized. Metalation of
thiaazuliporphyrin 198 with palladium(II) acetate led to a similar ring contraction to form
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palladium(II) benzocarbaporphyrins 199 (Scheme 30) [168]. In these reactions, formation of
crowded 21-formyl derivatives was not favored indicating that the process did not occur
via the type of directed intramolecular nucleophilic attack proposed for silver derivatives.
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Scheme 30. Metalation and oxidation of meso-unsubstituted azuliporphyrins.

It is worth noting that azulene-based pincer ligands have been reported that can bind
divalent transition metal cations [169]. Azulene bis-thioamide 200 reacted with palladium
chloride and lithium chloride in refluxing methanol to afford organometallic palladium(II)
complex 201a (Scheme 32). Reaction of 200 with PtCl2(PhCN)2 in acetonitrile generated
the related platinum complex 201b. These structures have similar features to metalated
azuliporphyrins such as 185.
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from the reaction of azuliporphyrins with silver(I) acetate.
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Scheme 32. Metalation of an azulene pincer ligand.

Metalation reactions for tetraarylazuliporphyrins 202 show some significant differ-
ences to the chemistry of meso-unsubstituted azuliporphyrins 184. However, they also
react with Ni(OAc)2, Pd(OAc)2 and PtCl2 to give similar organometallic derivatives 203
(Scheme 33) [165]. Furthermore, attempts to metalate 202 with copper(II) salts led to the for-
mation of copper(II) oxyazuliporphyrins 204 [170,171]. X-ray crystallography showed that
the structure was highly distorted and the azulene ring was tilted by almost 53◦ relative to
the mean macrocyclic plane [170]. Reactions in the presence of 18O2 demonstrated that the
oxygen atom derives from molecular oxygen. A recent study demonstrated that copper(II)
complex 205 can be isolated under strictly anaerobic conditions using a glove box [172].
Exposure to air then led to the formation of 204. However, even in the absence of O2, conver-
sion to 204 still takes place via inner core nucleophilic attack from water or hydroxide ions.
Demetalation of 204 with 10% TFA-CHCl3 gave 21-oxyazuliporphyrins [170,171]. As was
the case for the meso-unsubstituted series, keto-tautomers 206 were favored over hydrox-
yazuliporphyrins 207. Metalation of 206 with Ni(OAc)2, Pd(OAc)2 or PtCl2 gave nickel(II),
palladium(II) and platinum(II) complexes 208 [171]. X-ray crystallography showed that the
conformations of the Pd(II) and Pt(II) complexes were virtually identical to the structure
obtained for copper(II) oxyazuliporphyrin 204 [171].
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Scheme 33. Metalation of meso-tetraarylazuliporphyrins.

Ruthenium complexes of azuliporphyrins 202 have also been reported (Scheme 34) [173,174].
Reaction of 202 with one equivalent or less of Ru3(CO)12 gave ruthenium(II) complex
209. The proton NMR spectrum showed the external pyrrolic protons between 7.62 and
7.69 ppm, indicating that the macrocycle has a moderate aromatic ring current. Ad-
dition of excess Ru3(CO)12 led to the formation of cluster complex 210a, and related
bimetallic derivatives 210b–d were obtained from nickel(II), palladium(II), and platinum(II)
azuliporphyrins 203a–c. In the presence of air, 209 slowly oxidized to give ruthenium
21-oxyazuliporphyrin complex 211. This complex can also be prepared in 33% yield by
reacting 21-oxyazuliporphyrin 206 with Ru3(CO)12. Interestingly, 211 can be converted
back into 206 by reacting it with Ru3(CO)12 in refluxing chlorobenzene. Oxyazuliporphyrin
complex 211 readily added a further ligand to form hexacoordinate ruthenium complexes
212, and a structure of this type that incorporated 1-butanol was characterized by X-ray
crystallography. In the absence of a suitable ligand, a dimeric complex 213 could be iso-
lated instead. Cyclic voltammetry showed that 209 underwent two reversible one-electron
oxidations, and the first oxidation gave rise to an easily accessible radical cation 214. This
type of oxidation was also accomplished with DDQ or bromine to give the π-radical species
214a,b (Scheme 34).

In contrast to meso-unsubstituted azuliporphyrins, tetraphenylazuliporphyrin 202
reacted with CoCl2 or Co(OAc)2 to give cobalt(II) azuliporphyrin 215 (Scheme 35) [172].
In addition, treatment of 202 with Co2(CO)8 afforded a transient π-allyl complex 216 that
slowly converted into 215. When 215 was exposed to air, oxidation to cobalt(II) oxyazulipor-
phyrin 217 was observed. This species exists in equilibrium with dimer 218 but addition of
ligands such as pyridine leads to the formation of hexacoordinate cobalt(II) complexes 219.
Reaction of oxyazuliporphyrin 206 with cobalt(II) acetate also afforded 217. In pyridine
solutions, 215 air oxidized to give cationic cobalt(III) complex 220 and the proton NMR
spectrum for this structure indicated that the system had taken on significantly increased di-
atropicity. This can be attributed to the seven-membered ring taking on tropylium character
while facilitating 18π electron delocalization pathways in the porphyrinoid ligand.
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Scheme 35. Cobalt complexes of tetraphenylazuliporphyrin.

Tetraarylthiaazuliporphyrin 221 reacted with palladium(II) chloride to give palla-
dium(II) thiaazuliporphyrin cation 222 (Scheme 36) [175]. The X-ray structure for this
species showed that the thiophene ring was deflected from the macrocyclic plane by
over 30◦. The electron-deficient seven-membered ring underwent ring contractions in
the presence of suitable nucleophiles to generate palladium(II) thiacarbaporphyrins 223.
The best results were obtained when 222 was heated with palladium(II) acetate in DMF
and ring-contraction products 223a and 223b were isolated in 12% and 51% yields, respec-
tively. Thiaazuliporphyrin 221 also reacted with ruthenium reagents in chlorobenzene to
give chlorocarbonylruthenium(II) complex 224. Addition of silver(I) trifluoroacetate in
dichloromethane produced the related radical cation 225. However, when 221 was reacted
with ruthenium reagents without carbonyl ligands, an oxidation reaction took place to give
the paramagnetic ruthenium(III) complex 226.
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Scheme 36. Metalation of a tetraaryl thiaazuliporphyrin.

Metalation of internally alkylated azuliporphyrins was investigated (Scheme 37) [176].
These alkyl derivatives proved to be unstable and were isolated as the corresponding
hydrochloride salts. 21-Alkylazuliporphyrins 227a.2HCl and 227b.2HCl were reacted
with palladium acetate in refluxing chloroform-acetonitrile. A poor yield of palladium(II)
complex 185b (<10%) was isolated where the internal alkyl substituents had been lost.
This may be due to nucleophilic displacement of the metalloporphyrinoid from the alkyl
substituents in intermediate 228. A second aromatic product was noted but could not
be identified. The main product from the reaction of 23-methylazuliporphyrin 229.2HCl
with Pd(OAc)2 was also a dealkylated palladium(II) azuliporphyrin complex 185b′ (45%
yield) [176]. However, two minor products corresponding to palladium(II) benzocarba-
porphyrins 230a,b were isolated in 5% and 2.4% yields, respectively. These products were
profoundly modified by a combination of oxidative ring contractions and methyl group
migration. It has been reported that palladium can induce the formation of peroxides from
molecular oxygen [177] and it was proposed that the first step leading to the formation
of 230a,b involves nucleophilic attack from a hydroperoxide ion onto intermediate 231
to give 232 (Scheme 37) [176]. Cope rearrangement would generate a six-membered ring
while closing off a cyclopropane unit affording 233. Further elimination of water and CO
would generate palladium(II) 23-methyl tert-butylbenzocarbaporphyrin 234a. This would
be expected to undergo a methyl group migration to afford the observed product 230a.
Alternatively, intermediate 233 could eliminate isobutylene and water to produce 234b and
this would further rearrange to give aldehyde 230b.

In an attempt to prepare 6-methoxyazuliporphyrin 235, pyrrole dialdehyde 236 was
condensed with azulitripyrrane 237 in the presence of TFA, followed by oxidation with
FeCl3 (Scheme 38) [178]. Unexpectedly, tropone-fused carbaporphyrin 238 was generated
instead. Although the UV-vis spectrum for 238 appeared to be a hybrid of the electronic
spectra for azuliporphyrins and carbaporphyrins, 238 was fully aromatic and behaved
as a trianionic ligand. Specifically, 238 reacted with silver(I) acetate to give silver(III)
complex 239.
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7. Organometallic Chemistry of Benziporphyrins, Naphthiporphyrins and Related Systems

Benziporphyrins are porphyrin analogues which have a benzene ring that replaces one
of the pyrrole units [17,18,179]. Naphthiporphyrins are similar systems incorporating naph-
thalene rings instead. Benziporphyrins can act as monoanionic or dianionic ligands [17].
meso-Unsubstituted benziporphyrin 240 reacted with nickel(II) acetate in refluxing DMF to
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give the nickel(II) complex 241a in 42% yield (Scheme 39) [65]. Palladium(II) complex 241b
was also obtained in 35% yield by reacting 240 with palladium(II) acetate in refluxing ace-
tonitrile. The proton NMR spectrum for 241a showed the meso-protons as two 2H singlets
at 7.16 and 7.48 ppm, while palladium complex 241b gave these resonances at 7.35 and
7.72 ppm, indicating that metallobenziporphyrins have weakly aromatic properties that
are enhanced for the palladium(II) complex [65]. The aromatic properties can be attributed
to dipolar resonance structures such as 241′ that possess 18π electron pathways. Diphenyl-
benziporphyrins 242 gave good yields of palladium(II) complexes 243 when treated with
palladium(II) acetate in refluxing acetonitrile [83]. Naphthiporphyrin 244 similarly reacted
with palladium(II) acetate to generate metal complex 245 [65]. The X-ray crystal structure
for this complex demonstrated that the porphyrinoid macrocycle was slightly saddled. An
example of a related pyreniporphyrin 246 was prepared by reacting pyrene dialdehyde
247 with tripyrrane 13 in the presence of TFA, followed by oxidation with DDQ [68]. As
expected, this benziporphyrin-like structure reacted with palladium(II) acetate to produce
the related palladium(II) complex 248 [68].
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Scheme 39. Nickel and palladium complexes of benziporphyrins.

Most of the organometallic chemistry of benziporphyrins has been carried out using
tetra-arylbenziporphyrins 249 [17]. Reaction of 249 with PdCl2 or Pd(OAc)2 in refluxing ace-
tonitrile or CHCl3-CH3CN gave the corresponding palladium(II) complexes 250 in 49–70%
yield [91,92] (Scheme 40). Tetraphenylbenziporphyrin also reacted with platinum(II) chlo-
ride in refluxing benzonitrile to afford a 20% yield of platinum complex 251 [91]. Reaction
of 249 with nickel(II) chloride initially gave chloronickel(II) complex 252 but this converted
into the organometallic complex 253 [180,181]. The conversion of 252 into 253 can acceler-
ated by adding anhydrous potassium carbonate, but 253 is converted back into 252 upon
treatment with dry HCl in chloroform. When 249 was treated with silver(I) acetate, a re-
gioselective oxidation occurred to afford the 21-acetoxy-derivative 254 [91], and in a related
reaction 249 was shown to react with AgBF4 in pyridine to give 22-pyridiniumyl derivative
255 (Scheme 40) [182]. It was proposed that a silver(III) benziporphyrin is initially formed,
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followed by reversible axial coordination of pyridine and reductive elimination of silver(I).
When a solution of 255 in CDCl3 was heated for 12 h, intramolecular cyclization occurred
to give phlorin cation 256.
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Scheme 40. Metalation and regioselective oxidation of meso-tetraaryl benziporphyrins.

Dimethoxybenziporphyrins 257 and 258 also reacted with silver(I) acetate to give
the 21-acetoxy derivatives 259 (Scheme 41) [183,184]. The proton NMR spectra for 259
(R = H) gave the acetate methyl resonance near 1.3 ppm, showing that this unit is shielded
by the macrocyclic π-system. Protonation with TFA gave a dicationic species 259H2

2+

where the acetate resonance shifted further upfield to 0.5 ppm, while the external pyrrolic
protons shifted downfield by 0.5–0.8 ppm, indicating that the macrocycle has taken on a
significant diamagnetic ring current due to resonance contributors such as 259′H2

2+ [184].
The effects were much reduced when a methyl group was present between the two methoxy
substituents because steric crowding prevents the OMe units from lying coplanar with the
benzene ring, diminishing electron donation. Reaction of 257 and 258 with nickel(II) acetate
in refluxing chloroform-methanol gave the nickel(II) complexes 260 in 74–81% yield, while
treatment with palladium(II) acetate in refluxing acetonitrile afforded palladium derivatives
261 in 73–82% yield (Scheme 41) [183,184]. The proton NMR spectra for these compounds
were consistent with moderately aromatic structures. For instance, nickel(II) complex 260
(R = H, Ar = Ph), gave the pyrrolic proton resonances comparatively downfield between
7.24 and 7.66 ppm. The effect was slightly larger for palladium(II) complex 261 (R = H,
Ar = Ph) and in this case the pyrrole resonances appeared between 7.30 and 7.74 ppm,
The X-ray crystal structure of nickel(II) complex 260 (R = H, Ar = Ph) showed that the
macrocycle has a highly distorted saddle shaped geometry. The diatropic properties of the
metal complexes were substantially reduced when a methyl group was placed between the
two methoxy units.
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Scheme 41. Metalation and selective oxidation of 2,4-dimethoxybenziporphyrins.

Reaction of benziporphyrins 249 with zinc chloride, cadmium chloride, or mercury
salts gave metal complexes 262 (Scheme 42) [180]. Similar nickel(II), zinc, and cadmium
derivatives 263 were synthesized from benziporphodimethene 264. Evidence for agostic
interactions with the internal C−H bond for complexes 262 was provided by X-ray crystal-
lography. Reaction of benziporphyrin 249 with iron(II) bromide and lutidine in refluxing
THF under an inert atmosphere afforded a high- spin iron(II) complex 262d in 71% yield
(Scheme 42) [181]. In contrast, under anaerobic conditions, copper(II) chloride reacted with
249 to give a dimeric copper complex 265, where an oxidative chlorination had occurred
on the internal carbon atoms [181]. X-ray crystallography showed that the copper(II) ben-
ziporphyrin units were connected by a [Cu2Cl4]2− cluster. Dimeric silver(I) complexes
of benziporphodimethenes have also been prepared [185], and a benziporphodimethene
has been reported to be a selective zinc cation fluorescence switch-on sensor [186]. Fur-
thermore, a zinc benziporphodimethene has been used as a building block to construct
multidimensional nanostructure arrays [187].
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Scheme 42. Cu, Zn, Cd, Hg and Fe complexes of benziporphyrins.

Organometallic complexes for structurally related benzene-containing macrocycles
have been reported. Triazamacrocycles 266 reacted with copper(II) salts to give copper(III)
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organometallic complexes 267 (Scheme 43) [188–190]. The reaction involves a dispropor-
tionation to form CuIII and CuI. The copper(III) can be displaced by various nucleophiles
and methanol reacts to give methoxy derivative 268, while 2-pyridone produces adduct
269. Tetraazacalix[1]arene[3]pyridines 270 exhibit similar reactivity [191–194]. Treatment
of 270 with copper(II) perchlorate gave copper(III) complex 271, and further reaction with
a variety of nucleophiles afforded substitution products 272.
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Scheme 43. Organometallic derivatives of benzene-containing macrocycles.

Reaction of tetraphenylbenziporphyrin 249 with [Rh(CO)2Cl]2 gave a six-coordinate
rhodium(III) complex 273 (Scheme 44) [195]. When a solution of 273 in dichloromethane
was absorbed onto a silica column and left for 12 h, aromatic rhodium complex 274 was
generated. The formyl unit in 274 was shown to be derived from dichloromethane and this
transformation involves the intermediacy of 2-chlorovinyl derivative 275. Porphyrinoid
274 possesses a rhodacyclopropane unit and proved to be rather unstable. When 273
or 274 were absorbed onto basic alumina, a mixture of rhodium(III) carbaporphyrins
276a–c was formed in a combined yield of 25%. The proton NMR spectrum for 276a
showed the cyclopentadiene protons downfield near 9.4 ppm, while the rhodacyclopropane
proton appeared upfield at −3.5 ppm, confirming the highly diatropic nature of this
system. These remarkable results demonstrate that the benzene ring in benziporphyrins can
undergo a ring contraction to afford a cyclopentadiene unit. Unfortunately, the low yields
of 276a–c obtained from 249 makes this approach impractical for synthesizing metallo-
carbaporphyrins.

Regular benziporphyrins, sometimes called meta-benziporphyrins, have the same
16-atom core as true carbaporphyrins. An isomeric system, para-benziporphyrin 277, has
a slightly expanded core due to the presence of a para-phenylene unit [96]. This system
exhibits global aromatic character that has been attributed to 18π electron delocalization
pathways shown in bold for resonance contributors 277′ and 277” (Scheme 45). Never-
theless, the p-phenylene unit is strongly pivoted away from the mean macrocyclic plane
and rapidly undergoes a teeter-tottering motion that switches the CH=CH units back and
forth between the interior and exterior of the structure. p-Benziporphyrins 277 reacted
with cadmium(II), zinc(II), and nickel(II) chlorides to give metal complexes 278a–c [180].
Although these are only coordinated to the three core nitrogen atoms, structural evidence
for η2-interactions with the phenylene unit was provided. A related anthriporphyrin 279
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reacted with palladium(II) chloride in acetonitrile to yield chloropalladium complex 280.
Subsequent treatment with potassium carbonate in the presence of air resulted in oxidative
ring opening to form the anthracene-appended tripyrrolic palladium(II) complex 281 [196].

Molecules 2023, 28, x FOR PEER REVIEW 36 of 82 
 

 

cadmium(II), zinc(II), and nickel(II) chlorides to give metal complexes 278a–c [180]. Alt-

hough these are only coordinated to the three core nitrogen atoms, structural evidence for 

η2-interactions with the phenylene unit was provided. A related anthriporphyrin 279 re-

acted with palladium(II) chloride in acetonitrile to yield chloropalladium complex 280. 

Subsequent treatment with potassium carbonate in the presence of air resulted in oxida-

tive ring opening to form the anthracene-appended tripyrrolic palladium(II) complex 281 

[196]. 

 

Scheme 44. Synthesis of rhodium(III) carbaporphyrins from tetraphenylbenziporphyrin. 

 

Scheme 45. Metal complexes of p-benziporphyrins and anthriporphyrin. 

p-Benziporphyrins undergo ring contractions with transition metal cations to give 

palladium, rhodium and gold carbaporphyrin complexes. Reaction of 277 with PdCl2 in 

acetonitrile gave chloropalladium derivative 282 (Scheme 46) [197]. As is the case for other 

p-benziporphyrin complexes, the metal cation is involved in an η2-interaction with the 

arene subunit. This interaction freezes the phenylene unit in place, and the proton NMR 

spectrum showed the arene protons as two 2H singlets at 1.40 and 9.04 ppm, demonstrat-

ing that the complex has strongly diatropic characteristics. Treatment of 282 with potas-

sium carbonate resulted in a rearrangement to produce palladium(II) carbaporphyrins 154 

and 283 in a 1:3.5 ratio [197]. The reaction was monitored by proton NMR spectroscopy, 

and initial anti-addition of hydroxide and palladium to the six-membered ring was ob-

served to give of intermediate 284 (Scheme 46). Subsequent β-elimination of H2 affords 

N

N

N

Rh PhPh

Ph

Ph

CO
[Rh(CO)2Cl]2

N

N

N
H

PhPh

Ph

Ph

249

Cl

N

N

N

Rh PhPh

Ph

Ph C

Cl

N

N

N

Rh PhPh

Ph

Ph CHO

N

N

N

Rh

CHO

X

Y

SiO2CH2Cl2Al2O3

C
H

H

Cl

276

Ph

Ph

Ph

Ph

a. X = Y = H
b. X = CHO, Y = H
c. X = H, Y = CHO 274

273

275Al2O3

279

N

N

N

Ph

Ph

Ph

Ph
H

N

N

N

Pd

Ph

Ph

Ph

Ph
O

Cl

281

N
N

N
Pd

Cl

Ph Ph

PhPh

K2CO3

CH3CN

PdCl2

280

N

N

N
H

N

N

N
H

Ar

Ar

Ar'

Ar'

Ar

Ar

Ar'

Ar'

277
277’

Ar

Ar
N

N

N

MAr

Ar

Ar'

Ar'

Cl

a. M = Cd
b. M = Zn
c. M = Ni

MCl2
278

277’’

O2

Scheme 44. Synthesis of rhodium(III) carbaporphyrins from tetraphenylbenziporphyrin.

Molecules 2023, 28, x FOR PEER REVIEW 36 of 82 
 

 

cadmium(II), zinc(II), and nickel(II) chlorides to give metal complexes 278a–c [180]. Alt-

hough these are only coordinated to the three core nitrogen atoms, structural evidence for 

η2-interactions with the phenylene unit was provided. A related anthriporphyrin 279 re-

acted with palladium(II) chloride in acetonitrile to yield chloropalladium complex 280. 

Subsequent treatment with potassium carbonate in the presence of air resulted in oxida-

tive ring opening to form the anthracene-appended tripyrrolic palladium(II) complex 281 

[196]. 

 

Scheme 44. Synthesis of rhodium(III) carbaporphyrins from tetraphenylbenziporphyrin. 

 

Scheme 45. Metal complexes of p-benziporphyrins and anthriporphyrin. 

p-Benziporphyrins undergo ring contractions with transition metal cations to give 

palladium, rhodium and gold carbaporphyrin complexes. Reaction of 277 with PdCl2 in 

acetonitrile gave chloropalladium derivative 282 (Scheme 46) [197]. As is the case for other 

p-benziporphyrin complexes, the metal cation is involved in an η2-interaction with the 

arene subunit. This interaction freezes the phenylene unit in place, and the proton NMR 

spectrum showed the arene protons as two 2H singlets at 1.40 and 9.04 ppm, demonstrat-

ing that the complex has strongly diatropic characteristics. Treatment of 282 with potas-

sium carbonate resulted in a rearrangement to produce palladium(II) carbaporphyrins 154 

and 283 in a 1:3.5 ratio [197]. The reaction was monitored by proton NMR spectroscopy, 

and initial anti-addition of hydroxide and palladium to the six-membered ring was ob-

served to give of intermediate 284 (Scheme 46). Subsequent β-elimination of H2 affords 

N

N

N

Rh PhPh

Ph

Ph

CO
[Rh(CO)2Cl]2

N

N

N
H

PhPh

Ph

Ph

249

Cl

N

N

N

Rh PhPh

Ph

Ph C

Cl

N

N

N

Rh PhPh

Ph

Ph CHO

N

N

N

Rh

CHO

X

Y

SiO2CH2Cl2Al2O3

C
H

H

Cl

276

Ph

Ph

Ph

Ph

a. X = Y = H
b. X = CHO, Y = H
c. X = H, Y = CHO 274

273

275Al2O3

279

N

N

N

Ph

Ph

Ph

Ph
H

N

N

N

Pd

Ph

Ph

Ph

Ph
O

Cl

281

N
N

N
Pd

Cl

Ph Ph

PhPh

K2CO3

CH3CN

PdCl2

280

N

N

N
H

N

N

N
H

Ar

Ar

Ar'

Ar'

Ar

Ar

Ar'

Ar'

277
277’

Ar

Ar
N

N

N

MAr

Ar

Ar'

Ar'

Cl

a. M = Cd
b. M = Zn
c. M = Ni

MCl2
278

277’’

O2

Scheme 45. Metal complexes of p-benziporphyrins and anthriporphyrin.

p-Benziporphyrins undergo ring contractions with transition metal cations to give
palladium, rhodium and gold carbaporphyrin complexes. Reaction of 277 with PdCl2 in
acetonitrile gave chloropalladium derivative 282 (Scheme 46) [197]. As is the case for other
p-benziporphyrin complexes, the metal cation is involved in an η2-interaction with the
arene subunit. This interaction freezes the phenylene unit in place, and the proton NMR
spectrum showed the arene protons as two 2H singlets at 1.40 and 9.04 ppm, demonstrating
that the complex has strongly diatropic characteristics. Treatment of 282 with potassium
carbonate resulted in a rearrangement to produce palladium(II) carbaporphyrins 154 and
283 in a 1:3.5 ratio [197]. The reaction was monitored by proton NMR spectroscopy, and
initial anti-addition of hydroxide and palladium to the six-membered ring was observed
to give of intermediate 284 (Scheme 46). Subsequent β-elimination of H2 affords ketone
285. Ring contraction involving a 1,2-hydride shift produces 283, while extrusion of CO
generates 154. The proton NMR spectrum of formyl derivative 283 gave an upfield reso-
nance for the aldehyde proton at 2.43 ppm, confirming the strongly aromatic properties
of this complex. Reduction of 282 with sodium borohydride afforded the cyclohexadiene-
palladium complex 286a, while sodium borodeuteride stereoselectively yielded the related



Molecules 2023, 28, 1496 37 of 82

deuterated product 286b. Nucleophilic addition of sodium ethoxide to palladium complex
282 gave ethoxy derivative 287, but unlike 284, this complex did not further react to give
carbaporphyrin complexes. Structurally related 1,4-naphthiporphyrin 288 similarly reacted
with palladium(II) chloride to afford chloropalladium complex 289 [198]. Both 288 and 289
had folded conformations where the naphthalene unit was placed over the porphyrinoid
cavity (Scheme 46). When 289 was treated with potassium carbonate, ring contraction to
give palladium(II) benzocarbaporphyrin 290a in 21% yield together with small amounts of
290b was observed. Although the palladium(II) cation in 290a is placed in a square-planar
coordination environment, X-ray crystallography shows that the macrocycle has a curved
geometry.
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Scheme 46. Palladium-mediated ring contractions of p-benziporphyrin and 1,4-naphthiporphyrin.

Reaction of 277 or 288 with sodium tetrachloroaurate also induced ring contractions
(Scheme 47) [199]. When p-benziporphyrins 277 were treated with Na[AuCl4]·2H2O and
potassium carbonate, gold(III) complexes 291 were generated in 10–14% yield. Addition
of acid led to a reversible protonation on the internal carbon to give cations 291H+, a
phenomenon that has also been reported for N-confused porphyrins [56,62,119]. Reaction
of 277 with Na[AuCl4]·2H2O in methanol afforded nonaromatic dimethoxy derivatives
292 rather than the ring contraction products. 1.4-Naphthiporphyrin 288 also reacted
with sodium tetrachloroaurate to give gold(III) benzocarbaporphyrin 134c in 32% yield
(Scheme 47) [199]. Similar gold(III) complexes had previously been prepared directly from
tetraarylbenzocarbaporphyrins (Scheme 24) [151].



Molecules 2023, 28, 1496 38 of 82

Molecules 2023, 28, x FOR PEER REVIEW 38 of 82 
 

 

277 with Na[AuCl4]·2H2O in methanol afforded nonaromatic dimethoxy derivatives 292 

rather than the ring contraction products. 1.4-Naphthiporphyrin 288 also reacted with so-

dium tetrachloroaurate to give gold(III) benzocarbaporphyrin 134c in 32% yield (Scheme 

47) [199]. Similar gold(III) complexes had previously been prepared directly from 

tetraarylbenzocarbaporphyrins (Scheme 24) [151]. 

 

Scheme 47. Synthesis of gold(III) carbaporphyrins from p-benzi- and 1,4-naphthiporphyrins. 

Reaction of di-μ-chlorotetracarbonyldirhodium(I) with p-benziporphyrin 277 in tol-

uene gave rhodium(III) complex 293 (Scheme 48) [200]. X-ray crystallographic analysis of 

293 showed that the rhodium cation was close to C21–C22, suggesting the presence of a 

Rh−η2 interaction with the phenylene unit. The proton NMR spectrum showed the reso-

nances for the inner and outer phenylene protons at 0.78 and 8.97 ppm, respectively, and 

this is consistent with a strong aromatic ring current. Furthermore, in the carbon-13 NMR 

spectrum the C21-C22 signal was split into a doublet due to coupling with 103Rh (I = 1/2). 

When 293 was vigorously stirred under reflux with K2CO3 and a small amount of water 

in p-xylene, ring contraction of the arene unit was observed to give rhodium(III) carbap-

orphyrin 294 in 46% yield. The complex contained a rhodacyclopropane unit and closely 

resembles a rhodium(III) complex prepared from a 23-methylcarbaporphyrin [157]. The 

macrocycle has a fully aromatic 18π-electron delocalization pathway, and the proton 

NMR spectrum showed the bridged methylene unit upfield at −3.58 ppm, while the exter-

nal cyclopentadiene protons were shifted downfield to 9.14 ppm. When a solution of 294 

in dichloromethane saturated with anhydrous HCl was placed on basic alumina, oxida-

tion to oxycarbaporphyrin complex 295 was observed. The appearance of a carbonyl lig-

and was unexpected but may have originated from the methylene bridge in 294. Reaction 

of 295 with NaOMe, followed by addition of 1-pentene, generated a related π-coordinated 

complex 296. Addition of hydrochloric acid to 294 opened up the the methylene bridge to 

give C-methyl rhodium(III) carbaporphyrin cation 297. This process was reversible and in 

the presence of water the cation reverted to 294 [200]. 

The phenylene unit in p-benziporphyrins undergoes some remarkable rearrange-

ments to give carbaporphyrin organometallic complexes. However, p-benziporphyrins 

can only be synthesized in low yields and this strategy cannot be used to prepare signifi-

cant quantities of carbaporphyrin derivatives. An alternative route to gold(III) carbapor-

phyrins was devised using 22-methylbenziporphyrins 297 [201,202]. Benziporphyrin 297 

was obtained in a respectable 23% yield from dicarbinol 298 (Scheme 49) and was used to 

access novel carbaporphyrin derivatives. Treatment of 297 with Na[AuCl4].2H2O in di-

chloromethane gave a quantitative yield of chemically unstable gold(III) dication 299. At-

tempts to purify 299 by column chromatography on alumina or silica resulted in the for-

mation of gold(III) carbaporphyrins 300 and 301. Interestingly, ring contractions mediated 

by alumina favored the formation of 300, whereas silica showed a preference for aldehyde 

277

291

NaAuCl4

NN

N

AuPh

Ph

Ar

Ar

288

NaAuCl4

N

N

N

Ph

Ph

Ar

Ar
H

NN

N

Au

H

Ph

Ph

Ar

Ar

134c

NN

N

AuPh

Ph

Ar

Ar

291H+

H+

K2CO3

K2CO3

NaAuCl4

MeOH
N

N

N
H

Ph

Ph

Ar

Ar

292

MeO

MeO

Ar = p-C6H4NO2

a. Ar = Ph

b. Ar = p-C6H4NO2

Scheme 47. Synthesis of gold(III) carbaporphyrins from p-benzi- and 1,4-naphthiporphyrins.

Reaction of di-µ-chlorotetracarbonyldirhodium(I) with p-benziporphyrin 277 in toluene
gave rhodium(III) complex 293 (Scheme 48) [200]. X-ray crystallographic analysis of 293
showed that the rhodium cation was close to C21–C22, suggesting the presence of a Rh−η2

interaction with the phenylene unit. The proton NMR spectrum showed the resonances
for the inner and outer phenylene protons at 0.78 and 8.97 ppm, respectively, and this
is consistent with a strong aromatic ring current. Furthermore, in the carbon-13 NMR
spectrum the C21-C22 signal was split into a doublet due to coupling with 103Rh (I = 1/2).
When 293 was vigorously stirred under reflux with K2CO3 and a small amount of water in
p-xylene, ring contraction of the arene unit was observed to give rhodium(III) carbapor-
phyrin 294 in 46% yield. The complex contained a rhodacyclopropane unit and closely
resembles a rhodium(III) complex prepared from a 23-methylcarbaporphyrin [157]. The
macrocycle has a fully aromatic 18π-electron delocalization pathway, and the proton NMR
spectrum showed the bridged methylene unit upfield at −3.58 ppm, while the external
cyclopentadiene protons were shifted downfield to 9.14 ppm. When a solution of 294 in
dichloromethane saturated with anhydrous HCl was placed on basic alumina, oxidation
to oxycarbaporphyrin complex 295 was observed. The appearance of a carbonyl ligand
was unexpected but may have originated from the methylene bridge in 294. Reaction of
295 with NaOMe, followed by addition of 1-pentene, generated a related π-coordinated
complex 296. Addition of hydrochloric acid to 294 opened up the the methylene bridge to
give C-methyl rhodium(III) carbaporphyrin cation 297. This process was reversible and in
the presence of water the cation reverted to 294 [200].
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The phenylene unit in p-benziporphyrins undergoes some remarkable rearrangements
to give carbaporphyrin organometallic complexes. However, p-benziporphyrins can only
be synthesized in low yields and this strategy cannot be used to prepare significant quanti-
ties of carbaporphyrin derivatives. An alternative route to gold(III) carbaporphyrins was
devised using 22-methylbenziporphyrins 297 [201,202]. Benziporphyrin 297 was obtained
in a respectable 23% yield from dicarbinol 298 (Scheme 49) and was used to access novel
carbaporphyrin derivatives. Treatment of 297 with Na[AuCl4].2H2O in dichloromethane
gave a quantitative yield of chemically unstable gold(III) dication 299. Attempts to purify
299 by column chromatography on alumina or silica resulted in the formation of gold(III)
carbaporphyrins 300 and 301. Interestingly, ring contractions mediated by alumina favored
the formation of 300, whereas silica showed a preference for aldehyde 301. A quantitative
yield of 300 and 301 was obtained when 297 was refluxed in benzene with sodium tetra-
chloroaurate, followed by chromatography on silica. Under basic conditions (triethylamine
or potassium carbonate), 301 was converted into cross-conjugated ketone 302. This por-
phyrinoid retains some aromatic character, presumably due to dipolar canonical forms such
as 302′ that retain access to 18π electron delocalization pathways. Protonation with TFA
or HCl resulted in the reversible formation of a cationic species 303 that showed greatly
enhanced diatropic character. In particular, the proton NMR spectrum for this species gave
an upfield resonance for the internal methyl substituent at −3.82 ppm, while the external
pyrrolic hydrogens gave downfield peaks between 8.80 and 8.98 ppm. On the basis of
deuterium exchange studies, it was proposed that the major protonated species 303 was in
equilibrium with ketocarbachlorin 304 [201].
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Scheme 49. Synthesis of gold(III) carbaporphyrins from a 22-methylbenziporphyrin.

Oxa-, thia-, selena- and tellurabenziporphyrins have been prepared and some metala-
tion studies have been performed on these systems (Scheme 50). Selenabenziporphyrin 305a
was reported to react with palladium(II) chloride to give cationic organopalladium complex
306 [203] but the corresponding tellurabenziporphyrin 305b afforded palladium(II) coor-
dination complex 307 [204]. Reaction of dimethoxythiabenziporphyrin 308 initially gave
palladium(II) derivative 309 but subsequent displacement of a methyl group afforded the
aromatic palladium(II) oxybenziporphyrin derivative 310 [84]. The complex was reversibly
protonated by TFA on the carbonyl oxygen to give cation 310H+.
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Scheme 50. Metalation of heterobenziporphyrins.

Lee and coworkers have investigated the synthesis and reactivity of benziporphyrins
with exocyclic double bonds (Scheme 51). Benziporphyrins 311 reacted with palladium(II)
chloride in refluxing acetonitrile to give palladium(II) derivatives 312 [205]. Addition of
TFA to 312b (Ar = C6F5), but not 312a (Ar = p-tolyl), led to cleavage of the carbon-metal
bond to form trifluoroacetate complex 313. Reaction of 311b with nickel(II) chloride in
acetonitrile gave a similar chloronickel benziporphyrin complex 314, while silver(I) nitrate
reacted with 311b to afford, following addition of 2,6-lutidine, silver(I) complex 315. 1,3-
Dipolar cycloadditions of benziporphyrin complex 311b with an azomethine ylide derived
from N-methylglycine and paraformaldehyde in toluene were investigated [206]. At 80 ◦C,
monoadduct 316 was generated in 37% yield. However, at 90 ◦C or higher, the bis-adduct
317 was obtained in 39% yield as a diastereomeric mixture. Oxidation of 316 with DDQ
afforded pyrroloporphyrinoid 318.
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Scheme 51. Metal complexes of benziporphyrins with exocyclic double bonds.
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Related systems such as inverted pyriporphyrins and nitrogen bridged porphyrinoids
have also been investigated. N-confused pyriporphyrins 319 and 320, where a pyridine
ring has been inserted into the porphyrin framework so that the nitrogen faces outwards,
are known and may be viewed as azabenziporphyrins (Figure 7). Importantly, the coor-
dination cavities of N-confused pyriporphyrins are essentially the same as those found
in benziporphyrins. Reaction of pyriporphyrin 321 with FeBr2 and collidine in THF gave
iron(II) complexes 322 and 323 (Scheme 52) [207,208]. Treatment of 322 with bromine gave
the corresponding iron(III) complex, while exposure to oxygen generated five-coordinate
iron(III) complex 324. Pyriporphyrin 325 reacted with palladium(II) acetate in refluxing
acetonitrile to give palladium(II) complex 326 [85]. Addition of TFA afforded the externally
protonated cation 326H+. As expected, the proton NMR spectra for 326 and 326H+ were
consistent with nonaromatic porphyrinoids.
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Phthalocyanines are a widely investigated group of porphyrin-like structures that
have nitrogen bridges instead of the methine carbons found in porphyrins (Figure 8). Ben-
ziphthalocyanines 327 and 328 were discovered 70 years ago [209–213], but their potential
to be organometallic ligands was only explored relatively recently. Dibenziphthalocyanine
327, also known as dicarbahemiporphyrazine, reacted with silver(I) acetate to give silver(I)
complex 329 (Scheme 53) [214]. Reaction of 327 with copper(II) and copper(I) salts gave
more complicated results and afforded a copper(I) complex 330 with a pyridiniumyl group
attached to a benzene ring [215]. It was proposed that copper(II)-assisted elimination of
hydride resulted in the formation of the Cu(I) center. The chemistry resembles the forma-
tion of pyridiniumyl substituted porphyrinoid 255 from the reaction of benziporphyrin
with silver(I) acetate and pyridine (Scheme 40) [182]. Attempts to recrystallize 330 with
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dichloromethane in the presence of air resulted in demetalation to form 331. Dibenziph-
thalocyanine 327 formed coordination complexes with lithium, manganese, cobalt, and
iron [215,216], and also afforded nickel(II) organometallic derivatives [217,218]. Reaction
of 327 with Ni(COD)2 gave nickel(II) complex 332, but upon exposure to molecular oxy-
gen, a nonplanar phenolate complex 333 was generated. Benziphthalocyanine 328 readily
formed cobalt and nickel(II) organometallic derivatives (Scheme 54). Reaction of 328 with
Co2(CO)8 in pyridine, followed by recrystallization under anaerobic conditions, generated
pyridine derivative 334, and exposure to air afforded the corresponding six-coordinate
cobalt(III) complex 335 [218]. However, when 328 was reacted with cobalt(II) acetate in
DMF under aerobic conditions and the product was crystallized from p-xylene-pyridine,
partial oxidation produced cobalt(III) complex 336 [218]. Benziphthalocyanine 328 also
reacted with Ni(COD)2 in DMF-methanol to afford nickel(II) complex 337. In order to
form a neutral complex with Ni2+, it is necessary to transfer two protons onto the bridging
nitrogens; relocation of protons onto bridging nitrogens is a common feature for complexes
derived from 327 and 328.
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8. Oxybenziporphyrins, Oxynaphthiporphyrins and Related Systems

Oxybenziporphyrins 338 are the favored keto-tautomers of 2-hydroxybenziporphyrins
339 and can act as dianionic or a trianionic ligands [19]. Oxybenziporphyrins 338 reacts
with silver(I) acetate to give the silver(III) complexes 340a,b (Scheme 55) [65,153]. Closely
related oxynaphthiporphyrins 341 reacted in the same way to give silver(III) organometallic
derivatives 342. Attempts to prepare gold(III) complexes were far less successful but a 7%
yield of 340c was obtained by reacting 338b with gold(III) acetate [65]. These complexes
retain the aromatic characteristics associated with oxybenzi- and oxynaphthiporphyrins.
When 338a was reacted with one equivalent of palladium(II) chloride in the presence of
potassium carbonate, an aromatic anion 343 was generated (Scheme 56) [219]. Although
this species might be expected to be a cross-conjugated phenolate anion 343′, the proton
NMR spectrum showed the meso-protons downfield between 9.08 and 10.37 ppm, values
that are consistent with a strongly diatropic macrocycle incorporating an 18π electron
delocalization pathway. Addition of one equivalent of TFA converted 343 to palladium(II)
hydroxybenziporphyrin 344. The diatropic character of 344 was much reduced compared
because dipolar canonical forms such as 344′ are less favorable. A related platinum complex
345 was prepared by reacting 338 with PtCl2 and KOAc in mixtures of DMF and acetic acid
(Scheme 56) [220]. Anionic palladium(II) complex 343 is an ambident nucleophile that can
react on the oxygen or the inner carbon atom [219]. Treatment of 343 with acetic anhydride
and pyridine afforded acetate 346a, while reaction with p-toluenesulfonyl chloride gave the
related p-toluenesulfonate 346b (Scheme 56). However, reaction of 343 with methyl iodide
generated C-methylated product 347a, although treatment with n-butyl iodide afforded a
mixture of the C-alkylated derivative 347b and the O-alkylation product 346c (Scheme 56).
Unexpectedly, C-alkylation products 347a,b were highly diatropic, possibly due to dipolar
resonance contributors such as 347′ [219]. The proton NMR spectrum for 347a gave four
downfield 1H singlets for the meso-protons at 9.20, 9.22, 9.25 and 10.40 ppm, while the
internal methyl group produced an upfield 3H singlet at −2.00 ppm. Protonation with TFA
generated the aromatic cation 347H+.
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Tetraaryloxybenziporphyrins 348 were synthesized by reacting phenolic dicarbinol
349 with pyrrole and aromatic aldehydes in the presence of boron trifluoride etherate,
followed by oxidation with DDQ [221]. Reaction of 348 with silver(I) acetate in pyridine
gave the related silver(III) complexes 350, while treatment with gold(III) acetate generated
the gold(III) derivatives 351 (Scheme 57). Gold(III) complexes could only be obtained in low
yields for meso-unsubstituted oxybenziporphyrins but the presence of meso-substituents
protects these porphyrinoids from oxidative degradation and yields of 67–83% were ob-
tained for 351 [221]. Both silver(III) and gold(III) oxybenziporphyrins exhibited strongly
diatropic properties, although the aromatic character was slightly enhanced for the gold
complexes.
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Further oxidized benziporphyrin systems have also been prepared [57,81,82] and
diketone 352 acted as a trianionic ligand, reacting with silver(I) acetate at room temper-
ature to give the silver(III) complex 353 in 87% yield (Scheme 58) [81,82]. 24-Methyl-
oxybenziporphyrin 354 is a dianionic ligand and gives a fully aromatic palladium(II)
complex 355 [40]. Hetero-oxybenziporphyrins have also been prepared and these are
also dianionic ligands. Oxa-oxybenziporphyrin 356 reacted with palladium(II) chloride in
benzonitrile to give palladium(II) complex 357 (Scheme 58) [222]. Thiaoxybenziporphyrin
358 reacted under milder conditions with palladium(II) acetate in refluxing chloroform-
acetonitrile to give a similar palladium(II) complex 359 [84]. Complexes 355, 357 and 359
all retained fully aromatic characteristics.
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Phthalocyanine analogues of oxybenziporphyrins have also been prepared [223,224]. Bis-
resorcinol containing macrocycles 360 of this type were converted into organopalladium com-
plexes (Scheme 59). Specifically, metalation of 360a and 360b with bis(dibenzylideneacetone)
palladium(0) gave palladium(II) complexes 361a and 361b in 51% and 79% yields, re-
spectively [225]. The X-ray structure indicated that they retain the ligand’s bisquinoidal
structure, and the palladium(II) complexes appeared to have zwitterionic characteristics.
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9. Miscellaneous Monocarbaporphyrinoids

Tropiporphyrins 362 are trianionic ligands and react with silver(I) acetate and DBU in
refluxing pyridine to give the silver(III) complexes 363 (Scheme 60) [22]. Although these
derivatives are diatropic in character, the macrocycle is quite distorted. A single crystal
X-ray diffraction analysis for 363b showed that the tripyrrolic component was somewhat
ruffled, but the cycloheptatriene ring was severely twisted. Reaction of tropiporphyrin
with palladium(II) acetate primarily led to decomposition [226]. However, when 362a
was reacted with palladium(II) acetate in dichloromethane in the presence of potassium
carbonate at 5 ◦C, two benziporphyrin products, 364a,b, were isolated in a combined yield
of 19% [226]. Although ring contractions of azuliporphyrins and benziporphyrins had
been observed previously, this result was unprecedented. Reaction of 362a with methyl
iodide and potassium carbonate in refluxing acetone afforded 24-methyl tropiporphyrin
365. When 365 was reacted with palladium(II) acetate, palladium(II) tropiporphyrin 366
was obtained in 48% yield and rearranged products were not observed [226]. However, it
was important to limit the reaction time to 5 min at room temperature to avoid extensive
decomposition. In addition, 25-methyltropiporphyrin 367 was converted to the correspond-
ing palladium complex 368 in 43% yield under the same conditions [40]. Mechanisms for
the ring contractions were proposed (Scheme 61) [226]. Addition of Pd2+ to the seven-
membered ring of 362a, possibly involving the initial formation of a π complex, followed
by nucleophilic addition of hydroxide, would give 369, and subsequent elimination of
palladium(0) will lead to hydroxy-derivative 370. Cope rearrangement and ring opening of
the resulting cyclopropane unit will produce dihydrobenziporphyrin aldehyde 371 and
subsequent oxidation and metalation would then afford 364b. Alternatively, loss of a
proton from 370 gives hydroxycycloheptatriene 372, and following a tautomerization step,
tropone 373 will be generated. Cope rearrangement can give rise to cyclopropanone 374,
and following extrusion of CO, oxidation and metalation, 364a will be formed.
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Scheme 61. Proposed mechanisms for the formation of palladium(II) benziporphyrins from tropipor-
phyrin.

Carbaporphyrinoids 375 with pyrazole subunits reacted with nickel(II) acetate and palla-
dium(II) acetate to give the organometallic derivatives 376a,b, respectively (Scheme 62) [63,64].
Pyrazoloporphyrins 375 and their metalated derivatives are cross-conjugated and are only
weakly aromatic [64]. However, the proton NMR spectra for these structures indicate a
slight increase in diatropicity for the metalated structures, particularly for palladium(II)
complexes 376b. However, addition of TFA to solution of 376a or 376b gave monocations
376aH+ and 376bH+ that showed virtually no aromatic character. The weak aromatic prop-
erties for free base 375 and metal complexes 376a,b were attributed to dipolar resonance
contributors such as 375′, 376a′ and 376b′ that possess 18π electron delocalization path-
ways, but protonated complexes 376aH+ and 376bH+ do not favor these canonical forms
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because it is necessary to place two positive charges next to one another (see structures
376a′H+ and 376b′H+) [64].
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Scheme 62. Metal complexes of pyrazoloporphyrins, neo-confused porphyrins and oxyquinolizini-
porphyrins.

In N-confused porphyrins, the “confused” pyrrole ring has been connected at the
2.4-positions instead of the usual 2.5-positions (Figure 9) [88–90]. Neo-confused porphyrins
(neo-CPs) are a more recent addition to the porphyrin isomer family in which one of the
pyrrole units is connected at the 1.3-positions so that a nitrogen is directly linked to a
bridging methine carbon [159,227]. This system has a 17-atom 18π electron delocalization
pathway and possesses an internal CH. Benzo-neo-confused porphyrin 377 was shown
to react with nickel(II) and palladium(II) acetate in acetonitrile to give the corresponding
organometallic derivatives 378a,b, respectively (Scheme 62) [88,90]. Similarly, neo-CP
methyl ester 379a gave stable nickel(II) and palladium(II) complexes 380a and 381a [90].
The X-ray crystal structures of 378a,b, 380a and 381a showed that all four complexes are
essentially planar. Proton NMR spectroscopy suggests that there is a slight increase in
diatropic character for the metal complexes compared to the parent carbaporphyrinoid
ligand. However, these structures have reduced aromatic ring currents compared to regular
porphyrins, carbaporphyrins or N-confused porphyrins. Neo-CPs 379b,c with phenyl or
bromo-substituents instead of an electron-withdrawing ester moiety were also prepared
but these were somewhat unstable [228]. However, phenyl neo-CP 379b could also be
converted into the related nickel(II) and palladium(II) complexes, 380b and 381b. Another
recent addition to carbaporphyrinoid systems are quinoliziniporphyrins 382 [75]. This
system has intermediary global aromatic character and the upfield shift of the internal
proton resonance to between 3.0 and 3.5 ppm in their proton NMR spectra is similar to the
results obtained for azuliporphyrins 184. The UV-vis spectrum for 382 is also surprisingly
similar to spectra obtained for 184 as well. The aromatic character associated with 382 can
be ascribed to dipolar resonance contributors such as 382′ or hybrid species 382h with an
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18π electron circuit due to the presence of an anionic [17]annulene substructure. Oxyquino-
liziniporphyrins 382 are dianionic ligands and reacted with nickel(II) and palladium(II)
acetate to give the related metalated derivatives 383a and 383b, respectively [75].
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Ring-fused thiabenziporphyrins 384 were prepared by condensing thienylnaphthalene
dicarbinols 385 with dipyrrylmethane 386 in the presence of boron trifluoride etherate,
followed by oxidation with DDQ (Scheme 63) [229]. The resulting “meso-fused carba-
porphyrins” 384 were isolated in 10–15% yield. This system has 18π- and 22π-electron
pathways (384A–C), which give meso-fused carbaporphyrins moderate diatropic character.
The proton NMR spectra for 384 showed that the external naphthalene, pyrrole, and thio-
phene protons in the range of 7.3–9.5 ppm, and broad upfield peaks at 3.72 and 4.33 ppm
were assigned to the internal CH and NH protons. Reaction of 384b with palladium(II)
acetate afforded a palladium(II) complex 387 in 69% yield. Single-crystal X-ray diffrac-
tion showed that the thiophene unit was tilted relative to the mean macrocyclic plane by
38.19◦. A π-extended anthracene-embedded porphyrinoid 388 was also reported and this
gave the related palladium(II) complex 389 [230]. meso-Fused anthriporphyrin reacted
with diethylacetylenedicarboxylate in 1,2-dichloromethane to give Diels-Alder adduct
390 in 46% yield and this also reacted with palladium(II) acetate to give organometallic
derivative 391. A related, more flexible, system 392 called allyliporphyrin has been pre-
pared and this also gave excellent yields of the corresponding palladium(II) complex 393
(Scheme 63) [231]. Porphyrinoids 394 with intermediary structures between 384 and 392
have been described [232]. As is the case for 392, benzo-fused allyliporphyrin 394a is in
equilibrium with alternative conformations, or tautomers, in particular the alternative
aromatic species 394a′. The latter structure was favored in the solid state. The presence
of a nitrogen in pyrido-fused structure 394b relieves steric interactions with the adjacent
vinylene hydrogen atom, and this results in enhanced diatropic characteristics. Reaction
of 394a with palladium(II) acetate afforded the corresponding palladium(II) complex 395,
thereby locking the aromatic conformation in place.

An interlinked thianaphthiporphyrin dimer 396 was prepared from bis-naphthibilane
397 in 2% yield (Scheme 64) [233]. Although cross-conjugated, proton NMR spectroscopy
indicates that the system is weakly diatropic. Anisotropy of induced current density (AICD)
plots indicate that this is primarily due to the 22 and 34π electron pathways shown in
bold for structures 396′ and 396′′. Dimer 396 reacted with palladium(II) acetate at room
temperature to give bis-palladium complex 398 in 97% yield. A weakly antiaromatic het-
erobenziporphyrin system with embedded fluorene units was prepared using the same
methodology (Scheme 64) [234]. Tripyrrane analogue 399 underwent BF3.Et2O catalyzed
condensation with thiophene, selenophene or tellurophene dicarbinols to give, following
oxidation with DDQ, indeno-heterobenziporphyrins 400. The proton NMR spectra for
400a–c showed that these porphyrinoids have paratropic ring currents resulting in down-
field shifts to the internal CH resonances and small upfield shifts to the external protons.
Thiabenziporphyrin 400a gave the inner CH resonance at 12.03 ppm. Potential π-electron
circuits with 20 and 24π electron pathways, as shown in structures 400′, 400′′ and 400′′′,
may be responsible for this effect. Similar considerations may also be responsible for the re-
duced aromatic character of indenoporphyrins [235,236]. When reacted with palladium(II)
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chloride, thia- and selenabenziporphyrins 400b and 400c gave cationic organopalladium
derivatives 401 [234].
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This review focuses on the metalation of carbaporphyrinoids that share the same
16-atom core arrangement as porphyrins and true carbaporphyrins. However, other closely
related systems have some bearing as these may give insightful complementary results.
Vacataporphyrins 402 are a case in point [237]. Although this system no longer has the
16-atom core it essentially shares the porphyrin framework minus one of the core atoms.
Vacataporphyrins, or deazaporphyrins, were prepared by heating telluraporphyrins 403
with hydrochloric acid at 180 ◦C (Scheme 65). Vacataporphyrins have similar 18π electron
delocalization pathways to regular porphyrins and are strongly aromatic. They react with
cadmium(II), nickel(II) and zinc chloride to afford coordination complexes 404a–c [238] and
treatment with Pd(PhCN)2Cl2 gave a similar palladium complex 404d. Exposure to light led
to the formation of a carbon-palladium bond and generated aromatic complex 405a [239].
Reaction with methyl iodide in the presence of AgBF4 produced the C-methylated cationic
palladium(II) complex 405b, and upon heating with methanol deprotonation resulted in
the formation of 405c. The proton NMR spectrum for 405b was consistent with a paratropic
system due to the conformation facilitating Möbius-type antiaromaticity. Complex 405c is
aromatic but this species can be converted back into 405b by treatment with fluoroboric
acid.
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10. Dicarbaporphyrinoid Systems

Dicarbaporphyrinoid systems have two of the nitrogens within a porphyrin-type cavity
replaced by carbon atoms. The first example of this class, 21,23-dicarbaporphyrin 406, was
reported in 1999 [240], but many other examples (e.g., 407–413) have been reported over the
last 23 years (Figure 10) [78,84,87,241–249]. Many of these porphyrinoids are less stable than
monocarbaporphyrins and the metalation reactions for these systems has not been explored
to the same extent. Nevertheless, interesting examples of metalated dicarbaporphyrinoids
have been reported. cis-Doubly N-confused porphyrin (cis-N2CP, 414) reacted with silver(I)
acetate in 10% pyridine-chloroform to give silver(III) complex 415a, and copper(II) acetate
reacted similarly to afford the copper(III) derivative 415b (Scheme 66) [250–253]. The
reaction of cis-N2CP 414 with palladium(II) acetate in refluxing toluene gave a more unusual
result, affording a palladium(II) species 416 that had undergone arylation onto an internal
carbon atom [254]. A mixture of meta- and para-tolyl isomers were observed in a ratio of
2:1. When N-fused porphyrinoid 417 was treated with potassium hydroxide in ethanol
or methanol, ring opening produced alkoxy-substituted trans-N2CPs 418a,b in 53% and
31% yields, respectively (Scheme 66) [255]. Proton NMR spectra demonstrated that the
trans-N2CP system is highly diatropic, and 418a showed the pyrrolic protons downfield
between 8.44 and 8.55 ppm, while the inner CH resonances were observed upfield at −4.34
and −4.36 ppm and the NHs appeared at −2.73 and −3.21 ppm. trans-N2CPs 418 reacted
with copper(II) acetate to give good yields of copper(III) organometallic derivatives 419.
Reaction of 417 with five equivalents of thiophenol gave doubly N-confused isophlorin
420 in 11% yield (Scheme 66) [256]. In the presence of air, or on standing over alumina,
oxidation took place to give trans-N2CP dithioether 421. Isophlorin 420 reacted with
copper(II) acetate under aerobic conditions to give copper(III) complex 422.

adj-Diazuliporphyrins 423 were isolated as monoprotonated forms as the correspond-
ing free bases were unstable [257]. Reaction with palladium(II) acetate in refluxing acetoni-
trile gave palladium(II) complex 424 in 26% yield (Scheme 67). This polar organometallic
complex can be represented as a series of dipolar or tetrapolar canonical forms. The X-ray
crystal structure for 424 revealed that the porphyrinoid skeleton was slightly saddled.
The proton NMR spectrum of 424 showed the meso-protons downfield at 7.9 (1H), 8.8
(2H) and 10.0 (1H) ppm, suggesting that this derivative is weakly aromatic. The aromatic
properties of 424 can be attributed to resonance contributors such as 424′ that incorporate
18π electron delocalization pathways [257]. Reaction of adj-dicarbaporphyrin 425 with
palladium(II) acetate resulted in the formation of a remarkable tripalladium sandwich com-
plex 426 (Scheme 67) [245]. The X-ray crystal structure showed that the complex consisted
of a palladium(IV) metallocene-type structure with η5-coordination to two palladium(II)
dicarbaporphyrin dianions. The individual porphyrinoid units are planar and lie parallel
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to one another. The remarkable stability of this palladium(IV) derivative shows that dicar-
baporphyrinoid systems are capable of stabilizing unusual oxidation states. Reaction of
425 with [Rh(CO)2Cl]2 gave rhodium(I) complex 427 [154]. The related dicarbachlorin 428
similarly afforded rhodium(I) complex 429 [154,258].
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Scheme 67. Metalation of adj-diazuliporphyrins, adj-dicarbaporphyrins and a related dicarbachlorin.

Carbaazuliporphyrins 430 [87] and carbabenziporphyrins 431 [246] both have three
hydrogens within the macrocyclic core and are potentially trianionic ligands. However,
attempts to prepare silver(III) derivatives 432 or 433 were unsuccessful (Scheme 68). Re-
action of 430 with silver(I) acetate in methanol or ethanol instead selectively afforded
nonaromatic oxidation products 434a,b [87]. These dialkoxy derivatives were isolated as
single diastereomers, although the precise stereochemical outcome was not determined.
Carbabenziporphyrins 431 also gave selective oxidation reactions with silver(I) acetate
in methanol-dichloromethane, and nonaromatic products 435 with two meso-methoxy
substituents were isolated [246]. Again, the reactions were stereospecific in that only one
diastereomer could be identified. A minor hydroxy-derivative 436 was also identified,
presumably arising due to the presence of trace amounts of water.
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In a recent paper, a dicarbaporphyrinoid system incorporating N-heterocyclic carbenes
was described (Scheme 69) [259]. In much the same way as porphyrins act as dianionic
ligands, carbenaporphyrins 437 have a similar core arrangement that can potentially behave
in the same way, albeit while generating organometallic derivatives. Copper-catalyzed
alkyne-azide cycloaddition of a 1.8-diazidocarbazole 438 with a 1.8-diethynylcarbazole
439, an example of a double click reaction, gave macrocycle 440 in 52% yield. Alkylation
with Meerwein’s reagent quantitatively generated dication 441 as a bis(tetrafluoroborate)
salt. Deprotonation of 441 with four equivalents of lithium hexamethyldisilazide gave a
dilithium complex 442 that is equivalent to the target structure 437. Transmetalation with
scandium trichloride in THF gave a scandium carbenaporphyrin complex 443 that could be
characterized by X-ray crystallography. Treatment of 443 with lithium cyclopentadienide
afforded the corresponding cyclopentadienyl complex 444 as an orange solid [259]. Al-
though the versatility of carbenaporphyrin ligands has yet to be demonstrated, this system
has the potential to further extend the applications of dicarbaporphyrinoid systems.
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Scheme 69. Carbenaporphyrins.

11. Tri- and Tetracarbaporphyrins

In principle, replacement of three or four of a porphyrin’s nitrogens with carbons
would give tri- and tetracarbaporphyrins (Figure 11) [23,260–262]. However, these types
of bridged annulene structure are presently unknown, although their significance has
been discussed for many years [260]. The theoretical importance of tetracarbaporphyrin
(quatyrin) 445 was appreciated by Vogel, who used this structure are a starting point when
planning the synthesis of tetraheteroporphyrin dications and porphyrin isomers [263–267].
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Unfortunately, attempts to synthesize quatyrin and related structures such as 446 and 447
have so far been unsuccessful [268]. Tri- and tetracarbaporphyrins 445–447 have been
assessed using DFT and NICS calculations and the results show that quatyrin is planar
and strongly aromatic [261]. However, it is worth noting that dicarbaporphyrins are much
less stable than monocarbaporphyrins, and stability issues may plague further work in
this area. Other structures with a porphyrin-type framework and four internal carbons
can be considered and there has been some success in synthesizing macrocycles of this
type. However, this possibility has not yet been applied to N-confused porphyrinoids.
Doubly N-confused calix[4]pyrroles have been reported, but attempts to prepare quadruply
N-confused calixphyrin 448 were unsuccessful [269].
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Figure 11. Tri- and tetracarbaporphyrinoids.

The carbon skeleton for quatyrin is present in calix[4]azulenes 449, which can be prepared
by reacting azulenes with paraformaldehyde in the presence of florisil (Scheme 70) [97,98], and
these macrocycles show interesting supramolecular interactions [270–272]. As noted earlier,
azulene favors electrophilic substitution at the 1,3-positions and can substitute for pyrrole in
the construction of porphyrinoid macrocycles. Treatment of 449b with triphenylcarbenium
hexafluorophosphate afforded a partially conjugated dication 450 that corresponds to a
dihydroquatyrin [98]. This species was dark blue in solution and gave a strong absorption
at 616 nm in its UV-vis spectrum. Oxidation of tetraarylcalix[4]azulenes 451 with DDQ in
the presence of tetrafluoroboric acid gave the tetraazuliporphyrin tetracations 452 [273].
Although these tetracations might be considered to be didehydroquatyrins, DFT calcula-
tions demonstrate that they have severely distorted conformations and the macrocycles are
not fully conjugated. A similar triazuli-thiaporphyrinoid 453 has also been reported [274].
Condensation of azulene with a thiophene dicarbinol and p-tolualdehyde in the presence of
boron trifluoride etherate gave 454 as a diastereomeric mixture. Oxidation with DDQ and
addition of 20 equivalents of HBF4.Et2O gave the nonaromatic tetracation 453. Tetraazuli-
porphyrinoids have not been metalated in the core, although cluster complexes with the
seven-membered rings have been reported [275].

Although tetracarbaporphyrin ligands are not presently known, cyclic N-heterocyclic
carbenes readily form organometallic derivatives. Macrocycles constructed from four imi-
dazolium subunits have been reported and these form metalated derivatives such as 455
and 456 (Figure 11) [276–279]. These systems have a similar coordination framework to car-
baporphyrins. Tetraimidazolyl tetracation 457 reacted with gold(III) acetate to give gold(III)
trication 458 [280], while reaction with copper(II) acetate afforded copper(III) complex
459 (Scheme 71) [281]. Reaction of the latter complex with copper(I) salts and acetic acid,
followed by demetallation, gave imidazolone trication 460. Silver and gold cluster com-
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plexes of 457 were also reported. Reaction of 457 with bis[bis(trimethylsilyl)amido]iron(II)
gave iron(II) complex 461a [282–285], while treatment with cobalt(II) chloride afforded
461b [286]. Both of these complexes initially reacted with O2 to give dioxygen complexes.
At room temperature, the iron system afforded a µ-oxo dimer, while the cobalt complex
generated a µ-peroxy species. Metalation of the related tetrabenzo-ligand 462 [280,287]
(Figure 11) and boron-bridged analogues [288–291] have also been investigated.
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12. Contracted Carbaporphyrinoids

Carbaporphyrinoid systems with smaller rings are known, including azulitriphyrin[1.2.1]s
463 [112,292], carbaporphyrins[1.2.1] 464 [112], azulicorroles 465 [293,294], and ethynyl-
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linked azuliporphyrinoid 466a [295] (Figure 12). Some metalation studies have been
performed on contracted systems, including the formation of ruthenium(II) complex 466b,
although work in this area is still in its early stages. Technically, these systems fall outside
of the primary focus for this review, but the reactivity of these structures is clearly relevant.
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Figure 12. Examples of contracted carbaporphyrinoids and the structure of corrole.

Corroles (Figure 12) are contracted porphyrins with only three bridging carbons.
These have a more crowded cavity but retain aromatic character and act as trianionic
ligands [296–300]. Furuta investigated the metalation of N-confused and neo-confused
corroles (Scheme 72) [301,302]. N-confused bilane 467 was oxidatively cyclized with 3.3
equivalents of DDQ in acetonitrile to give N-confused corrole 468 in 5% yield. Isomeric
bilane 469 similarly afforded N-confused corrole 470 in 18% yield but in this case a second
corrole isomer 471 was generated in 1% yield [301]. Both N-confused corroles favored
tautomers with an external NH. Neo-confused corrole 471, named norrole, has a direct
link between a pyrrole nitrogen and an adjacent pyrrole unit [301]. Norrole exhibits
some diatropic characteristics, and the proton NMR spectrum showed the inner CH as an
upfield resonance at 1.21 ppm. N-confused corrole 468 reacted with copper(II) acetate to
give copper(III) complex 472, and 470 similarly gave a related copper(III) derivative 473
when the reaction was carried out at 273 K. Although both of the copper(III) complexes
are stable, 473 dimerizes in the presence of excess copper(II) acetate or in the presence
of the oxidant magic blue to give 474. This complex is linked via the internal carbon
atoms. Oxidative cyclization of bilane 475 incorporating an indole unit with chloranil
and copper(II) acetate afforded copper(III) benzonorrole 476 in 68% yield [302]. Reductive
demetalation with zinc-hydrochloric acid produced free-base benzonorrole 477 in 94%
yield. The X-ray structure of the copper(III) complex showed that the tetrapyrrolic unit
had a nearly planar conformation. Reaction of benzonorrole 477 with [Ir(COD)(OMe)]2,
4-substituted pyridines, and potassium carbonate in toluene gave a series of near-infrared
phosphorescent iridium(III) complexes 478 [303]. These derivatives have two axial pyridine
ligands, but otherwise the macrocycle is near planar.
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Scheme 72. Metal complexes of N-confused and neo-confused corroles.

In an attempt to synthesize silaporphyrins, silole dicarbinol 479 was reacted with
pyrrole and p-tolualdehyde in the presence of BF3.Et2O, and following oxidation with
DDQ, two partially oxidized macrocycles 480 and 481 were isolated [304]. Further oxi-
dation of 481 failed to give a fully conjugated silaporphyrin but instead afforded a low
yield of nonaromatic carbacorrole 482. Reaction of 482 with silver(I) tetrafluoroborate
or copper(II) acetate gave silver(III) complex 483 and copper(III) derivative 484, respec-
tively (Scheme 73) [304]. Metal insertion was associated with tautomerization to give fully
conjugated carbacorrole species. The proton NMR spectra for 483 and 484 showed that
these complexes are strongly diatropic, and the protons on the internal tolyl substituents
are shifted upfield. For example, solutions of silver(III) complex 483 in CDCl3 at 180 K
showed the o-tolyl protons at 4.46 ppm. Silver(III) complex 483 reacted with aqueous HCl
in the presence of O2 to give oxacorrole 485. During the course of this reaction, the interior
benzylic unit and the silver(III) cation are lost.

Azulicorrole 465 was obtained in low yield by condensing azulene, pyrrole and
4-trifluoromethylbenzaldehyde in 10% TFA-CH2Cl2, followed by oxidation with DDQ
(Scheme 74) [293]. Azulicorrole reacted with copper(II) acetate and gold(III) acetate to give
metalated derivatives 486a,b in 89% and 32% yield, respectively [293]. The X-ray structure
for 464 showed that the azulene ring was tilted ca. 40◦ relative to the remaining macrocyclic
plane, but as might be expected copper(III) complex 486a was relatively planar. Bilane 487
with two terminal indole units was cyclized with 10 equivalents of copper(II) acetate to
give copper(III) complex 488 together with 2.2′-biindole-linked macrocycle 489 in 12% and
18% yield, respectively [305]. The proton NMR spectrum of 488 indicates that there is an
18π electron delocalization pathway in the complex. Attempts to demetalate 488 with zinc
dust in TFA-acetonitrile-CH2Cl2 to form the parent porphyrinoid were unsuccessful and
resulted in the structure being converted back into bilane 487.
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Scheme 74. Copper(III) and gold(III) complexes of carbacorrole analogues.

Dicarbacorroles with a biphenyl unit or a phenanthrene moiety have been reported [306–308].
A bilane-like intermediate 490 incorporating a biphenyl unit was cyclized with pentaflu-
orobenzaldehyde and BF3·Et2O and, following oxidation with DDQ, dibenzicorrole 491
was obtained in 10% yield (Scheme 75) [306]. The X-ray crystal structure of 491 showed
that the benzene rings were tilted by 19.52◦ and 20.06◦ relative to the mean macrocyclic
plane. Dibenzicorrole 491 reacted with copper(II) acetate to give organometallic copper(III)
complex 492a in 90% yield. Very recently, 491 was shown to react with [Rh(CO)2Cl]2 in
dichloromethane-methanol to give rhodium(I) complex 492b [307]. However, when the
reaction was performed in refluxing acetonitrile, a rhodium(III) organometallic deriva-
tive 492c was generated. A structurally related phenanthrene-containing system 493 was
prepared in the same way (Scheme 75) [308,309]. The authors named this compound
phenanthriporphyrin, but structurally the system is a dicarbacorrole. The proton NMR
spectrum for 493 showed the external pyrrolic protons upfield as two 2H doublets at 5.24
and 5.59 ppm, while the inner CH protons were shifted downfield to 16.70 ppm. The ex-
ternal phenanthrene proton resonances were also relatively upfield, appearing at 5.94 and
6.94 ppm. These results are consistent with the macrocycle having a moderate paratropic
ring current. The antiaromatic nature of 493 can be ascribed to the presence of 16π- and
20π-electron delocalization pathways shown in bold for resonance contributors such as
493a–d (Scheme 76) [309]. Phenanthriporphyrin 493 reacted with phosphorus trichloride
and triethylamine, followed by treatment with methanol in the presence of air, to give
phosphorus(V) complex 494 [309]. This species retains the antiaromatic characteristics
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of the parent ligand. Reaction of 493 with 1.6 equivalents of copper(II) acetate gave an-
tiaromatic copper(III) complex 495 [310]. Regioselective photolytic cleavage of 495 in the
presence of molecular oxygen gave copper(III) phenanthribilinone 496. When 493 was
reacted with 7.8 equivalents of Cu(OAc)2 in chloroform-methanol, a diastereoisomeric
mixture of dimethoxy derivatives 497a,b was generated. Phenanthriquinone 498, which
can be prepared by demethylation of 493 with boron tribromide or sulfuric acid [311], also
reacted with copper(II) acetate to give copper(III) complex 499. Reaction with fluoroboric
acid afforded BF2 complex 500. Although 498 and 499 are nonaromatic, boron difluoride
cation 500 has aromatic character. This can be rationalized as being due to canonical forms
such as 500a–c with 14 or 18π electron circuits. Phenanthriporphyrin 493 reacted with
Fe(CO)5 and I2 to give keto-derivative 501. It was proposed that this reaction involved the
intermediacy of an iron(II) organometallic complex [312].
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Scheme 76. Resonance contributors of phenanthriporphyrin with 16 or 20π electron circuits.

Porphyrinoids with two interlinked phenanthriporphyrin units have been described
(Scheme 77) [313,314]. Diporphyrinoid 502 reacted with copper(II) acetate to give a bis-
copper(III) complex 503. A monocopper(III) complex 504 could also be isolated and this
reacted with Pd(PhCN)2Cl2 to give the mixed CuIII-PdII complex 505 as a stable radical
species. When 502 was reacted with Pd(PhCN)2Cl2, an unusual bis-palladium complex
506 was formed. Bis-porphyrioid 502 and bis-copper(III) complex 503 are antiaromatic,
as judged by proton NMR spectroscopy, but the upfield shifts of the external protons
are drastically reduced for dipalladium complex 506. Bond length analysis indicates
that the complex has quinoidal character, indicating that the π-systems of the individual
macrocycles are strongly interacting.
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Scheme 77. Bimetallic complexes of carbaporphyrinoid dimers.

Dithiaethyneporphyrin 507 has an acetylene unit in place a pyrrole ring (Scheme 78) [315].
The four-carbon bridge facilitates conjugation, and this system can be represented as
acetylene-linked structure 507, or the cumulene resonance contributor 507′, both hav-
ing 18π electron delocalization pathways. Oxidation with silver acetate in an alcohol
solvent gave nonaromatic alkoxyphlorins 508, while metalation with Ru3(CO)12 in reflux-
ing chlorobenzene afforded ruthenium complex 509. A related monothiatriphyrin 510
(Scheme 78) is also aromatic, but protonation affords a nonaromatic cation 511 [316]. Ox-
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idation of 510 with DDQ in the presence of fluoroboric acid gave an aromatic dication
512. Although both 510 and 512 are aromatic, the π-conjugation pathways are quite dif-
ferent. Porphyrinoid 510 acts as a dianionic ligand and reacts with copper(II) acetate to
give a copper(II) complex 513a that has significant η2-interactions with the triple bond
(Scheme 78). Similar complexes 513b,c were obtained when 510 was reacted with nickel(II)
or palladium(II) acetate. Reduction of 513c with sodium borohydride gives an aromatic
anion 514 in which the palladium(II) is directly bonded to a carbon atom.
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Scheme 78. Metalated derivatives of contracted carbaporphyrinoids.

Contracted carbaporphyrinoids can give rise to organophosphorus complexes such as
515 [317]. Reaction of telluraporphyrin 516 with phosphorus trichloride in triethylamine,
followed by air oxidation, led to insertion of phosphorus and inversion of the tellurophene
ring to give the carbaporphyrinoid complex 517 [318]. Oxidation with m-chloroperbenzoic
acid (MCPBA) and reaction with water afforded a further oxidized nonaromatic prod-
uct 518.

13. Expanded Carbaporphyrinoids

Expanded carbaporphyrinoid systems have also been investigated but these diverge a
great deal from the systems discussed above and will not be covered in detail. Early exam-
ples of expanded carbaporphyrins are carbasapphyrins 519 and 520, and azulisapphyrin
521 (Figure 13) [319–321], but no metalation studies were conducted. It is worth noting
that pentapyrrolic sapphyrins were the first expanded porphyrins to be discovered [322]
and they continue to be widely investigated [323–325]. Dibenziamethyrin 522 was shown
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to react with Rh2(CO)4Cl2 in benzene to give high yields of bis-rhodium(I) complex 523
and reactions with nickel(II) or palladium(II) acetylacetonate gave bis-nickel(II) complex
524a and bis-palladium(II) derivative 524b, respectively (Scheme 79) [326,327]. Similarly,
dicarbaamethyrin 525 reacted with zinc acetate in methanol to give the bridged bis-zinc
complex 526 [328]. However, organometallic derivatives for these systems have not been
identified.
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Scheme 79. Coordination complexes of dibenzi- and dicarba-amethyrins.

Expanded porphyrinoid systems often possess inverted heterocyclic rings that place
CH units within the macrocyclic cavity, and this may allow the formation of organometallic
derivatives. These structures are in essence carbaporphyrinoid-type systems, but only select
examples will be presented. Hexaarylhexaphyrins 527 are particularly versatile organometallic
ligands that often place four CH units within the macrocycle (Scheme 80) [329–332]. This
provides two binding pockets that resemble dicarbaporphyrinoid structures. Hexaphyrin
527 reacted with NaAuCl4 to give a mixture of the mono-gold(III) 528 (16%) and the bis-
gold(III) complexes 529a (14%) [329]. Reduction of 528 or 529a with sodium borohydride
gave the related antiaromatic [28]hexaphyrin complexes 530. This chemistry has been
applied to preparation of mixed complexes with Ag(III)-Au(III), Cu(III)-Au(III), Rh(III)-
Au(III), and Ir(III)-Au(III) (529b–e) [329–333]. Nickel(II), palladium(II) and platinum(II)
complexes 531 were obtained by reacting [28]hexaphyrin(1.1.1.1.1.1) 532 with Ni(acac)2,
PdCl2 or PtCl2, respectively [334]. The chiral Mobius aromatic palladium(II) complex 531b
has been resolved to give the individual enantiomers by using HPLC on a chiral stationary
phase [335]. Treatment of 531b with tris(4-bromophenyl)aminium hexachloroantimonate
induced a molecular topology change to give the Hückel aromatic complex 533a. Reaction
of 533a with copper(II) acetate gave Pd(II)-Cu(III) [28]hexaphyrin complex 533b in 90%
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yield, while reaction with silver triflate in acetonitrile afforded Pd(II)-Ag(III) complex
533c in 93% yield [336]. Treatment of 533a with Pd(OCOCF3)2 generated the aromatic bis-
palladium(II) complex 534, and this was readily deprotonated with tetrabutylammonium
fluoride to produce the corresponding dianion (Scheme 80) [337].
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Scheme 80. Organometallic derivatives of hexaphyrins(1.1.1.1.1.1).

Reaction of AuCl.SMe2 with doubly N-confused hexaphyrin 535 gave the gold(III)
complex 536, and further treatment with PtCl2(PhCN)2 afforded the mixed Pt(II)-Au(III)
complex 537 (Scheme 81) [338]. In another intriguing study, reaction of palladium(II)
acetate with dipyrihexaphyrin 538 gave three dipalladium complexes 538a,b and 539
(Scheme 82) [339]. Structure 539 is not an organometallic derivative but has an unusual
interlocked structure with two pyricorrole-like components. Many examples of expanded
porphyrins with m-phenylene or p-phenylene units have been described and these may
also give organometallic derivatives. For example, dibenzihexaphyrin 540 reacted with
palladium(II) chloride and potassium carbonate to give Möbius aromatic palladium(II)
complex 541 (Scheme 83) [340]. Other examples include the Möbius aromatic palladium(II)
porphyrinoids 542 and 543 (Figure 14) [341]. These examples illustrate some exciting
examples of organometallic expanded porphyrinoids, but no attempt has been made to
give comprehensive coverage of this area.
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Scheme 83. Synthesis of a palladium(II) complex of a dibenzihexaphyrin.
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Figure 14. Möbius aromatic palladium(II) complexes of expanded porphyrins.

14. Related Systems

Many other closely related systems with porphyrin-like frameworks have been in-
vestigated. Metallocenoporphyrins such as 544–546 (Figure 15) incorporate ferrocene or
ruthenocene units in place of a pyrrole ring [342,343]. Surprisingly, the metallocene units
facilitate conjugation within these macrocycles and they exhibit a degree of aromatic, or
in some cases antiaromatic, character. This shows that π-electron delocalization can be
transferred through the d-orbitals of the metallocene component.
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Figure 15. Metallocenoporphyrins.

Another intriguing class of porphyrin-like structures have been prepared from 21,23-
ditelluraporphyrins 547 (Scheme 84). Reaction of 547 with palladium(II) acetate and
triethylamine gave derivative 548 where palladium(II) has replaced tellurium as one of the
core atoms [344]. The new macrocycle can be viewed as a 21-pallada-23-telluraporphyrin,
although the bonding interactions within the core are quite different from other por-
phyrinoids. X-ray crystallography shows that the Pd was covalently bound to only two
neighboring atoms, nitrogen and tellurium, breaking the symmetry of the macrocycle. The
proton NMR spectrum at 300 K appears to show a symmetrical aromatic structure, but
many of the resonances split at 180 K. The results show that two equivalent structures, 548
and 548′, rapidly interconvert a room temperature via a symmetrical transition state 548t.
Reaction of 547 with Pt(PhCN)2Cl2 at 384 K gave an analogous platinatelluraporphyrin
549 [345]. Reduction with zinc amalgam in the presence of Cl2, Br2, MeI or allyl chloride
gave a series of Pt(IV) addition products 550. When treated with sodium dithionite, 550
afforded the corresponding metallachlorin 551, but this could be oxidized back to 549 with
DDQ. Reaction of 547 with [Rh(CO)2Cl]2 in refluxing toluene gave rhodatelluraporphyrin
552 and dirhodaporphyrin 553 [346]. The dirhodaporphyrin macrocycle was relatively
planar and the rhodium atoms were linked via two chloride bridges. When treated with
HCl, 552 was converted to the zwitterionic complex 554. Reaction of ditelluraporphyrin 547
with [Rh(CO)2Cl]2 in the presence of air led to loss of both tellurium atoms to afford oxarho-
daporphyrin 555. Hence, remarkable new organometallic derivatives can be generated
within porphyrin-like frameworks.
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Another variation on the theme are structures with carbaporphyrin-like cavities that
are built onto porphyrin macrocycles [347,348]. A case in point are the so-called porphyrin
earrings (Scheme 85). Palladium-catalyzed Suzuki−Miyaura coupling of diboryltripyrrane
556 with nickel(II) dibromoporphyrins 557a or 557b gave porphyrin “earrings” 558a and
558b in 32% and 20% yields, respectively [347]. It was possible to install two “ears” onto a
porphyrin by coupling tetrabromoporphyrin 559 with two equivalents of 556 and double-
earring porphyrin 560 was generated in 8% yield [347]. It was necessary to introduce
3,5-didodecyloxyphenyl substituents to increase the solubility of these structures. Although
the porphyrin earrings have curved geometries, the newly introduced cavities have the
same core atoms as monocarbaporphyrinoid systems. Both 557a and 560 reacted with
palladium(II) acetate to give the palladium(II) complexes 561 and 562, respectively, in >90%
yield. A number of related porphyrins have been reported [349,350] that bind nickel(II) and
palladium(II) within the appended carbaporphyrin-like loop, including structures 563–567
(Figure 16).
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15. Conclusions

The 16-atom core of carbaporphyrins has a CNNN binding pocket that can facilitate
the formation of metalated derivatives. Indeed, the ordered cavities found in these por-
phyrinoid structures provide an intriguing environment to probe organometallic processes.
These systems form complexes with many of the late transition metals and can stabilize
higher oxidation states. The ligands can be profoundly altered by introducing a multitude
of different subunits. Pyrrole units can be replaced by furan, thiophene, selenophene or
tellurophene. More importantly, the subunit that places a carbon atom within the cavity
can be an inverted pyrrole, furan or thiophene, or cyclopentadiene, indene, azulene, cyclo-
heptatriene, inverted pyridine, pyrazole, benzene, naphthalene, and so on. Furthermore,
macrocycles with two internal carbons are also easily accessible. These structural changes
not only affect metalation processes but also the spectroscopic and chemical reactions
for these ligands. Carbaporphyrinoids may be fully aromatic but in some cases, they are
nonaromatic or antiaromatic. Some expanded carbaporphyrinoids can even take on twisted
conformations that lead to Möbius aromatic or antiaromatic structures. The unprecedented
structural diversity of carbaporphyrinoid systems has led to the discovery of a remark-
able wealth of coordination architectures and highly usual reactivity. The organometallic
complexes also have value in the design of catalytic systems, including catalysts for cyclo-
propanation reactions [123,351] and CO2 fixation [352]. In addition, medicinal applications
of metallocarbaporphyrinoids as photosensitizers for photodynamic therapy have been
noted [353,354]. This area continues to surprise and will no doubt lead to many further
advances in the future.
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