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Abstract: Stera-3β,5α,6β-triols make useful tracers of the autoxidation of ∆5-sterols. These com-
pounds are generally analyzed using gas chromatography–mass spectrometry (GC-MS) after sily-
lation. Unfortunately, the 5α hydroxyl groups of these compounds, which are not derivatized by
conventional silylation reagents, substantially alter the chromatographic properties of these deriva-
tives, thus ruling out firm quantification of trace amounts. In this work, we developed a derivatization
method (trifluoroacetylation) that enables derivatization of the three hydroxyl groups of 3β,5α,6β-
steratriols. The derivatives thus formed present several advantages over silyl ethers: (i) better stability,
(ii) shorter retention times, (iii) better chromatographic properties and (iv) mass spectra featuring
specific ions or transitions that enable very low limits of detection in selected ion monitoring (SIM)
and multiple reaction monitoring (MRM) modes. This method, validated with cholesta-3β,5α,6β-triol,
was applied to several environmental samples (desert dusts, marine sediments and particulate matter)
and was able to quantify trace amounts of 3β,5α,6β-steratriols corresponding to several sterols: not
only classical monounsaturated sterols (e.g., cholesterol, campesterol and sitosterol) but also, and for
the first time, di-unsaturated sterols (e.g., stigmasterol, dehydrocholesterol and brassicasterol).

Keywords: stera-3β,5α,6β-triols; autoxidation tracers; derivatization; trifluoroacetylation; validation;
GC-EI(QTOF); GC-MS/MS; environmental samples

1. Introduction

Autoxidation (free radical oxidation) of ∆5-sterols mainly affords 7α- and 7β-
hydroperoxides and, to a lesser extent, 5α/β,6α/β-epoxysterols and 3β,5α,6β-
trihydroxysterols [1]. The 7α- and 7β-hydroperoxides have been ruled out as possible
markers of autoxidation processes in the environment due to their instability (fast degra-
dation under environmental conditions) and lack of specificity (formation is also possible
by allylic rearrangement of photochemically produced 5α-hydroperoxysterols) [2,3]. Un-
fortunately, the highly specific 5α/β,6α/β-epoxysterols have also been ruled out as they
are too unstable under environmental conditions; they are quickly hydrolyzed to their
corresponding triols by epoxide hydrolase [4] and under acidic conditions [5]. The 3β,5α,6β-
trihydroxysterols, which are stable and only produced during autoxidation processes, have
thus been proposed as specific tracers of sterol autoxidation in the environment [2,3].

Electron ionization (EI) provides more structural information than the soft ionization
techniques such as electrospray ionization (ESI) or atmospheric pressure chemical ionization
(APCI) employed in HPLC-MS analyses [6], and so quantification of ∆5-sterols and their oxida-
tion products in environmental samples is most often performed using gas chromatography–
electron ionization mass spectrometry (GC-EIMS). GC-EIMS analyses are generally carried
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out on a nonpolar silicone stationary phase after silylation [2,5,7–9]. Silylation of sterol
involves the replacement of the hydrogen of the hydroxyl group with an alkylsilyl (often
trimethylsilyl) group. Trimethylsilyl (TMS) derivatives are highly volatile, thermally stable
and present outstanding gas chromatographic characteristics. Moreover, the EI mass spectra
of these derivatives often exhibit a significant [M-15]+ ion formed by the loss of a silicon-
bonded methyl group, which is very useful for determining molecular mass, and are also very
informative for structural elucidations [10,11]. However, since TMS derivatives can lose easily
trimethylsilanol molecules under the effect of moisture, a short delay between derivatization
and injection is needed. Despite this drawback, silylation is a very popular derivatization
method and is often employed during sterol quantification using GC-MS [12–16]. Unfortu-
nately, steric hindrance makes complete silylation of 3β,5α,6β-trihydroxysterols difficult, and
common silylation reagents (such as bis(trimethylsilyl)trifluoroacetamide (BSTFA)/pyridine)
afford derivatives that are only silylated at C-3 and C-6 [17]. Trisilylated derivatives can
be obtained after treatment with BSTFA/dimethylsulfoxide (DMSO) [18], but conversion
is still not complete (yields are close to 50%) and this treatment is still too complex to be
applied for analysis of trace amounts in environmental samples. It is absolutely necessary to
eliminate the DMSO before injection into the chromatographic column, and this operation
(requiring: (i) addition of water, (ii) extraction with solvents and (iii) resilylation of 3β and
6β hydroxyl groups) cannot be carried out without significant losses of the lipidic material.
The presence of a polar nonderivatized hydroxyl group at C-5 in the disilylated derivative
strongly alters its chromatographic characteristics and leads to the formation of tailing peaks
that substantially limit the sensitivity of the analyses [19].

Acetylation of steroids with acetic anhydride and trifluoroacetic anhydride is also
very common [20–23]. However, it is generally considered that trimethylsilyl derivatives
are more suitable for the GC-MS characterization and quantitation of sterols than acetate
derivatives [16]. Acetylation involves replacement of the mobile hydrogen atoms of the
hydroxyl groups of sterols with acyl or trifluoro acyl groups. Halogenated acyl groups
enhance the electron affinity of the derivative and produce very specific fragmentation
patterns in mass spectrometry [24]. It should be noted, however, that the use of fluorinated
anhydrides requires the removal of any excess or byproducts prior to GC analysis to prevent
deterioration of the column [25]. To our knowledge, trifluoroacetylation has not been used
in the case of 3β,5α,6β-steratriols.

In this work, we set out to develop a trifluoroacetylation method able to derivatize the
three hydroxyl groups of 3β,5α,6β-trihydroxysterols in order to reduce analyte adsorption
in the GC system and improve detector response, peak separation and peak symmetry. We
used trifluoroacetic anhydride, which is well known to be highly reactive in the case of steric
hindrance [25]. This derivatization technique was then validated using environmental samples
(desert dusts, marine sediments and particulate matter), where it allowed the detection of
traces of several triols resulting from the oxidation of mono- and di-unsaturated sterols.

2. Results and Discussion
2.1. Formation and Characterization of Trifluoroacetate Derivative of Cholesta-3β,5α,6β-Triol

Reaction of cholesta-3β,5α,6β-triol with trifluoroacetic anhydride in tetrahydrofurane
(THF) under the conditions described in Section 3.2 afforded a trifluoroacetate derivative at
high yield (>95%). As expected, this derivative presented better chromatographic character-
istics (shorter retention time and better peak shape) than the corresponding bis-trimethylsilyl
ether (Figure 1). It is well known that the introduction of fluorine atoms strongly enhances
analyte volatility and thus reduces analyte retention time [26]. Due to its high content of
fluorine atoms (nine per molecule), the trifluoroacetate derivative of cholesta-3β,5α,6β-triol
eluted 9 min faster than the corresponding disilylated derivative (Figure 1) and 1.5 min
faster than cholesterol trifluoroacetate on the 30 m capillary column employed.



Molecules 2023, 28, 1547 3 of 14

Molecules 2023, 28, x FOR PEER REVIEW 3 of 14 
 

 

trimethylsilyl ether (Figure 1). It is well known that the introduction of fluorine atoms 
strongly enhances analyte volatility and thus reduces analyte retention time [26]. Due to 
its high content of fluorine atoms (nine per molecule), the trifluoroacetate derivative of 
cholesta-3β,5α,6β-triol eluted 9 min faster than the corresponding disilylated derivative 
(Figure 1) and 1.5 min faster than cholesterol trifluoroacetate on the 30 m capillary column 
employed.  

Although negative inductive effects of the fluorine atoms in a derivatized product 
may drive hydrolysis in the presence of moisture [27], here, the trifluoroacetate derivative 
of cholesta-3β,5α,6β-triol was found to be highly stable. Indeed, in contrast to the corre-
sponding TMS derivative, which was hydrolyzed in a few days, it could be stored at 4 °C 
for several months without significant alteration. 

 
Figure 1. SIM chromatograms of the same amounts (46.5 ng) of trifluoroacetate (black) and trime-
thylsilyl (red) derivatives of cholesta-3β,5α,6β-triol (• = radical, +• = radical cation). 

The EI(TOF) mass spectrum of the cholesta-3β,5α,6β-triol trifluoroacetate derivative 
(Figure 2A) exhibited ions at m/z 594.3134 (b+•), 480.3209 (c+•) and 366.3273 (d+•) corre-
sponding to the successive loss of one, two and three neutral molecules of trifluoroacetic 
acid by the molecular ion (a+•), respectively (Figure 3). Note that the abundance of the c+• 
ion resulted from the formation of a stable conjugated enol ester group. An ion at m/z 
367.1876 (e+) resulting from the loss of two molecules of trifluoroacetic acid and the side-
chain was also formed. The shift of ions b+•, c+• and d+• by 7 m/z units and the lack of shift 
of the e+ ion observed in the EI(TOF) mass spectrum of cholest-5-en-25,26,26,26,27,27,27-
d7-3β,5α,6β-triol trifluoroacetate derivative (Figure 2B) further supports these attribu-
tions. Unfortunately, due to its instability under electron impact, the molecular peak of 
the cholesta-3β,5α,6β-triol trifluoroacetate derivative was not observable in its EI(TOF) 
mass spectrum. We therefore used electron-capture negative ionization (ECNI), which is 
generally considered a soft ionization technique that yields a mass spectral pattern with 
less fragmentation than EI ionization [28]. The ECNI mass spectrum of the cholesta-
3β,5α,6β-triol trifluoroacetate derivative (Figure 2C) appeared to be dominated by a peak 

Figure 1. SIM chromatograms of the same amounts (46.5 ng) of trifluoroacetate (black) and trimethylsi-
lyl (red) derivatives of cholesta-3β,5α,6β-triol (• = radical, +• = radical cation).

Although negative inductive effects of the fluorine atoms in a derivatized product
may drive hydrolysis in the presence of moisture [27], here, the trifluoroacetate derivative
of cholesta-3β,5α,6β-triol was found to be highly stable. Indeed, in contrast to the corre-
sponding TMS derivative, which was hydrolyzed in a few days, it could be stored at 4 ◦C
for several months without significant alteration.

The EI(TOF) mass spectrum of the cholesta-3β,5α,6β-triol trifluoroacetate derivative
(Figure 2A) exhibited ions at m/z 594.3134 (b+•), 480.3209 (c+•) and 366.3273 (d+•) corre-
sponding to the successive loss of one, two and three neutral molecules of trifluoroacetic
acid by the molecular ion (a+•), respectively (Figure 3). Note that the abundance of the
c+• ion resulted from the formation of a stable conjugated enol ester group. An ion at m/z
367.1876 (e+) resulting from the loss of two molecules of trifluoroacetic acid and the side-
chain was also formed. The shift of ions b+•, c+• and d+• by 7 m/z units and the lack of shift
of the e+ ion observed in the EI(TOF) mass spectrum of cholest-5-en-25,26,26,26,27,27,27-d7-
3β,5α,6β-triol trifluoroacetate derivative (Figure 2B) further supports these attributions.
Unfortunately, due to its instability under electron impact, the molecular peak of the
cholesta-3β,5α,6β-triol trifluoroacetate derivative was not observable in its EI(TOF) mass
spectrum. We therefore used electron-capture negative ionization (ECNI), which is gen-
erally considered a soft ionization technique that yields a mass spectral pattern with less
fragmentation than EI ionization [28]. The ECNI mass spectrum of the cholesta-3β,5α,6β-
triol trifluoroacetate derivative (Figure 2C) appeared to be dominated by a peak at m/z
113 corresponding to the anion CF3-COO− and a smaller molecular peak at m/z 708, attest-
ing that the observed derivative was well triacetylated.
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another mechanism (not shown) involving initial loss of the 3β-acyl group is also possible (• = radical,
+• = radical cation, + = cation, − = loss).

Based on its abundance (Figure 2A) and specificity, the c+• ion corresponding to
[M—2CF3COOH]+• was selected as the target ion for selected ion monitoring (SIM)-based
quantification of the main 3β,5α,6β-steratriol trifluoroacetate derivatives present in envi-
ronmental samples. Due to its high specificity, the less abundant b+• ion corresponding
to [M—CF3COOH]+• constituted a useful qualifier allowing confirmation of the identi-
fications. Collision-induced dissociation (CID) analyses (Figure 4) allowed selection of
the efficient transition c+• → f+ [M—3CF3COOH—CH3]+ corresponding to the loss of a
neutral molecule of CF3COOH and a methyl radical by the c+• ion (Figure 3) for multiple
reaction monitoring (MRM) analyses (Table 1).
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Figure 4. CID mass spectrum of the c+• ion at m/z 480 (collision energy: 14 eV) (+• = radical cation,
+ = cation, u = parent ion).

Table 1. MRM transitions employed for the quantification of 3β,5α,6β-steratriols originating from
autoxidation of common ∆5-sterols (+• = radical cation, + = cation).

3β,5α,6β-Steratriols c+• Parent Ion
[M—2CF3COOH]+•

f+ Product Ion
[M—2CF3COOH—CH3]+

CE *
(eV)

Cholesta-3β,5α,6β-triol 480 351 14
Cholest-22-en3β,5α,6β-triol 478 349 14
24-Methylcholest-22-en3β,5α,6β-triol 492 363 14
24-Methylcholest-24(28)-en3β,5α,6β-triol 492 363 14
24-Methylcholesta-3β,5α,6β-triol 494 365 14
24-Ethylcholest-22-en3β,5α,6β-triol 506 377 14
24-Ethylcholesta-3β,5α,6β-triol 508 379 14

* Collision energy.

2.2. Validation of the Derivatization Method

Validation of the derivatization method was carried out using the cholesta-3β,5α,6β-
triol trifluoroacetate derivative. Results of linearity tests in SIM and MRM modes are
presented in Table 2. In the concentration range tested here (0.2325–46.5 ng/mL), the
coefficients of determination of the linear regression curves were better than 0.995 and the
intercepts did not differ significantly from 0.

Table 2. Linearity in SIM and MRM modes.

Mode Concentration Range (ng/mL) Linear Regression Equation Coefficient of Determination (R2)

SIM
Ion m/z 480 2.3–46.5 a y = 0.0315x − 0.0202 0.9952
Ion m/z 594 2.3–46.5 y = 0.0324x − 0.0029 0.9995
MRM
m/z 480→ m/z 351 2.3–46.5 y = 0.0358x − 0.0194 0.9974

a (2.325, 4.65, 9.3, 18.6, 23.25, 46.5).

Table 3 reports the reproducibility of this derivatization technique. The precision
(given by the standard deviation) and accuracy (defined as the difference between obtained
concentration and expected concentration) were acceptable over the concentration range.
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Table 3. Reproducibility in SIM and MRM modes tested using different concentrations of cholesta-
3β,5α,6β-triol (46.5, 18.6, 9.3, 2.325 ng) mixed with 66 ng of internal standard.

Mode
Concentration (ng/mL) Relative Standard

Deviation * (%)

Difference between
Obtained and Expected

Concentration (%)Expected Obtained n

SIM

Ion m/z 480

46.5 44.7 6 4.4 −3.9
18.6 18.4 9 8.7 −1.1
9.3 8.9 8 3.8 −4.3

2.325 2.618 6 9.9 12.6

Ion m/z 594
46.5 44.4 6 5.4 −4.5
18.6 18.3 9 8.5 −1.6
9.3 9.2 8 3.0 −1.1

2.325 2.696 6 4.2 15.9

MRM

m/z 480→ m/z 351
46.5 45.6 6 3.1 −1.9
18.6 18.63 9 4.1 0.2
9.3 9.0 8 3.7 −3.2

2.325 2.863 6 4.2 10.2

* 95% confidence.

The limit of detection (LOD) (defined by a signal-to-noise ratio of 5) was about
25.8 and 0.78 pg injected in SIM and MRM modes, respectively. For comparison, the
LOD obtained for the corresponding disilylated derivative was 0.62 ng in SIM mode with
the target ion m/z 456 corresponding to [M—TMSOH—H2O]+•. Due to the higher specificity
of their MRM transitions, trifluoroacetate derivatives are much more suitable for the analysis
of trace amounts of 3β,5α,6β-steratriols in complex samples than silylated derivatives.

2.3. Application to Different Environmental Samples

In an application of the derivatization method, 3β,5α,6β-steratriol trifluoroacetate
derivatives originating from the autoxidation of common ∆5-sterols were quantified in total
lipid extracts (TLEs) of several environmental samples (desert dusts, marine sediments and
particulate matter). The results obtained are summarized in Tables 4 and 5. This method
allowed precise quantification of 3β,5α,6β-triols derived from classical monounsaturated
∆5-sterols: cholest-5-en-3β-ol (cholesterol), 24-methylcholest-5-en-3β-ol (campesterol) and
24-ethylcholest-5-en-3β-ol (sitosterol) (Table 4, Figure 5). The double peak observed in the
case of the transition m/z 494→ m/z 365 (Figure 5) resulted from the well-known production
of a mixture of 24-methylcholesterol epimers by eukaryotic organisms, wherein campesterol
(24(R)-methylcholest-5-en-3β-ol) and dihydrobrassicasterol (24(S)-methylcholest-5-en-3β-
ol) are found in variable proportions [29,30]. Due to their excellent chromatographic
properties, diastereoisomeric 3β,5α,6β-steratriol trifluoroacetate derivatives could be easily
separated, while the corresponding disilylated derivatives coeluted and showed only a
small tailing peak.

Interestingly, we also detected unsaturated triols deriving from 5,22-di-unsaturated
sterols, i.e., cholesta-5,22(E)-dien-3β-ol (dehydrocholesterol), 24-methylcholesta-5,22(E)-
dien-3β-ol (brassicasterol) and 24-ethylcholesta-5,22(E)-dien-3β-ol (stigmasterol) (Table 5,
Figure 6), which have never previously been described in the literature. Note that the mass
spectra of these derivatives (Figure 7) were similar to the mass spectra of monounsaturated
sterols (Figure 2A).
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Table 4. Concentrations of saturated 3β,5α,6β-steratriols in several environmental samples, measured
after trifluoroacetylation in SIM and MRM modes.

Cholesta-3β,5α,6β-Triol 24-Methylcholesta-
3β,5α,6β-Triols d

24-Ethylcholesta-3β,5α,
6β-Triol

SIM
m/z 480

MRM
m/z 480→ m/z

351

SIM
m/z 494

MRM
m/z 494→ m/z

365

SIM
m/z 508

MRM
m/z 508→ m/z

379

Negev loess sample 1 a 0.21 0.21 0.09 0.06 0.24 0.17
Negev loess sample 2 a 0.24 0.19 0.07 0.05 0.19 0.12
Negev loess sample 3 a 0.23 0.22 0.12 0.09 0.35 0.25
Particles Antarctica st 4 b 11.4 11.73 0.80 nd c 1.95 1.25
Particles Antarctica st 13 b 7.11 8.10 0.85 1.00 2.00 1.25
Particles Antarctica st 28 b 6.22 7.40 0.95 0.95 2.00 1.10
Particles Antarctica st 42 b 6.08 6.45 1.00 nd c 1.70 0.90
Particles Antarctica st 46 b 11.73 11.88 1.05 1.00 1.85 1.15
Sediment Baffin Bay st 600 a 20.30 21.05 5.63 4.73 20.27 17.91
Sediment Baffin Bay st 605 a 22.98 23.56 8.67 5.33 37.67 24.11
Sediment Baffin Bay st 615 a 19.32 19.32 4.11 3.47 26.68 17.21
Sediment Baffin Bay st 707 a 45.60 49.28 2.20 2.20 37.60 40.00
Sediment Baffin Bay st 719 a 18.19 17.87 5.00 3.27 24.33 13.5

a ng mg−1, b ng L−1, c Not detected, d Sum of diastereoisomers.

Table 5. Concentrations of unsaturated 3β,5α,6β-steratriols in several environmental samples, mea-
sured after trifluoroacetylation in SIM and MRM modes.

Cholest-22E-en-3β,5α,6β-
Triol

24-Ethylcholest-22E-en-
3β,5α,6β-Triol

24-Methylcholest-22E-en-
3β,5α,6β-Triol

SIM
m/z 506

MRM
m/z 506→ m/z

377

SIM
m/z 478

MRM
m/z 478→ m/z

349

SIM
m/z 492

MRM
m/z 492→ m/z

363

Negev loess sample 1 a - d 0.11 nd c 0.04 nd c 0.02
Negev loess sample 2 a - d 0.02 nd c nd c nd c nd c

Negev loess sample 3 a - d 0.01 nd c nd c nd c nd c

Particles Antarctica st 4 b - d 1.42 1.11 nd c 1.11 1.80
Particles Antarctica st 13 b - d 1.50 nd c nd c nd c 1.40
Particles Antarctica st 28 b - d 1.60 nd c nd c nd c 3.70
Particles Antarctica st 42 b - d 1.85 nd c nd c nd c 2.20
Particles Antarctica st 46 b - d 1.95 nd c nd c nd c 1.70
Sediment Baffin Bay st 600 a - d 4.09 3.80 1.45 1.64 1.63
Sediment Baffin Bay st 605 a - d 6.22 4.67 1.78 1.78 1.78
Sediment Baffin Bay st 615 a - d 2.68 nd c 1.26 1.84 1.84
Sediment Baffin Bay st 707 a - d 6.20 nd c 3.40 nd c 5.40
Sediment Baffin Bay st 719 a - d 1.07 nd c 1.07 1.40 1.40

a ng mg−1, b ng L−1, c Not detected,.d Quantification hindered by a strong coelution.
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Sterols are commonly used as tracers for specific classes of organisms in environmental
samples [31–33]. Due to their relative stability, these compounds and their degradation
products are also excellent biomarkers for tracing the diagenetic transformation of organic
matter [2,3,34–36]. The quantification of 3β,5α,6β-steratriols (autoxidation tracers) [2,3]
and their corresponding sterols in natural samples thus provides valuable information
on the oxidation state (and thus alteration) of specific organisms (e.g., higher plants, sea-
grasses, phytoplankton, zooplankton and fungi). For example, the presence of the triol
corresponding to brassicasterol (a sterol present in many species of phytoplankton [33,35])
in the sediments of the Baffin Sea (Table 5) attests to the intervention of autoxidative pro-
cesses in these organisms. On the other hand, the detection of high proportions of the
triol corresponding to sitosterol (a major sterol of higher plants [33,35]) in the analyzed
samples (Table 4) is indicative of the presence of strongly oxidized higher-plant material.
Due to the high specificity of some sterols [33,35], the corresponding 3β,5α,6β-steratriols
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could even give indications concerning the autoxidation of specific phyla of phytoplankton
(e.g., diatoms, prymnesiophytes and chlorophytes).
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3. Materials and Methods
3.1. Chemicals

Trifluoroacetic anhydride (TFAA), cholesta-3β,5α,6β-triol, sterols, cholest-5-en-
25,26,26,26,27,27,27-d7-3β-ol, meta-chloroperoxybenzoic acid, H2O2, N,O-bis(triméthylsilyl)
trifluoroacetamide (BSTFA) and chemical reagents were obtained from Sigma-Aldrich. The
synthesis of standards of the stera-3β,5α,6β-triols corresponding to campesterol, sitos-
terol, brassicasterol, dehydrocholesterol and stigmasterol involved epoxidation with meta-
chloroperoxybenzoic acid in dry methylene chloride, and subsequent acid-catalyzed hy-
drolysis [37]. These compounds were purified subsequently using column chromatography
as described below for the internal standard.

The internal standard used (cholesta-25,26,26,26,27,27,27-d7-3β,5α,6β-triol) was syn-
thesized by KI/H2O2 oxidation of the corresponding heptadeuterosterol [38]. Cholest-5-
en-25,26,26,26,27,27,27-d7-3β-ol (5 mg), KI (2.2 mg) and dioxane/water (0.9 mL, 2:1, v/v)
were placed in a 20 mL flask, and then H2SO4 (98%, 5 µL) and H2O2 (30%, 10 µL) were
added sequentially at room temperature under magnetic stirring. After stirring for 1 h
at room temperature, the system was stirred for 3 h at 60 ◦C and the reaction mixture
was then neutralized with anhydrous Na2CO3 (2.2 mg) and treated with a saturated so-
lution of Na2SO3 (4 mL). The crude triol was extracted twice (4 mL) with ethyl acetate
and the organic extracts were evaporated to dryness under nitrogen at 50 ◦C. The crude
triol was then purified using column chromatography (silica, Kieselgel 60 with 55% water,
6 × 0.6 cm). The column was conditioned with CH2Cl2. After elimination of the residual
sterol with CH2Cl2 (8 mL), the triol was eluted with CH3CN (6 mL).

The standard solutions of cholesta-3β,5α,6β-triol and internal standard were prepared
by dissolving 10 mg measures of these compounds (weighted) in 10 mL of methanol.
Dilutions were also carried out in methanol.

3.2. Environmental Samples

Detailed descriptions of the collection of samples of desert dusts, marine particulate
matter and sediments used for validation of the proposed 3β,5α,6β-steratriol derivatization
method can be found elsewhere [39–42]. Treatment of the whole material of the different
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samples involved reduction with excess NaBH4 in MeOH (25 mL; 30 min) to convert labile
hydroperoxides (resulting from oxidation) to their corresponding alcohols, which are more
amenable to analysis using GC-EIMS, GC-EIMS/MS and GC-QTOF. Water (25 mL) and
KOH (2.8 g) were then added and the resulting mixture saponified by refluxing (2 h). After
cooling, the mixture was acidified (HCl, 2 N) to pH 1 and extracted with dichloromethane
(DCM; 3 × 20 mL). The combined DCM extracts were dried over anhydrous Na2SO4,
filtered and concentrated via rotary evaporation at 40 ◦C to give TLEs. All the solvents
(pesticide/glass distilled grade) and reagents (Puriss grade) were obtained from Rathburn
(Walkerburn, Scotland) and Sigma-Aldrich (Saint Quentin Fallavier, France), respectively.
The different TLEs obtained were derivatized as described in the following section.

3.3. Trifluoroacetylation Method

In an effort to optimize the derivatization reaction, we tested several parameters,
including the nature of the solvent (cyclohexane, tetrahydrofuran (THF), diethyl ether,
dichloromethane, ethyl acetate and 1,4-dioxane), reaction temperature (50–100 ◦C), heating
time (1–24 h) and volume of TFAA (25–200 µL). Although this reaction could be also carried
out with pentafluoropropionic anhydride, we selected TFAA as the derivatizing reagent
since it allowed the formation of fluorinated derivatives with a better yield (>95%). The
best reaction efficiency was obtained with the following conditions.

Samples to be derivatized (after evaporation to dryness under a stream of nitro-
gen at 50 ◦C) (2–100 ng), internal standard (66 ng), anhydrous THF (200 µL) and TFAA
(100 µL) were put in glass vials (4 mL) with PTFE-lined screw caps, and the mixtures were
maintained at 68–70 ◦C in a heating block for 24 h. After evaporation to dryness under a
stream of nitrogen at 50 ◦C, the residues were dissolved in BSTFA to silylate the traces of
trifluoroacetic acid formed during the reaction that could damage the GC column employed.

3.4. Silylation

3β,5α,6β-steratriols were silylated by dissolving them in 300 µL measures of a mixture
of pyridine and BSTFA (2:1, v/v) and heating to 50 ◦C for 1 h. After evaporation to dryness
under a stream of N2 at 50 ◦C, the derivatized residues were dissolved in BSTFA.

3.5. Gas Chromatography-Tandem Electron Ionization Mass Spectrometry (GC-EIMS/MS)

GC-EIMS and GC-EIMS/MS analyses were performed using an Agilent 7890A/7010A
tandem quadrupole gas chromatograph system (Agilent Technologies, Les Ulis, France)
with a cross-linked 5% phenyl-methylpolysiloxane capillary column (Agilent, Courtaboeuf,
Les Ulis, France; HP-5MS ultra inert, 30 m × 0.25 mm, 0.25 µm film thickness). Analy-
ses were performed with an injector operating in pulsed splitless mode (1.7 × 105 Pa for
0.5 min) set at 270 ◦C. Oven temperature was ramped from 70 ◦C to 130 ◦C at 20 ◦C min−1,
then to 250◦ C at 5 ◦C min−1 and then to 300 ◦C at 3 ◦C min−1. The pressure of the carrier
gas (He) was held at 0.76 × 105 Pa until the end of the temperature program. The mass
spectrometer conditions were as follows: electron energy, 70 eV; source temperature,
230 ◦C; quadrupole 1 temperature, 150 ◦C; quadrupole 2 temperature, 150 ◦C; colli-
sion gas (N2) flow, 1.5 mL min−1; quench gas (He) flow, 2.25 mL min−1; mass range,
m/z 50–700; cycle time, 313 ms. Steratriol derivatives were quantified in SIM and MRM
modes. Target and precursor ions were selected from the most intense and specific fragmen-
tations observed in the electron ionization (EI) mass spectra. Collision-induced dissociation
(CID) was optimized using collision energies ranging from 0 to 20 eV. Quantification with
Mass Hunter software (Agilent Technologies, Les Ulis, France) involved peak integration
and quantitative determination using calibration curves and ratios between areas of triol
and internal standard (cholesta-25,26,26,26,27,27,27-d7-3β,5α,6β-triol).

ECNI analyses were carried out on the same apparatus with methane as the reagent
gas at 50 mA emission current and 195 eV electron energy. During the experiment, the
temperature of the source was held at 150 ◦C and reactant gas flow was 0.5–0.7 mL min−1.
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3.6. Gas Chromatography-EI Quadrupole Time-of-Flight Mass Spectrometry (GC-QTOF)

Accurate mass measurements were carried out in full scan mode using an Agilent
7890B/7200 GC/QTOF system (Agilent Technologies, Les Ulis, France) with a cross-linked
5% phenyl methylpolysiloxane capillary column (Agilent Technologies; HP-5MS Ultra
inert, 30 m × 0.25 mm, 0.25 µm film thickness). Analyses were performed with an injector
operating in pulsed splitless mode (1.7× 105 Pa for 0.5 min) set at 270 ◦C. Oven temperature
was ramped from 70 ◦C to 130 ◦C at 20 ◦C min−1 and then to 300 ◦C at 5 ◦C min−1. The
pressure of the carrier gas (He) was held at 0.76 × 105 Pa until the end of the temperature
program. Instrument temperatures were 300 ◦C for the transfer line and 230 ◦C for the
ion source. Nitrogen (1.5 mL min−1) was used as the collision gas. Accurate mass spectra
were recorded across the range of m/z 50–700 at 4 GHz with the collision gas opened. The
QTOF-MS instrument provided a typical resolution ranging from 8009 to 12,252 from m/z
68.9955 to 501.9706. Perfluorotributylamine (PFTBA) was used for daily MS calibration.
Compounds were identified by comparing their EI(TOF) mass spectra, accurate masses
and retention times against standards.

4. Conclusions

In this study, we developed a new method of derivatization of 3β,5α,6β-steratriols
(trifluoroacetylation), allowing to considerably improve the quantification of these sterol
oxidation products (used as tracers of autoxidation processes) in natural samples. Indeed,
the trifluoroacetylated derivatives presented much better chromatographic characteristics
(shorter retention times and finer peaks) and were much more stable than the correspond-
ing trimethylsilyl derivatives most often used to quantify 3β,5α,6β-steratriols. This new
derivatization method should therefore allow a much more accurate estimation of the
oxidation state of sterols in environmental samples. It also allows the separation of di-
astereoisomeric steratriols, which is not possible with disilylated derivatives. Note that
this method allowed the detection of 3β,5α,6β-steratriols derived from the oxidation of
diunsaturated sterols that have never been described before in the literature.
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