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Abstract: The work reveals the results of studying the content of biologically active substances in
samples of extracts of Ginkgo biloba callus cultures. Callus cultures grown in vitro on liquid nutrient
media were the objects of the study. Considering various factors affecting the yield of the target
components during extraction, the volume fraction of the organic modifier in the extracting mixture,
the temperature factor, and the exposure time were identified as the main ones. The maximum
yield of extractive substances (target biologically active substances with a degree of extraction of
at least 50%) from the samples of callus culture extracts was detected at a ratio of extragent of 70%
ethanol, a temperature of 50 ◦C, and exposure time of 6 h. Flavonoids, such as luteolin, quercetin,
isoramentin, kaempferol, and amentoflavone, were isolated in the extract samples. As a result of
column chromatography, fractions of individual biologically active substances (bilobalide, ginkgolide
A, B, and C) were determined. The proposed schemes are focused on preserving the nativity while
ensuring maximum purification from associated (ballast) components. Sorbents (Sephadex LH-20,
poly-amide, silica gel) were used in successive stages of chromatography with rechromatography.
The degree of purity of individually isolated substances was at least 95%.

Keywords: Ginkgo biloba; callus cultures; biologically active substances; highly effective chromatography;
antioxidant activity; geroprotective properties

1. Introduction

Ginkgo biloba has been used for medical purposes since ancient times. It is the only
surviving relict plant species of the Ginkgoaceae family of gymnosperms. Ginkgo biloba is
characterized by the content of condensed tannins, terpene trilactones, flavon glycosides,
organic acids, amino acids, and trace elements [1,2]. Plant components can exhibit various
complementary pharmacological effects [3–6]. Many studies have been published on the
qualitative and quantitative analysis of the components of Ginkgo biloba and the phyto-
preparations based upon it [7–12]. According to the standardization criteria, the content
of the following main active components is determined: flavonoids, sesquiterpenes, and
dominant diterpene lactones (ginkgolides) [13].

Diterpene glycosides have a variety of biological activities, which significantly expands
the possibilities for creating new drugs based on their molecular complexes.

Ginkgo biloba is one of the most promising plants for the creation of drugs with neuro-
protective effects (plant extracts are used to treat Alzheimer’s disease, Parkinson’s disease,
cerebral vascular deficiency, and dementia) [14]; they offer the ability to protect the vascular
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endothelium, increase insulin resistance, and prevent atherosclerosis [15], and also have
antitumor effects due to the ability of polyphenols to influence oxidative stress [16]. They
have also previously been reported to possess antiparasitic, antifungal, antibacterial, and
antiviral activity [17].

Limited resources and high demand for the raw material base of Ginkgo biloba for the
pharmaceutical industry dictate the need to search for and develop alternative sources for
obtaining valuable pharmacotherapeutic extracts [18]. The technology of cultivation of
plant cells and tissues is a possible tool for studying both the process of biosynthesis and
the production of the secondary metabolites of plants [19]. On the other hand, obtaining
individual substances produced by the Ginkgo callus culture is important for basic research,
as well as for the above-mentioned applications. The aim of the study is to evaluate
the effectiveness of the extraction technique and the preparative accumulation of key
components produced by the Ginkgo biloba callus culture. The novelty of the study lies in
the development of methods for obtaining targeted biologically active substances, which is
a strategically significant priority task. At the present stage, callus cultures are considered
as an alternative for the production of plant biologically active ingredients [20]. In the
proposed study, extracts containing biologically active substances were isolated from Ginkgo
biloba callus cultures. The technological modes providing the high degree of extractive
substances are investigated. When performing phytochemical analysis using spectral and
chromatographic methods, the component composition of extracts of Ginkgo callus cultures
was studied. An algorithm for the selection of target components has been proposed
that allows scaling the process during the preparatory isolation of the key components of
the extract.

To date, considerable attention has been paid to the aspects of extraction from the
Ginkgo biloba phyto-object. This circumstance is connected with the need to ensure the
completeness of extraction of target biologically active substances from a plant source
by using cost-effective and environmentally friendly extractants [21,22] and reducing the
content of ballast substances released simultaneously, including toxic components, such as
4-O-methylpyridoxine [23,24]. In this regard, special attention should be paid to the studies
aimed at developing effective methods for obtaining standardized extracts or individual
components intended for use in the food and/or pharmaceutical industries [25–27].

In one of the studies [28], the possibility of increasing the efficiency of extraction of
terpene trilactones from Ginkgo biloba leaves using ultrasound and deep eutectic solvents
(mixtures of choline with urea and betaine with ethylene glycol) was proposed. These
solvents gave higher extraction yields than the well-known, most effective solvent, namely
70% ethanol. The extraction conditions were as follows: a mixture containing 40% (wt./wt.)
water was used as an extraction solvent, with a 1:10 ratio of G. biloba leaf powder to solvent,
and ultrasonic treatment was performed at 45 ◦C and 100 W for 20 min. The total extraction
yield (1.94 ± 0.03 mg/g) was obtained under optimal conditions, indicating that 99.37%
of triterpene lactones can be extracted from G. biloba leaf powder by a single extraction.
For purification, the authors used a polyamide sorbent and achieved an extraction yield of
95.1%. However, the pronounced potential nephrotoxicity of ethylene glycol does not allow
it to be used for the manufacture of medicinal extracts. At the same time, unfortunately,
the authors did not consider the effect of the eutectic mixtures used on the ability to
extract accompanying polyphenolic compounds, and, in particular, flavonoids. In another
original study, a cellulose-based eutectic natural polymer was used to isolate rutin from
Ginkgo [29]. At the same time, the authors have shown the effectiveness of methanol for
pre-extraction of the terpenoid fraction with subsequent pre-extraction with ethanol at
temperatures above 70 ◦C, which requires compliance with the conditions associated with
reducing solvent losses. At the same time, effective separation was achieved by using
octadecyl-functionalized silica gel sorbent in the HPLC mode, which significantly limits the
implementation of the preparative regime for the isolation and purification of individual
pharmacologically active compounds from the Ginkgo biloba phyto-object. Furthermore, a
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dynamically developing area is the application of supercritical fluid extraction using such
extractants as liquefied carbon dioxide.

The features discussed above dictate the need to develop effective methods for ob-
taining standardized extracts and/or high-purity individual substances. The given paper
reviews the studies on the production of highly purified components from total ethanol
extracts of Ginkgo biloba callus cultures.

2. Results

For the analysis of the component composition of water–alcohol extracts of Ginkgo
biloba (Ginkgo biloba (L.), fam. Ginkgoaceae), the spectrum of its native water–alcohol extrac-
tion was captured. It contained a plateau of about 270–275 nm, which was determined by
secondary metabolites containing an aromatic hydroxyl group. Data on optical densities of
Ginkgo biloba callus culture extract samples are presented in Table 1.

Table 1. Optical density of extracts of Ginkgo biloba callus cultures.

Extraction Mode Temperature, ◦C
Volume Fraction
of Ethanol in the

Extractant, %

Optical Density

Duration of Extraction, h

№ 2 4 6

1 30 30 0.2300 ± 0.0025 0.2090 ± 0.0036 0.2230 ± 0.0030
2 30 50 0.1410 ± 0.0010 0.2450 ± 0.0035 0.2310 ± 0.0010
3 30 70 0.1830 ± 0.0022 0.2060 ± 0.0010 0.3100 ± 0.0015
4 50 30 0.2530 ± 0.0030 0.2530 ± 0.0030 0.2680 ± 0.0033
5 50 50 0.2200 ± 0.0015 0.2250 ± 0.0010 0.2860 ± 0.0022
6 50 70 0.2480 ± 0.0028 0.2790 ± 0.0019 0.3950 ± 0.0031
7 70 30 0.2100 ± 0.0010 0.2630 ± 0.0036 0.3020 ± 0.0041
8 70 50 0.2430 ± 0.0030 0.2850 ± 0.0020 0.2790 ± 0.0029
9 70 70 0.2450 ± 0.0034 0.2560 ± 0.0028 0.2590 ± 0.0010

Data presented as a mean ± SD (n = 3). All values in columns/row do not differ significantly (p > 0.05).

When assessing the influence of variable parameters on the extractivity of the main
biologically active substances (BAS), it was found that the limiting factor contributing to
maximum extraction was the concentration of the organic component and the extraction
temperature. In [30–32], ethanol extraction is considered as the primary stage of isolation
of the target components of the extract. At the same time, it is well known that the use
of low molecular weight alcohols is the basis for isolating components of the flavonoid
structure when obtaining total extracts from medicinal plant raw materials in the processing
conditions of the chemical and pharmaceutical industry. This property of ethanol as a
component approved for use in medical practice was an additional argument in favor of its
use in the primary processing of callus culture and extract production.

Initially, an extraction kinetic variant was used, which made it possible to determine
narrower ranges and parameters for the variables studied in the work. A diagram of the
dependence of the content of extractive flavonoids in terms of the quantitative content
of quercetin is presented in Figure 1. When extracted with 70% ethanol at a temperature
of 50 ◦C with an exposure time of 6 h, the target yield of the components in terms of
quercetin was 19.02 mg/mL of the extract. Based on modern ideas about the component
composition of ginkgo samples, the pool of flavonoids is represented by a variety of
compounds. More than 50 flavonol glycosides and 7 flavonols are known [33]. Quercetin
and its glycoside forms belong to one of the dominant compounds. Quercetin is used as
a type-A standard marker for the standardization of pharmaceutically significant Ginkgo
biloba preparations, and chromatographic approaches were proposed in USP 43- NF 38 [34].
Quercetin is a marker in the standardization of ginkgo preparations in the pharmacopeias of
the USA, Great Britain, etc. Furthermore, our own research allows us to assert the dominant
content of luteolin, quercetin, and their glycosidized forms in the studied samples of callus
culture extracts.
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light indicated the presence of flavonoids in the samples of Ginkgo biloba extracts [35]. 
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Figure 1. Effect of extractant concentration (C, %), extraction temperature (T, ◦C), and extraction
exposure (τ, h) on extraction of target flavonoid components in terms of quantitative quercetin
content (mg/mL), as follows: 1—T = 30 ◦C; C = 30%, 2—T = 30 ◦C; C = 50%, 3—T = 30 ◦C; C = 70%,
4—T = 50 ◦C; C = 30%, 5—T = 50 ◦C; C = 50%, 6—T = 50 ◦C; C = 70%, 7—T = 70 ◦C; C = 30%,
8—T = 70 ◦C; C = 50%, 9—T = 70 ◦C; C = 70%. Data presented as a mean ± SD (n = 3). Values
followed by the same letter do not differ significantly (p > 0.05) in extraction dynamics/in different
extraction modes.

The extracts obtained with the maximum degree of substance content were analyzed
by content for the main types of biologically active substances. In the studied samples of
extracts, the presence of various groups of substances was determined using qualitative
reactions. Reactions with ammonium hydroxide and the presence of fluorescence in UV
light indicated the presence of flavonoids in the samples of Ginkgo biloba extracts [35]. Using
chromatographic studies, five flavones were quantified in the samples, namely quercetin,
isorhamnetin, luteolin, kaempferol, and biflavonoid amentoflavone. The presence of the
largest number of flavonoids in the extract samples can be explained by the greater acces-
sibility to the extraction of these substances under the applied extraction conditions [35].
The chromatogram of the samples is shown in Figure 2. The time parameters of retention
on the column and the quantitative content are presented in Table 2. Ginkgolide A and
ginkgolide B concentrations were not determined due to insufficient separation of these
components during chromatography. A relatively high content was found for isorhamnetin
and quercetin. Among ginkgolides, ginkgolide B was dominant, with a retention time of
5.16 min.

To accurately determine the purity of the peaks of compounds 2, 3, 4 (ginkgolide B,
ginkgolide C and bilobalide A), we obtained high-resolution mass spectrometry (HRMS)
spectra. Here, HRMS spectrometry was performed using a Bruker Amazon speed ion trap
in electrospray ionization (ESI) mode. The results of HRMS are shown in Figure 3. Peak
purity control, as well as the identification of compounds by HRMS, allow for separation
under conditions of acceptable resolution at the level of 10% between retention times.
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Figure 2. HPLC chromatogram of the extraction of Ginkgo biloba. Peak 1—ginkgolide A; peak 2—
ginkgolide B; peak 3—bilobalide A; peak 4—ginkgolide C; peak 5—quercetin; peak 6—ginkgetin; peak
7—isorhamnetin; peak 8—luteolin; peak 9—kaempferol; peak 10—amentoflavone. The unnumbered
peaks on the chromatogram belong to unidentified substances. Chromatographic conditions are as
follows: mobile phase eluent A (water–acetonitrile 95:5 + 0.1% formic acid), mobile phase eluent
B (acetonitrile–water 95:5 + 0.1% formic acid); flow rate 0.8 mL/min; column temperature 40 ◦C;
injection volumes—20 µL; elution mode—gradient.
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Table 2. The component composition of Ginkgo biloba extract according to HPLC data.

Peak No. Retention Time, min Component Name Quantitative Content,
µg/mL

1 4.76 ± 0.80 Ginkgolide A -
2 5.16 ± 0.80 Ginkgolide B -
3 6.60 ± 0.80 Bilobalide A 5.93 ± 0.27
4 6.92 ± 0.80 Ginkgolide C 5.23 ± 0.27
5 8.05 ± 0.80 Quercetin 11.40 ± 0.76
6 9.03 ± 0.80 Ginkgetin 0.64 ± 0.05
7 9.93 ± 0.80 Isorhamnetin 17.92 ± 0.93
8 13.72 ± 0.80 Luteolin 25.63 ± 0.86
9 17.49 ± 0.80 Kaempferol 4.63 ± 0.50
10 23.82 ± 0.80 Amentoflavone 7.91 ± 0.50

The data are expressed as mean ± standard deviation (n = 3).

The main task in selecting rational parameters for the isolation of individual biolog-
ically active substances from extracts obtained from the biomass of Ginkgo biloba callus
cultures was to isolate the sum of active substances in their native state, while ensuring
adequate purification from accompanying (ballast) components. The results of the research
allowed us to identify targeted biologically active substances with a degree of extraction of
at least 50% from extracts of callus cultures (Table 3). The results of the purified samples
of biologically active substances obtained are presented in Figure 4 by the IR spectrum
of individual BAS with a degree of purification according to HPLC data of at least 95%
(Figure 5). The given infrared spectra coincide with the absorption bands of the standards.

Table 3. Mass yield of extractives substances.

Peak No. Component
Name

Substance
Content in
Extract *, %

Purity Degree after
Purification

According to HPLC
*, %

Substance Yield *,
Mg/Total Amount

of Biologically
Active Substances

1 Ginkgolide A - 95.3 14.0
2 Ginkgolide B - 95.1 75.0
3 Bilobalide A 6.14 96.3 43.4
4 Ginkgolide C 5.42 95.6 48.3
5 Quercetin 11.81 99.8 93.4
6 Ginkgetin 0.66 97.1 3.7
7 Isorhamnetin 18.57 99.5 110.0
8 Luteolin 26.56 99.4 189.3
9 Kaempferol 4.79 98.7 38.4
10 Amentoflavone 8.19 96.3 50.3

* Average of three measurements.

The IR spectrum of the quercetin flavone (3,5,7,3,4-pentaoxyflavone) was characterized
by the following bands: an elongated band with an absorption maximum of 3405 cm−1

is specific to the 4-OH group of ring C; the presence of the 1661 cm−1 band is due to
valence vibrations C = O; bands at 1611, 1561, and 1522 cm−1 are caused by C-C bonds of
aromatic fragments of the quercetin molecule, rings A and B. In turn, the bands at 1460 and
1449 cm−1 are caused by plane vibrations C = C of the aromatic ring. The bands at 1407 and
1382 cm−1 are determined by plane deformation vibrations C-O-H and O-H, respectively.
The band at 1166 cm−1 is caused by antisymmetric valence vibrations of C-O-C in the
structure of the heterocycle. The presence of bands at 841, 824, 799, and 724 cm−1 is caused
by out-of-plane deformation vibrations of the hydroxyl group of aromatic fragments of
the B ring. At the same time, the hydrogen bond formed was traced at about 650 cm−1.
The disubstituted ring B is characterized by the presence of an out-of-plane deformation
vibration of the C-C bond at 702 cm−1.
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(h) bilobalide A.

The IR spectrum of kaempferol flavol (3,4,5,7-tetrahydroxyflavone) was characterized
by the following distinctive features. The elongated band with an absorption maximum of
3322 cm−1 is specific for the 4-OH group of ring C. The presence of the band at 1657 cm−1

is due to valence vibrations C = O. The bands at 1612 and 1605 cm−1 are determined by the
influence of the OH group at positions 3 and 5 of the heterocyclic fragment of the molecule,
respectively, as a result of the formation of an intramolecular hydrogen bond with C = O. It
was the influence of this hydroxyl that caused the distortion of the planar arrangement of
the pyran fragment and the bond, and thereby led to the appearance of resonance.

The band of weak intensity at 1564 cm−1 is caused by C = C bonds of the aromatic
systems of rings A and B. In turn, the bands at 1510 and 1467 cm−1 reflected the valence
vibrations of the C-C bond of the aromatic ring. The band at 1372 cm−1 arose as a result of
the interaction between deformation vibrations of O-H and valence vibrations of C-O in the
structural components of kaempferol. The band at 1169 cm−1 is caused by antisymmetric
valence vibrations of C-O-C in the heterocycle structure. The presence of the 831 cm−1

band is caused by out-of-plane deformation vibrations of the hydroxyl group of the B ring.
The hydrogen bond formed was traced to about 650 cm−1. The mono-substituted ring B is
characterized by the presence of an out-of-plane deformation vibration of the C-C bond at
702 cm−1.

The distinctive signals and band assignments for ginkgolides are presented in Tables 4–7.
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Table 4. IR characteristics of ginkgolide A.

Wave Number, cm−1 Note

3422 ν (O-H) of the intramolecular H bonds
2964 ν (as) C-H в CH3
2922 ν (as) CH2
2851 ν (s) CH2
1735 Lact.
1631 ν (C-O-C)
1199 ν (C–C( = O)–O)
1157 ν (C–O–C)
1112 ν (C–OH)
1043 ν (O-C-C)
903 tBut

Table 5. IR characteristics of ginkgolide B.

Wave Number, cm−1 Note

3430 ν (O-H) of the intramolecular H bonds
2954 ν(as) C-H в CH3
2921 ν (as) CH2
2850 ν (s) CH2
1737 Lact.
1718 ν (C = O)
1631 ν (C-O-C)
1571 ν (C–O–C)
1114 ν (C–OH)
1043 ν (O-C-C)

Table 6. IR characteristics of ginkgolide C.

Wave Number, cm−1 Note

3435 ν (O-H) of the intramolecular H bonds
2955 ν (as) C-H в CH3
2921 ν (as) CH2
2850 ν (s) CH2
1737 Lact.
1716 ν (C = O)
1631 ν (C-O-C)
1107 ν (-C( = O)-C
1043 ν (O-C-C)
849 ν (C-O-C) lact.
805 ν (-CH2-)

Table 7. IR characteristics of bilobalide.

Wave Number, cm−1 Note

3405 ν (O-H) of the intramolecular H bonds
2969 ν (as) C-H в CH3
2924 ν (as) CH2
2853 ν (s) CH2
1785 Lact.
1628 ν (C = O)
1380 δ(O-H)
1158 ν (C–O–C)
902 δ( = C-H)
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3. Discussion

When purifying individual biologically active substances obtained from the samples
of extracts of Ginkgo biloba callus, adequate purification of the target components from
accompanying ballast substances was achieved. The methods of isolation and purification
(Figures 6–8) of individual biologically active substances reflect the features of the object
(extract), namely the matrix effect of the components present, the concentration of the
main target substances, the presence of accompanying impurity components. Analysis of
the results of studies on the isolation and purification of individual BAS obtained from
extract samples allowed us to establish that the isolated target biologically active substances
had a degree of purification of at least 95%, while after the first stage (Figure 6), it was
only 50%. Callus cultures of Ginkgo biloba (L.) produced quercetin, kaempferol, luteolin,
isorhamnetin, amentoflavone, bilobalide, ginkgolide A, ginkgolide B, and ginkgolide C, as
well as extracts of ginkgo leaves, represented mainly by aglycones of flavonol glycosides,
such as kaempferol, quercetin, aglycones, flavon glycosides, such as apigenin, isorhamnetin,
etc, and terpenoids, such as ginkgolides A,B,C, and bilobalides [9].
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During the work, the qualitative content of flavonoids was determined using a quali-
tative reaction [35], and the quantitative content was determined using column chromatog-
raphy and HPLC. In the study [36], it was shown that flavonoids were determined by
combining near-infrared spectroscopy with chemometry with qualitative and quantitative
analysis of flavonoid concentrations in Ginkgo biloba extracts. Geng et al. [37] established
a quantitative method of diffuse reflection spectroscopy in the near-infrared region for
the simultaneous determination of three flavonol aglycones in ginkgo biloba extracts. Shi
et al. [38] determined flavonoids based on the method of colorimetric analysis with mi-
nor modifications. It was found that chromatography was used to obtain 66.58 mg/total
amount of biologically active substances of flavonoids of Ginkgo biloba callus culture on
average (Table 3). The data obtained differ from the data presented in the study [36], in
which the yield of flavonoids averaged 28.55 mg/100 g of Ginkgo biloba leaves (L.). Thus,
it can be stated that the quantitative determination of flavonoids by the chromatographic
method makes it possible to more fully and accurately determine their content in compar-
ison with the method of diffuse reflection spectroscopy in the near-infrared region and
photocolorimetry [36].

Currently, research is aimed at developing technologies for obtaining extracts from
ginkgo leaves [39,40]. Factors determining the advantage of the approaches are the maxi-
mum degree of extraction of the target components, low extraction costs, and the amount
of ballast substances [41]. The emerging trends in the use of plant materials as extractants,
namely ionic solutions, eutectic mixtures, etc., have an undoubted advantage [39,42]. The
use of enzyme pretreatment of the sample also contributes to an increase in the yield of
extractive substances. However, all these approaches are aimed at increasing the total
yield of extractive substances, whereas a small number of publications are devoted to the
isolation of high-purity components with a high potential for therapeutic safety [43–45].
The extraction options proposed in our study (Figure 6) and sorption chromatographic
purification options (liquid chromatography was carried out in a TSX Series chromato-
graphic refrigerator powered by V-Drive thermos scientific at a temperature of 10 ◦C)
(Figures 7 and 8) provide the best release of the target component from accompanying im-
purities in relation to the extract of the Ginkgo callus culture. It should be noted that the use
of sorbents and similar technological techniques is used in the field of phytochemistry and
analysis for extracting components of plant origin [39,40]. In [33], for example, a polyamide
sorbent was used, which allowed researchers to obtain purified flavonoid fractions with an
increase in the total content of up to 50%. However, in our study, variants of preparative
accumulation of target components have been developed, taking into account the matrix
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effect of Ginkgo calluses with a degree of extraction of at least 50% from extracts of callus
cultures and a degree of purification of at least 95% according to HPLC data.

In the preparative mode, when separating mixtures and isolating individual compo-
nents, the number of components contained in the extract, as well as related substances,
should be taken into account. In the separation process, a critical role is played by the
structure of the target component (lipophilic–hydrophilic properties, including van der
Waals interactions) and the spatial arrangement of substituents. Thus, flavonoids with
three hydroxyl groups and methyl esters are most effectively separated under polyamide
conditions. In turn, glycosidized forms of flavonoids are effectively separated on cellulose
and silica gel [46]. Of particular note are the properties of Sephadex LH-20, with its univer-
sal lipophilic–hydrophilic properties and high mobile phase stability at a wide range of pH
values, as well as inertia to organic solvents [47]. This property of the sorbent is actively
used in phytochemical analysis and for purification (post-purification) of pharmaceutical
substances in the column chromatography mode.

Under the conditions of using various sorbents, the yield of target products increased
from 24% to 60% [48,49]. Methods of purification of Ginkgo biloba extracts are still at
the stage of scientific formation and comprehensive study (high consumption of organic
solvent, environmental pollution, reduced activity of the target component and, often, low
purity of the resulting product). The considered methods, as well as other experimental
works, are aimed at obtaining total extracts of BAS of a certain class based on a certain
polarity [33].

4. Materials and Methods
4.1. Seed Culture for Callus Induction

Callus cultures of ginkgo seeds Ginkgo biloba (L.), grown in vitro, obtained at the early
stages of the study were the object of the study. To obtain callus cell cultures, seeds of
Ginkgo biloba were used as the starting material.

To obtain a sterile Ginkgo biloba material, seeds impregnated with 96% ethyl alcohol
were burned three times in the flame of an alcohol lamp with fire extinguishment after
4–5 s, after which the hard shell was removed and sterilized in 70% ethyl alcohol for 1 min
and 0.1% sulema solution for 7 min. After sterilization, the material was washed three
times for 20 min in distilled sterile water. After sterilization, to obtain sterile seedlings, the
seeds were planted on agarized media in Petri dishes with a diameter of 60 mm and 90 mm,
as well as in jars with ventilated lids [50].

Here, MS medium, in combination with growth regulators 2,4-D (2 mg/L) and kinetin
(0.10 mg/L), was used for callus induction.

4.2. Extraction of Biologically Active Components

In order to obtain extracts, rational parameters were selected for extracting a complex
of biologically active substances with potential geroprotective properties from the biomass
of Ginkgo callus cultures. Ethyl alcohol was used as an extractant. The dried callus was
crushed in a mill and sieved through a sieve with a hole size of 1 mm. Fine powder of
the studied plant (dried callus 3.0 g) was extracted in 260 mL of ethyl alcohol of various
concentrations (30%, 50%, and 70%) under static conditions to obtain BAS. The extraction
of plant material was carried out in a water bath with a reverse refrigerator. The extraction
frequency is two. The extractant concentration (C, %), extraction temperature (t, ◦C),
and extraction exposure (τ, h) (Figure 1) were used as independent variables. Extraction
parameters were selected based on the results of the study [51]. The parameters included
the concentration of the extractant (0, 10, 20, 30, 40, 60, 80, and 100%, weight/weight),
extraction temperature (25, 30, 35, 40, 45, 50, 55, and 60 ◦C), the ratio between the volume
of the extractant and the powder of Ginkgo biloba leaves by weight (7.5:1, 10:1, 12.5:1, 15:1,
20:1, 30:1, and 50:1, mL·g−1), and the extraction time (5, 10, 15, 20, 25, 30, and 40 min). The
choice of extraction parameters is confirmed by the study [52], in which temperature (from
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35 to 65 ◦C), the concentration of the ethanol extractant (from 39 to 90%), extraction time
(from 1.5 to 2.0 h), and pressure (from 18 to 35 MPa), were selected as extraction parameters.

4.3. Method of Isolation of Biologically Active Substances

The isolation of individual biologically active substances from the extract of Ginkgo
biloba includes the following steps, shown in Figure 6. Initially, the extract was filtered
through filters (cellulose), diluted with water, and then the samples of the mixture were
kept for 48 h at a temperature of + 4 ◦C (filtration of lipid precipitation). Then, the extract
samples were concentrated in a vacuum in the presence of sodium chloride (up to 10%
of the salt content in the solution), and then removed by decanting resinous substances
from the remainder of the transparent solution. Purification from lipophilic substances was
carried out by liquid–liquid extraction with n-heptane, and amounts of terpenolactones
were isolated. After the three-time extraction of the aqueous phase with n-butanol, three
phases were combined into one n-butanol phase, which was then concentrated under
vacuum to a dry residue. At the next step, the residues were dissolved in an aqueous
alcohol solution. The liquid–liquid extraction phases were purified with ethyl acetate,
followed by washing with a sodium chloride solution and evaporation to a dry residue of
the ethyl acetate-washed phase.

4.4. Method of Purification of Biologically Active Compounds

Purification from lipophilic substances was as follows: liquid–liquid extraction with n-
heptane, followed by isolation of the sum of terpene lactones; the aqueous phase is extracted
three times with n-butanol, and all three phases are combined into one n-butanol phase,
which is then concentrated under vacuum to a dry residue; dissolution of the residue in an
aqueous alcohol solution then occurs. Purification of the phase by liquid–liquid extraction
with ethyl acetate takes place, followed by washing of the ethyl acetate phase obtained at
stage 6 with a sodium chloride solution, before evaporation to dry residue of the washed
ethyl acetate phase.

As a result of column chromatography, fractions of the following individual biologi-
cally active substances are obtained: bilobalide, ginkgolide A, ginkgolide B, and ginkgolide
C (Figure 7).

Final purification was carried out as follows. The dissolution of the dry residue was
carried out in acetone containing 40 wt. % water, with cooling of the resulting suspension
to 10 ◦C for one hour, followed by filtration.

Flavone glycosides were chromatographed on polyamide (Sigma-Aldrich, Berlin,
Germany) and packed in a 5.3 × 250 mm chromatographic column on a BioLogic low-
pressure chromatograph (BioRad, Hercules, CA, USA) using the following gradient eluting
mixtures: chloroform–methanol (100:0 → 60:40), followed by water–ethanol (100:0 →
0:100).

For the complete separation of the components and their purification, Lachema silica
gel rechromatography with a particle size of 40/100 µm proved to be effective. A mixture
of chloroform and petroleum ether was used as the mobile phase in the ratio of 30:70,
followed by recrystallization of substances. This procedure made it possible to isolate the
following flavonoids: quercetin, kaempferol, luteolin, isorhamnetin, and amentoflavone.

The use of the fraction purification scheme (Figures 7 and 8) made it possible to obtain
individual biologically active substances from the extracts of ginkgo biloba with a degree
of purification of individual BAS of at least 95%.

4.5. High Performance Chromatography Method

The Prominence LC-20 series (Shimadzu) chromatograph with a diode-matrix detector
SPD20 M, autosampler SIL-20AS, pumps LC-20AD, degasser DGU-20 As, column thermo-
stat CTO-20A, detector with diode matrix SPD-M20A, fluorometric detector, and CBM-20A
system controller was used to analyze the component content of aqueous–alcoholic extracts
of Gingko biloba. In this study, LC (Shimadzu, Corporation) software, version 5.23 SP1, was
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used. A Phenomenex Gemini C18 column (110 Å, 5 µm, 4.6 mm×250 mm) was used as
a stationary phase, with a mobile phase consisting of deionized water–acetonitrile with
the addition of formic acid. The following mixtures were used: water–acetonitrile 95:5
+ 0.1% formic acid (eluent A) and acetonitrile–water (95:5) + 0.1% formic acid (eluent B).
The flow rate was 0.8 mL/min, at a temperature of 40 ◦C. The separation was carried
out in the gradient elution mode according to [53]. Injection volumes were 20 µL, in five
repetitions. Relative retention times were determined using flavonoid and terpene lactone
standards (Acros, J and K, Aldrich-Sigma). The quantitative determination of the isolated
components was performed under the HPLC method conditions. A diode-matrix detector
with a wavelength range of 190–750 nm was used for this research.

4.6. HRMS Spectrometry

Mass spectra were recovered using a Bruker Amazon speed spectrometer (ionization
by electrospray, positive ion detection).

4.7. Low-Pressure Column Chromatography Method

Low-pressure column chromatography was performed on a BioLogic chromatograph
(BioRad, Hercules, CA, USA), and concentration to dryness of the supernatant (n-heptane
phase) containing terpene lactones was performed on a silica gel 60 (Macherey-Nagel,
Duren, Germany) fraction of 0.2–0.5 mm. A mixture of water–methanol–tetrahydrofuran
was used as the mobile phase in the corresponding ratios of 75:20:10, and a column was
used with a size of 30 × 300 mm.

Chromatography of flavon glycosides was performed on polyamide (Sigma-Aldrich,
Germany) packed in a 5.3 × 250 mm chromatographic column on a BioLogic low-pressure
chromatograph (BioRad, Hercules, CA, USA) using gradient eluting mixtures, as follows:
chloroform–methanol (100:0→ 60:40), then water–ethanol (100:0→ 0:100).

For complete separation of the components and their purification, silica gel rechro-
matography on a silica gel 60 (Macherey-Nagel, Duren, Germany) fraction of 0.2–0.5 mm
was used, using the following eluent mixture: chloroform–petroleum ether in ratios of
30:70, followed by recrystallization of the substances [48,54–56].

4.8. Spectrophotometry of Samples

The spectral characteristics of the total extracts, as well as individual isolated com-
ponents (UV spectra) were recorded on a spectrophotometer (OKB Spectrum LLC, St.
Petersburg, Russia) in the wavelength range of 190–600 nm with a resolution of 0.5 nm
in liquid cuvettes with an optical path length of 10 mm. Both pure components and with
the addition of reagents were photometrized to reveal the general and specific properties
of flavonoid compounds and differential spectra after the addition of specific reagents
(AlCI3/HCI, NaOMe, NaOAc, and NaOAc/H3BO3) [57,58].

4.9. IR Spectrometry

Infrared spectra were obtained from a disk with potassium bromide in the range of
4000–400 cm−1, with a resolution of 4 cm−1, and 50 accumulation cycles using a Fourier
spectrometer FSM–2202 [59].

4.10. Sample Preparation

Acid hydrolysis was carried out in the following way: 2 mL of the extract was placed
in a conical flask with a capacity of 100 mL; 20 mL of MeOH and 2N HCI (1:1) were added,
treated with ultrasound for 5 min, and hydrolysis was carried out in a boiling water bath
with a vapor condensation device for 20 min. The solutions was then evaporated under
vacuum to a dry residue and dissolved in 2 mL of the mobile phase.

The relative standard deviation was calculated for the peak areas of quercetin (Sigma-
Aldrich, Berlin, Germany) and kaempferol (Sigma-Aldrich, Berlin, Germany) by five chro-
matograms, and the deviation did not exceed 0.5%. The efficiency of the chromatographic
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column calculated according to the standards of quercetin and kaempferol amounted to
more than 10,000 theoretical plates [60,61].

4.11. Statistical Analysis Methods

Statistical processing was performed using Excel (2019, Microsoft, Redmond, Wash-
ington, DC, USA) and Statistica 10.0 (StatSoft Inc., 2007, Tesla, WV, USA). All experiments
were carried out in triplicate. Data are presented as the median ± standard deviation. The
Kruskal–Wallis test was used to compare the medians of the samples (significant differ-
ences at p < 0.05). For intergroup comparisons, the Mann–Whitney U test was used with
the Bonferroni correction (significant differences at p < 0.01). To check for the presence
of a correlation between extraction methods and quantitative indicators of extracts, the
Spearman’s rank correlation coefficient was used (significant differences at p < 0.05).

5. Conclusions

The development of technology for the isolation and purification of target biologically
active components using callus cultures is of undoubted interest for the pharmaceutical
and food industries. The need for extracts and purified biologically active substances
of Ginkgo biloba increases every year. The main components produced by the Ginkgo
biloba callus culture were flavonoids (quercetin, kaempferol, luteolin, isorhamnetin, and
amentoflavone) and triterpenoids (bilobalide, ginkgolide A, ginkgolide B, and ginkgolide
C). With a selected and experimentally justified extraction mode (the extractant used was
70% ethanol, temperature 50 ◦C, and exposure time 6 h), the target extract was obtained.
In our study, it was possible to optimally select the sequence of application of sorbing
materials, which contributed to the effective isolation of target molecules. The developed
methods of isolation of individual components can be scaled and used in the production
process of isolation and preparative accumulation of target substances produced by Ginkgo
biloba callus cultures. Therefore, the extraction and sorption–chromatographic approaches
proposed in this work can be used in laboratory practices and industrial production in the
development and production of pharmaceutical substances and functional products.
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