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Abstract: A conformational analysis and molecular docking study comparing 2,6-difluoro-3-
methoxybenzamide (DFMBA) with 3-methoxybenzamide (3-MBA) has been undertaken for in-
vestigating the known increase of FtsZ inhibition related anti S. aureus activity due to fluorination.
For the isolated molecules, the calculations reveal that the presence of the fluorine atoms in DFMBA
is responsible for its non-planarity, with a dihedral angle of -27◦ between the carboxamide and
the aromatic ring. When interacting with the protein, the fluorinated ligand can thus more easily
adopt the non-planar conformation found in reported co-crystallized complexes with FtsZ, than
the non-fluorinated one. Molecular docking studies of the favored non-planar conformation of
2,6-difluoro-3-methoxybenzamide highlights the strong hydrophobic interactions between the di-
fluoroaromatic ring and several key residues of the allosteric pocket, precisely between the 2-fluoro
substituent and residues Val203 and Val297 and between the 6-fluoro group and the residues Asn263.
The docking simulation in the allosteric binding site also confirms the critical importance of the hydro-
gen bonds between the carboxamide group with the residues Val207, Leu209 and Asn263. Changing
the carboxamide functional group of 3-alkyloxybenzamide and 3-alkyloxy-2,6-difluorobenzamide to
a benzohydroxamic acid or benzohydrazide led to inactive compounds, confirming the importance
of the carboxamide group.

Keywords: conformational analysis; 2,6-difluorobenzamide; FtsZ; S. aureus

1. Introduction

Filamentous temperature-sensitive protein Z (FtsZ) plays a major role in bacterial divi-
sion like tubulin in eukaryotic cells [1]. The Z ring is required for this process and is formed
by the FtsZ recruitment and polymerization [2,3]. Subsequently the contraction of the Z ring
is leading to the separation of two cells. As a key protein of the bacterial divisome, the FtsZ
protein is extensively studied either for the biological understanding of the cell division
process in different species but also to interfere with bacterial growth to develop new an-
tibiotics [4,5]. For this purpose, different strategies are commonly investigated such as the
design of FtsZ-ZipA interactions inhibitors, or FtsZ inhibitors targeting the GTP binding site
or other allosteric pockets [6–9]. The latter approach is probably the most studied and the
discovery of the benzamide scaffold or more precisely the 2,6-difluorobenzamide nucleus
has offered new opportunities in the development of FtsZ allosteric inhibitors [10]. The
compounds 2,6-difluoro-3-methoxybenzamide (DFMBA), for which full crystallographic
data of its complex with FTSZ are available [11], has been indeed found to be more ac-
tive as antibacterial agent against S. aureus than the 3-methoxybenzamide (3-MBA) and
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they have been both shown to target FtsZ [12,13]. Consistent effects of fluorination are
reported also for the even more active hexyloxy compounds 3-HBA and DFHBA [14–16].
The 2,6-difluorobenzamide PC790123, which was studied through Molecular Dynamics in
complex with the FtsZ protein [17] is another example of such inhibitor, usually employed
as a reference compound in FtsZ inhibition studies (Figure 1) [17,18]. Using benzamide
fluorescent probes, the molecular mechanism of the inhibition was suggested through the
binding of benzamide inhibitors into the open clefts in cellular FtsZ polymers preferably to
free cytosolic FtsZ [19].
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Figure 1. Structure of benzamide FtsZ inhibitors: PC190723, 3-MBA, DFMBA, 3-HBA and DFHBA.

Importance of fluorination in medicinal chemistry is now well recognized for improv-
ing metabolic stability and also to induce several possible effects, either electronic, steric or
polar vs non-polar interactions [20–22].

After having focused on the azole moiety of tripartite benzamide inhibitors of FtsZ [23],
we now report our studies focusing on the fluorobenzamide moiety. The work reported
herein aimed at understanding why this difluorobenzamide motif is so important, through
conformational and molecular docking studies investigating 3-MBA and DFMBA for which
co-crystallographic with FtsZ data are known. In addition, slight structural variations of
the carboxamide functional group, such as benzohydroxamic acid or benzohydrazide were
investigated.

2. Results and Discussion

The benzamide scaffold is extensively used to develop antibacterial agents in relation
with the ability to inhibit FtsZ, with significant increased activity when fluorinated. This
difference of can be explained by hydrophobic interactions of the fluorine atoms of the
benzamide nucleus with the allosteric site of the FtsZ proteins. In order to visualize these
interactions, the complex between DFMBA and the staphylococcal FtsZ [11] was submitted
to the Arpeggio webserver [24] which monitors all interactions between a ligand and a
protein (Figure 2). In addition to three hydrogen bonds between the carboxamide functional
group and the residues Val207, Leu209 and Asn263, the difluorobenzamide motif develops
key interactions via hydrophobic interactions [25] between the 6-fluoro substituent and the
central CH of the isopropyl group of the residue Val203 with (distance F→C of 3.3 Å) and
also with the terminal methyl group of the residue Val297 (distance F→C of 2.9 Å). The
2-fluoro substituent interacts with the residues Asn263 via C-F/C=ONH2 interactions [20]
with a F→C=O distance of 3.2 Å and a F→O=C distance of 3.0 Å.

To further investigate the difluorobenzamide nucleus, conformational analysis of the
3-methoxybenzamide 3-MBA and the 2,6-difluoro-3-methoxybenzamide DFMBA was then
performed to determine their preferential conformations. A first important observation is
that the co-crystallized structure of PC190723 in FtsZ, [26,27] like other difluorobenzamide
derivatives [11,28] within the allosteric pocket of the protein shows that the difluoroben-
zamide nucleus is not planar, though conjugated (Figure 3A). This is also the case for
other 2,6-difluorobenzamide-based ligands co-crystallized with FtsZ. For this purpose, a
systematic conformational search [29] with an increment of 10◦ was applied using VEGA
ZZ [30,31] on the dihedral angle defined by the rotation around the bond between the
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amide functional group and the aromatic ring. As depicted in Figure 3B and as expected the
preferential conformation of the conjugated benzamide of 3-MBA is a planar conformation
with angle values of 0◦ or 180◦ allowing the conjugation. For the 2,6-difluorobenzamide
scaffold of DFMBA, the curve resulting from the conformational analysis reveals that
conformations with the lowest energy are not planar, but with a torsion angle value of
−27◦.
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These results contrast with the conjugated benzamide scaffold, for which the most
stable conformations are planar. Therefore the torsion angle value of −27◦ due to the
presence of the fluorine atoms is closer to the value of the same torsion measured in co-
crystallized ligand (−58◦, Figure 3A). Moreover, the presence of the fluorine atoms, which
did not allow conjugation of the π system, reduces the energetic differences of the bound



Molecules 2023, 28, 2055 4 of 15

versus unbound ligand. Indeed, the energetic gap to reach a dihedral angle of −58◦ from
the most stable conformation is 3.71 kcal/mol for benzamide (360◦ → 302◦) while only
1.98 kcal/mol for 2,6-difluorobenzamide (333◦ → 302◦). As a consequence, fluorinated
benzamide derivatives, which are now the common pattern of FtsZ allosteric inhibitors may
also be considered as conformationally restrained inhibitors [32] showing more potency
than their non-fluorinated counterparts. Consistent angles were measured for the hexyl
derivatives 3-HBA and DFHBA (data shown in Supplementary Materials see Figure S1).

The preferential conformation of DFMBA with a torsion angle value of −27◦ was
docked as rigid ligand within the allosteric site of SaFtsZ in order to compare the binding
mode with the co-crystallized ligand (Figure 4). Both conformations, the one with a torsion
angle value of −27◦ and the co-crystallized ligand (with a torsion angle value of −58◦) are
close.

A short investigation of structural analogs in which the benzamide group is changed
to isosteric groups [33] benzohydroxamic acids and benzohydrazides was then conducted,
with either non-fluorinated or fluorinated phenyl groups, and comparison to the know FtsZ
inhibitors 3-hexyloxybenzamide (3-HBA) and 3-hexyloxy-2,6-difluorobenzamide (DFHBA)
used here as model compounds exerting cell division inhibition of B. subtilis [14] with
higher activity compared to the methyloxybenzamide derivative (Figure 5) [15]. DFHBA
is also know to induce morphological modifications of B. subtilis and S. aureus bacteria
observed by morphometric analysis [14].

With respect to their conformation, 9, 10, 13, 14 show comparable behavior to that of
3-HBA and DFHBA, with the fluorine atoms inducing nonplanar stable conformations in
contrast to those adopted by non-fluorinated compounds (Figure 6). A torsion angle value
of −30◦ was obtained for the most stable conformations for fluorinated benzohydroxamic
acid and benzohydrazides, which is comparable to DFMBA and DFHBA.

With respect to the biological activity, the four analogs 9, 10, 13, 14 were evalu-
ated as antimicrobial agents against three S. aureus strains, and compared with com-
pounds 3-HBA and DFHBA used as references. The non-fluorinated and fluorinated
3-hexyloxy-2,6-difluorobenzamide analogues were synthesized as depicted in Scheme 1.
3-HBA and DFHBA were synthesized as previously reported from the compounds 3-
hydroxybenzamide and 3-hydroxy-2,6-difluorobenzamide which were alkylated with
1-bromohexane [14,15].

3-(Hexyloxy) benzohydroxamic acids 9 and 10 were prepared from the corresponding
methyl esters 3 and 8 and hydroxylamine in basic conditions. The ester 3 was synthesized
starting from 3-hydroxybenzoic acid 1 which was converted to its methyl ester counterpart
with thionyl chloride in dry methanol followed by the alkylation of the phenol functional
group with hexylbromide using potassium carbonate. The ester 8 was obtained starting
from the 2,4-difluorophenol which was alkylated with hexylbromide followed by an ortho-
lithiation and subsequent carboxylation in the presence of dry ice to give the acid 7. The
latter was converted to the methyl ester with thionyl chloride in dry methanol. The
benzohydrazides 13 and 14 were prepared from the non-fluorinated and fluorinated acids
4 and 7 through a standard coupling reaction with tert-butyl carbazate and DCC and
subsequent deprotection in acidic conditions.

The antimicrobial activity was assessed by determining the corresponding MIC values
against three S. aureus strains: a reference strain (ATCC29213), a methicillin-resistant strain
(SF8300) [34] and a clinically isolated daptomycin-resistant strain (ST20171643) [35] (Table 1).
3-HBA and DFHBA, used as references, exert MIC values of 256 µg/mL and 8 µg/mL
consistent with the literature [14–16]. For the benzohydroxamic acid or benzohydrazides,
either fluorinated of non-fluorinated, the activity is at least decreased to 64 µg/mL.
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Figure 3. (A) Conformations of PC190723 [26] and other 2,6-difluorobenzamide derivatives (DFMBA
and compound III) [11,28] co-crystallized with FtsZ. (B) Conformational analysis of the 3-MBA and
DFMBA resulting from a systematic conformational search by varying the torsion defined by the
rotation around the bond between the amide functional group and the aromatic ring (increment of
10◦ and subsequent minimization).
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The modification of the benzamide motif is therefore highly detrimental to the activity,
consistently with previous other attempts such as with a substitution to a sulfonamide
group [36]. As demonstrated in this study, the 2,6-difluorobenzamide motif could be
considered as both, a conformational restrained scaffold [32] with fluorine acting as confor-
mational control element and an optimized structure to develop hydrophobic and C-F/C=O
interactions as well as several hydrogen bonds.
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Scheme 1. Synthesis of non-fluorinated or fluorinated analogues. Reagents and conditions: (i) SOCl2,
MeOH, 0 ◦C then 65 ◦C, 3 h (2: 88%; 8: 84%); (ii) hexyl bromide, K2CO3, NaI, ACN, 70 ◦C, 7 h (3: 58%;
6: 77%); (iii) NaOH, EtOH, r.t., 16 h (4: 93%); (iv) n-BuLi, THF, −78 ◦C, 1 h; (v) dry ice, THF, r.t., 2 h (7:
58%); (vi) hydroxylamine hydrochloride, NaOH, H2O, dioxane, 0 ◦C then r.t., 16 h (9: 36%; 10: 47%);
(vii) tert-butylcarbazate, DCC, DMAP, DCM, 0 ◦C then r.t., 16 h (11: 64%; 12: 52%); (viii) TFA, DCM,
r.t., 24 h (13: 41%; 14: 94%).
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Table 1. Minimum inhibitory concentrations of benzamides and analogues against S. aureus strains.

Compound MIC (µg/mL)
ATCC29213 a SF8300 b ST20171643 c

9, 10, 13, 14 ≥64
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3. Experimental
3.1. Conformational Analysis

The compounds DFMBA, 3-MBA and analogues were drawn using VEGA ZZ [30,31]
and were minimized using the SP4 force field with Gasteiger charges. Conformational
analyses were carried out using the conformational search module by varying the torsion
angle defined by the bond between the benzamide, the hydroxamic acid or the hydrazide
and the aromatic ring using a 10◦ increment and minimization of each generated conformers.
Subsequently to the conformational analyses, energy graphs were created to analyze the
conformation landscape of the compounds and to find preferential conformations.

3.2. Molecular Docking

Subsequently to the conformational analysis, the preferential conformation of the
DFMBA with a torsion angle value of −27◦ was retrieved and a rigid ligand docking was
performed on Staphylococcus aureus SaFtsZ (PDB: 6YD1) with Arguslab [37] with a docking
box of 15 Å × 15 Å × 15 Å centered on the ligand using the genetic algorithm with default
parameters. The docking result was superimposed to the structure of the co-crystallized
DFMBA (PDB: 6YD1). 3D-Visualization was performed with PyMOL which was used to
create Figures 1 and 4. 2D-representation was created with LigPlot+ [38] for Figure 1.

3.3. Chemistry

All commercial materials were used as received without further purification. Flash
chromatography was carried out using Macherey–Nagel Kieselgel 60 M silica. Analyti-
cal thin-layer chromatography was realized using aluminum-backed plates coated with
Macherey–Nagel Kieselgel 60 XtraSIL G/UV254 and were visualized under UV light (at
254 nm or 365 nm) or stained using ninhydrin. Nuclear magnetic resonance (NMR) spec-
tra were recorded on Bruker AV300, AV400 or Bruker AV500 spectrometers, operating at
300 MHz, 400 MHz and 500 MHz, respectively, for the proton (1H) NMR and at 75 MHz,
100 MHz and 125 MHz, respectively, for the carbon (13C) NMR. Chemical shifts were re-
ported in parts per million (ppm) on a scale relative to residual solvent signals. Multiplicities
are abbreviated as: s, singlet; d, doublet; t, triplet; q, quadruplets; dd, doublet of doublets;
dt, doublet of triplets; td, triplet of doublets; ddd, doublet of doublet of doublets; m,
multiplet. Coupling constants were measured in Hertz (Hz). High-resolution mass spectra
(HRMS) and low-resolution mass spectra were obtained by the Centre Commun de Spec-
trométrie de Masse (CCSM), University of Lyon 1, Lyon, France. 3-HBA and DFHBA were
synthesized by alkylation of 3-hydroxybenzamide and 2,6-difluoro3-hydroxybenzamide
with 1-bromohexane as previously reported [14,15].

3.3.1. (i) General Procedure for Methyl 3-hydroxybenzoate

To a solution of 3-hydroxybenzoic acid (15.0 mmol, 1.0 eq.) in MeOH (20 mL) at 0 ◦C
was added dropwise thionyl chloride (75.0 mmol, 5.0 eq.). The solution was stirred at
65 ◦C for 3 h and then cooled to room temperature. The solvent was evaporated and the
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residue retaken in saturated NaHCO3 solution, extracted with EtOAc, dried over Na2SO4
and concentrated under vacuum to give desired product.

Methyl 3-Hydroxybenzoate (2)

White powder (2.014 g, 88% yield). 1H NMR (300 MHz, Acetone-d6) δ 8.67 (s, 1H),
7.52–7.46 (m, 2H), 7.33 (ddd, J = 8.1, 7.2, 0.9 Hz, 1H), 7.09 (ddd, J = 8.1, 2.4, 1.3 Hz, 1H), 3.86
(s, 3H). (Spectrum in accordance with Gill et al., 2021 [39]).

Methyl 2,6-Difluoro-3-(hexyloxy)benzoate (8)

Orange oil (387 mg, 84% yield). 1H NMR (300 MHz, Chloroform-d) δ 6.99 (td, J = 9.1,
5.1 Hz, 1H), 6.82 (td, J = 9.1, 2.0 Hz, 1H), 3.97 (t, J = 6.5 Hz, 2H), 3.93 (s, 3H), 1.82–1.69 (m,
2H), 1.50–1.36 (m, 2H), 1.36–1.24 (m, 4H), 0.93–0.81 (m, 3H); 13C NMR (75 MHz, Chloroform-
d) δ 162.14, 153.77 (dd, J = 249.0, 4.9 Hz), 150.64 (dd, J = 257.2, 6.4 Hz), 144.05 (dd, J = 10.8,
3.5 Hz), 117.76 (dd, J = 9.6, 3.5 Hz), 111.79 (dd, J = 19.8, 15.9 Hz), 110.89 (dd, J = 22.9, 4.4 Hz),
70.59, 52.85, 31.56, 29.21, 25.59, 22.63, 14.04; MS (ESI) m/z = 273.1 [M+H]+, 295.1 [M+Na]+.

3.3.2. (ii) General Procedure for Methyl 3-(hexyloxy)benzoate

To a solution of methyl 3-hydroxybenzoate (13.2 mmol, 1.1 eq.) in acetonitrile (15 mL)
were added 1-bromohexane (1.6 mmol, 1.0 eq.), K2CO3 (20.1 mmol, 1.6 eq.) and NaI
(1.3 mmol, 0.10 eq.). The solution was stirred at 70 ◦C for 7 h. After evaporation of the
solvent, the residue was diluted with water, extracted with Et2O, dried over Na2SO4 and
concentrated under vacuum to give desired product.

Methyl 3-(hexyloxy)benzoate (3)

Translucent oil (1.719 g, 58% yield). 1H NMR (300 MHz, Acetone-d6) δ 7.57 (ddd,
J = 7.6, 1.6, 1.1 Hz, 1H), 7.52–7.50 (m, 1H), 7.40 (ddd, J = 8.2, 7.6, 0.5 Hz, 1H), 7.18 (ddd,
J = 8.2, 2.7, 1.1 Hz, 1H), 4.05 (t, J = 6.5 Hz, 2H), 3.87 (s, 3H), 1.86–1.72 (m, 2H), 1.56–1.43 (m,
2H), 1.40–1.32 (m, 4H), 0.95–0.87 (m, 3H). (Spectrum in accordance with Cavedon et al.,
2019 [40])

2,4-Difluoro-1-(hexyloxy)benzene (6)

Translucent oil (1.648 g, 77% yield). 1H NMR (300 MHz, Acetone-d6) δ 7.14 (td, J = 9.3,
5.4 Hz, 1H), 7.04 (ddd, J = 11.5, 8.7, 3.0 Hz, 1H), 6.96–6.86 (m, 1H), 4.05 (t, J = 6.5 Hz,
2H), 1.86–1.70 (m, 2H), 1.55–1.42 (m, 2H), 1.39–1.29 (m, 4H), 0.94–0.86 (m, 3H); 13C NMR
(75 MHz, Acetone-d6) δ 157.02 (dd, J = 239.3, 10.5 Hz), 153.21 (dd, J = 247.5, 12.2 Hz),
144.83 (dd, J = 10.7, 3.4 Hz), 116.61 (dd, J = 9.5, 3.1 Hz), 111.26 (dd, J = 22.3, 4.1 Hz), 105.28
(dd, J = 27.2, 22.4 Hz), 70.57, 32.28, 29.94, 26.33, 23.27, 14.28; HRMS (EI) m/z: calcd. for
C12H16F2O [M]+. 214.1164, found 214.1162.

3.3.3. (iii) Procedure for 3-(hexyloxy)benzoic Acid

To a solution of methyl 3-(hexyloxy)benzoate (6.9 mmol, 1.0 eq.) in EtOH (10 mL)
was added a solution of NaOH 2N (13.9 mmol, 2.0 eq.). The solution was stirred at room
temperature for 16 h, concentrated under vacuum, diluted with H2O, acidified with HCl
1 N, extracted with EtOAc, dried over Na2SO4 and concentrated under vacuum to give
desired product.

3-(Hexyloxy)benzoic Acid (4)

White powder (1.437 g, 93% yield). 1H NMR (300 MHz, Acetone-d6) δ 11.22 (s, 1H),
7.61 (ddd, J = 7.6, 1.5, 1.0 Hz, 1H), 7.55 (dd, J = 2.7, 1.5 Hz, 1H), 7.41 (ddd, J = 8.2, 7.6, 0.4 Hz,
1H), 7.18 (ddd, J = 8.2, 2.7, 1.0 Hz, 1H), 4.06 (t, J = 6.5 Hz, 2H), 1.86–1.74 (m, 2H), 1.56–1.43
(m, 2H), 1.40–1.29 (m, 4H), 0.95–0.85 (m, 3H); 13C NMR (75 MHz, Acetone-d6) δ 167.57,
160.19, 132.76, 130.39, 122.57, 120.26, 115.81, 68.79, 32.31, 29.90, 26.41, 23.27, 14.30; MS (ESI)
m/z = 223.3 [M+H]+, 245.2 [M+Na]+.
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3.3.4. (iv), (v) Procedure for 2,6-difluoro-3-(hexyloxy)benzoic Acid

To a solution of 2,4-difluoro-1-(hexyloxy)benzene (7.4 mmol, 1.0 eq.) in THF (15 mL)
under a dried and inert atmosphere (N2) at −78 ◦C was added dropwise n-BuLi (1.6 M
in THF, 8.1 mmol, 1.1 eq.). The solution was stirred at −78 ◦C for 1 h. The mixture was
then added dropwise on crushed dry ice, and the solution was stirred at room temperature
for 2 h. To the mixture was then added NaOH solution (2 M, 11 mL) and was extracted
with Et2O to remove unreacted reagent. The solution was then acidified with an HCl 2 M
solution, and the product was extracted with EtOAc, dried over Na2SO4 and concentrated
under vacuum to give the desired product.

2,6-Difluoro-3-(Hexyloxy)Benzoic Acid (7)

Orange oil (1.096 g, 58% yield). 1H NMR (300 MHz, Acetone-d6) δ 10.34 (s, 1H), 7.24
(td, J = 9.2, 5.2 Hz, 1H), 6.99 (td, J = 9.2, 2.0 Hz, 1H), 4.06 (t, J = 6.5 Hz, 2H), 1.77 (dq, J = 8.2,
6.5 Hz, 2H), 1.52–1.40 (m, 2H), 1.36–1.27 (m, 4H), 0.92–0.82 (m, 3H); 13C NMR (75 MHz,
Acetone-d6) δ 162.53, 153.59 (dd, J = 245.9, 5.5 Hz), 149.99 (dd, J = 254.1, 6.9 Hz), 144.92
(dd, J = 10.7, 3.3 Hz), 117.93 (dd, J = 9.6, 3.3 Hz), 113.39 (dd, J = 21.3, 16.9 Hz), 111.79 (dd,
J = 22.8, 4.3 Hz), 70.73, 32.24, 29.87, 26.27, 23.25, 14.29; MS (ESI) m/z = 259.1 [M+H]+, 281.1
[M+Na]+.

3.3.5. (vi) General Procedure for 3-(hexyloxy)-N-hydroxybenzamide

To a solution of hydroxylamine hydrochloride (1.7 mmol, 2.0 eq.) in water (3 mL) at
0 ◦C was added NaOH (4.25 mmol, 5.0 eq.) and dropwise methyl 3-(hexyloxy)benzoate
(0.85 mmol, 1.0 eq.) dissolved in 1,4-dioxane (2 mL). The solution was stirred at room
temperature for 16 h. 1,4-dioxane is then removed under vacuum and the mixture is diluted
with water, acidified to pH 6 with HCl 2 M and filtered. The obtained solid is then purified
by chromatography (eluent: EtOAc/pentane 3:1).

3-(Hexyloxy)-N-hydroxybenzamide (9)

Orange powder (72 mg, 36% yield). 1H NMR (500 MHz, Methanol-d4) δ 7.38–7.25
(m, 3H), 7.08–7.02 (m, 1H), 3.99 (t, J = 6.4 Hz, 2H), 1.81–1.71 (m, 2H), 1.52–1.42 (m, 2H),
1.42–1.30 (m, 4H), 0.95–0.88 (m, 3H); 13C NMR (126 MHz, Methanol-d4) δ 167.99, 160.72,
134.72, 130.72, 120.01, 119.16, 113.88, 69.18, 32.72, 30.27, 26.81, 23.65, 14.37; HRMS (ESI)
m/z: calcd. for C13H20NO3 [M+H]+ 238.1438, found 238.1438.

2,6-Difluoro-3-(hexyloxy)-N-hydroxybenzamide (10)

Orange powder (77 mg, 47% yield). 1H NMR (300 MHz, Methanol-d4) δ 7.18 (td,
J = 9.3, 5.2 Hz, 1H), 6.95 (td, J = 8.9, 2.0 Hz, 1H), 4.03 (t, J = 6.4 Hz, 2H), 1.86–1.70 (m, 2H),
1.54–1.43 (m, 2H), 1.43–1.26 (m, 4H), 0.96–0.88 (m, 3H); 13C NMR (126 MHz, Methanol-d4) δ
160.00, 154.22 (dd, J = 243.3, 5.7 Hz), 150.76 (dd, J = 251.5, 7.3 Hz), 145.21 (dd, J = 10.8, 3.3
Hz), 118.00 (dd, J = 9.2, 3.0 Hz), 114.04 (dd, J = 23.9, 19.5 Hz), 111.84 (dd, J = 22.8, 4.1 Hz),
71.24, 32.66, 30.23, 26.67, 23.63, 14.35; HRMS (ESI) m/z: calcd. for C13H18F2NO3 [M+H]+

274.1249, found 274.1253.

3.3.6. (vii) General Procedure for Tert-Butyl
2-(3-(hexyloxy)benzoyl)hydrazine-1-Carboxylate

To a solution of tert-butyl carbazate (1.0 mmol, 1.0 eq.) in DCM (10 mL) at 0 ◦C was
added 3-(hexyloxy)benzoic acid (1.1 mmol, 1.1 eq.), DMAP (0.13 mmol, 0.13 eq.) and
progressively DCC (1.2 mmol, 1.2 eq.). The mixture was then stirred at room temperature
for 16 h, filtered on Celite® and washed with DCM. The filtrate was then concentrated and
the residue purified by chromatography (eluent: pentane/Et2O 2:1).

Tert-Butyl 2-(3-(hexyloxy)benzoyl)hydrazine-1-Carboxylate (11)

White powder (214 mg, 64% yield). 1H NMR (300 MHz, Acetone-d6) δ 9.41 (s, 1H), 7.95
(s, 1H), 7.51–7.44 (m, 2H), 7.38 (ddd, J = 8.1, 7.4, 0.7 Hz, 1H), 7.11 (ddd, J = 8.2, 2.5, 1.1 Hz,
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1H), 4.05 (t, J = 6.5 Hz, 2H), 1.85–1.72 (m, 2H), 1.44 (s, 9H), 1.40–1.32 (m, 6H), 0.94–0.86 (m,
3H); 13C NMR (75 MHz, Acetone-d6) δ 167.17, 159.98, 156.69, 130.20, 120.17, 119.14, 113.57,
80.54, 68.57, 32.18, 29.79, 28.36, 26.30, 23.16, 14.27; MS (ESI) m/z = 337.3 [M+H]+, 359.3
[M+Na]+.

Tert-Butyl 2-(2,6-Difluoro-3-(Hexyloxy)benzoyl)hydrazine-1-Carboxylate (12)

White powder (136 mg, 52% yield). 1H NMR (300 MHz, Acetone-d6) δ 9.39 (s, 1H),
8.18 (s, 1H), 7.24 (td, J = 9.3, 5.2 Hz, 1H), 6.98 (td, J = 8.8, 2.1 Hz, 1H), 4.08 (t, J = 6.5 Hz, 2H),
1.84–1.72 (m, 2H), 1.46 (s, 9H), 1.40–1.27 (m, 6H), 0.96–0.86 (m, 3H); 13C NMR (75 MHz,
Acetone-d6) δ 160.46, 153.72 (dd, J = 243.6, 6.0 Hz), 150.24 (dd, J = 251.5, 7.7 Hz), 144.75
(dd, J = 10.8, 3.4 Hz), 117.43 (dd, J = 9.3, 3.0 Hz), 115.09 (dd, J = 23.9, 19.5 Hz), 111.59 (dd,
J = 22.8, 4.2 Hz), 80.65, 70.74, 32.21, 29.58, 28.38, 26.27, 23.23, 14.27; MS (ESI) m/z = 395.1
[M+Na]+.

3.3.7. (viii) General Procedure for 3-(hexyloxy)benzohydrazide

To a solution of tert-butyl 2-(3-(hexyloxy)benzoyl)hydrazine-1-carboxylate (0.30 mmol,
1.0 eq.) in DCM (3 mL) was added TFA (12.0 mmol, 40 eq.). The mixture was stirred at
room temperature for 24 h and then co-evaporated with toluene. The residue was retaken
in sat. NaHCO3 solution, extracted with EtOAc, dried over Na2SO4, concentrated and
purified by chromatography (eluent: EtOAc 100%).

3-(Hexyloxy)benzohydrazide (13)

White powder (29 mg, 41% yield). 1H NMR (500 MHz, Methanol-d4) δ 7.37–7.29 (m,
3H), 7.08–7.02 (m, 1H), 4.00 (td, J = 6.5, 1.3 Hz, 2H), 1.83–1.68 (m, 2H), 1.54–1.41 (m, 2H),
1.40–1.33 (m, 4H), 0.96–0.88 (m, 3H); 13C NMR (126 MHz, Methanol-d4) δ 169.51, 160.72,
135.51, 130.67, 120.12, 119.10, 113.97, 69.18, 32.74, 30.29, 26.82, 23.67, 14.37; HRMS (ESI)
m/z: calcd. for C13H21N2O2 [M+H]+ 237.1598, found 237.1600.

2,6-Difluoro-3-(hexyloxy)benzohydrazide (14)

White powder (51 mg, 94% yield). 1H NMR (300 MHz, Methanol-d4) δ 7.17 (tdd,
J = 9.2, 5.2, 2.0 Hz, 1H), 6.95 (dddd, J = 9.2, 8.7, 2.0, 0.9 Hz, 1H), 4.04 (td, J = 6.4, 2.4 Hz,
2H), 1.84–1.72 (m, 2H), 1.56–1.43 (m, 2H), 1.41–1.28 (m, 4H), 1.00–0.86 (m, 3H); 13C NMR
(126 MHz, Methanol-d4) δ 162.26, 154.13 (dd, J = 243.2, 5.7 Hz), 150.66 (dd, J = 251.2, 7.5 Hz),
145.23 (dd, J = 10.8, 3.2 Hz), 117.81 (dd, J = 9.4, 3.1 Hz), 115.22 (dd, J = 23.7, 19.1 Hz), 111.80
(dd, J = 22.9, 4.2 Hz), 71.25, 32.67, 30.25, 26.68, 23.65, 14.35; HRMS (ESI) m/z: calcd. for
C13H19F2N2O2 [M+H]+ 273.1409, found 273.1411.

3.4. Biological Evaluation

MICs were evaluated in Cation-adjusted Mueller-Hilton Broth (CaMHB) by the
method of microdilution in liquid medium, which follows the CLSI (Performance Standards
for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100., Wayne, PA:
Clinical and Laboratory Standards Institute; 2021). The 0.5 MacFarland bacterial suspen-
sions were made from colonies previously grown on blood agar plate (COS, Biomérieux®,
Marcy-l’Étoile, France) in a saline solution (0.45% NaCl). Evaluated compounds were
diluted in DMSO with a concentration of 5 mg/mL and then further diluted in CaMHB
(1/100) before addition into 96-well microplates. MICs were carried out in triplicate and
determined after 18 h of incubation at 37 ◦C. The median values were reported.

4. Conclusions

This study contributes to the knowledge on the important fluorinated benzamide
pharmacophore for allosteric inhibition of SaFtsZ. While the benzamide function was
confirmed to be essential for reaching FtsZ inhibiting activity, the reason for increased
activity due to fluorination has been scrutinized from the conformational viewpoint. The
comparison of conformational analyses of 3-MBA and DFMBA unveiled the influence of the
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fluorine atoms on the conformation of the 2,6-difluorobenzamide by inducing a nonplanar
conformation, rending easier for the ligand to adopt the known active conformation.
Docking studies of the calculated preferential conformation shows results very close to the
co-crystallized structure, indicating van der Walls interactions of the fluorine atoms with
the residues Val203, Val297 and Asn263, while the benzamide functional group develops
interactions with Val207, Leu209 and Asn263 via hydrogen bonds.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28052055/s1. Figure S1: Conformational analysis of
DFHBA and 3-HBA obtained as a result of variation of the torsion angle between the carboxamide
and the phenyl group.
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