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Abstract: Traditional Chinese medicine (TCM) safety and effectiveness can be ensured by establishing
a suitable quality assessment system. This work aims to develop a pre-column derivatization HPLC
method for Polygonatum cyrtonema Hua. quality control. In this study, 1-(4′-cyanophenyl)-3-methyl-5-
pyrazolone (CPMP) was synthesized and reacted with monosaccharides derived from P. cyrtonema
polysaccharides (PCPs), followed by HPLC separation. According to the Lambert–Beer law, CPMP
has the highest molar extinction coefficient of all synthetic chemosensors. A satisfactory separation
effect was obtained under a detection wavelength of 278 nm using a carbon-8 column and gradient
elution over 14 min, with a flow rate of 1 mL per minute. Glucose (Glc), galactose (Gal), and mannose
(Man) make up the majority of the monosaccharide components in PCPs, and their molar ratios
are 1.73:0.58:1. The confirmed HPLC method has outstanding precision and accuracy, establishing
a quality control method for PCPs. Additionally, the CPMP showed a visual improvement from
colorless to orange after the detection of reducing sugars, allowing for further visual analysis.

Keywords: quality control; chemosensor; pre-column derivatization; P. cyrtonema Hua. polysaccharides

1. Introduction

Chemists have frequently shown a significant interest in the design and synthesis of
novel chemosensors to determine the analyte in vivo and in vitro [1–3]. As a significant
pharmacological component in TCM, polysaccharides have strong biological effects, such
as immunological modulation and tumor prevention [4,5]. To ensure clinical safety and ef-
ficacy, the quality control of TCM polysaccharides is crucial. The polysaccharides’ inherent
polydispersity and lack of chromophores make polysaccharide determination difficult [6,7],
not to mention the difficulties of establishing a consistent method of quality control for
Chinese polysaccharide medicine.

Saccharides are extremely difficult to detect due to their strong polarity, structural
similarity, and lack of UV absorption or luminescence group. Generally, the number of
total saccharides in crude polysaccharide extracts is determined by colorimetric methods
after acidification, based on the Chinese Pharmacopoeia [8]. However, the direct test’s sen-
sitivity and accuracy are low [9]. By comparison, colorimetric chemosensors have received
increased attention due to their excellent sensitivity and operational simplicity [10–12].

Chemical derivatization can significantly improve the measured sensitivity and selec-
tivity of saccharides in a derivatization reaction between the chemosensor and saccharide,
particularly in pre-column derivatization, which requires only a few diverse derivatization
reagents, such as 1-phenyl-3-methyl-5-pyrazolone (PMP) [13], fluorescein isothiocyanate
(FITC) [14], and others [15,16]. In 1989, Honda et al. [17] used PMP to derivatize monosac-
charides, and subsequently, researchers used the HPLC-UV technique to examine the PMP
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derivatives, achieving a desirable result. It should be noted that PMP is currently the
pre-column derivatization chemosensor with the highest usage rate. However, the stronger
alkaline conditions and lower detecting wavelength result in drawbacks such as undesired
byproducts, contaminant interference, and excessively high sensor requirements. As a
result, a chemosensor that has a higher sensitivity, lower sensor requirements, and mild
reaction conditions is highly desired.

Following our research interests in chemosensor design and quality control [18–21],
particularly for Polygonatum by the HPLC technique [16], herein, we designed and syn-
thesized a variety of PMP derivatives comprising diverse functionalization groups, such
as methyl, methoxy, halogen, cyano, and nitro, to address the difficulties stated above.
Combining the Lambert–Beer law and response surface methodology (RSM) [22,23], the
CPMP with the highest molar extinction coefficient was screened out. By utilizing the RSM
combined with the HPLC technique, we established a method for the visual sensing of
monosaccharides from PCP. Finally, we established a consistent method of quality control
for P. cyrtonema Hua., highlighting the value of the novel technology.

Some efficient and simple reagents for derivatization have been reported [24,25]. In
this study, the workflow of sensing monosaccharides was depicted in Scheme 1. The molar
extinction coefficient of CPMP is 23382, while that of PMP is 11593, indicating that CPMP
is twice as sensitive as PMP. Meanwhile, the maximum absorption wavelength of CPMP is
278 nm, whereas the maximum absorption wavelength of PMP is 245 nm, which indicates
less noise interference when CPMP is used. For the developed approach, the limit of
detection (LOD) is less than 0.006 µg/mL in terms of the detection of monosaccharides. In
contrast, among the other reported approaches [26–28], the LOD is greater than 0.4 µg/mL.
Consequently, the approach developed in this study offers significant advantages.
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2. Results
2.1. UV-Vis Spectra of CPMP

A UV-visible spectrophotometer was utilized to determine the maximum absorp-
tion wavelength of the synthesized CPMP. Lambert–Beer’s law was used to calculate
the molar extinction coefficient. The PMP molecule exhibits an ultraviolet absorption
peak of 245 nm, whereas CPMP exhibits an absorption peak of 278 nm, which is higher
in magnitude than PMP (Figure 1A). A comparison of the molar absorption coefficient
of PMP (ε = 11593.40 L/mol/cm) and CPMP (ε = 23382.49 L/mol/cm) for CH3OH indi-
cates that CPMP is more sensitive than PMP (Table 1, and Figure 1B). Recently, we have
developed a pre-column derivatization HPLC method based on the reaction of 4-hydrazine-
1,8-naphthalimide (HAN) as a new chemical sensor with reducing sugar. In the molecule of
HAN, the molar extinction coefficient in methanol is 16138.51 L/mol/cm [16]. In contrast
to PMP, the synthesized CPMP has a higher sensitivity.
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Figure 1. Spectroscopic properties of pre-column derivatization reagents of PMP and CPMP.
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Table 1. The values of the molar extinction coefficient of chemosensors bearing different groups.

Different Groups ε (L/mol/cm)
CH3OH

ε (L/mol/cm)
CH3CH2OH

ε (L/mol/cm)
CH3CN

4-H 11,593.40 14,219.19 13,611.52
4-Br 17,489.26 16,003.25 14,516.14

4-CH3 13,293.05 13,634.17 13,941.38
4-Cl 16,411.64 17,587.45 14,254.44

4-CN 23,382.49 20,852.47 19,712.28
4-OCH3 13,663.03 15,953.65 16,379.34

4-F 11,113.26 13,659.38 13,376.55
3-F 11,371.96 16,803.28 16,541.72
2-F 9850.37 10,301.37 10,620.38

2.2. Optimization of Derivatization Conditions by RSM

After performing a single-factor analysis, we used triethyl amine as the best type of al-
kali from DMAP, Na2CO3, NaOH, K3PO4, and (C2H5)3N. Subsequently, it was determined
that reaction temperature, reaction time, alkali concentration, and CPMP concentration
played a significant role. The test was designed by the Box–Behnken center combination
using Design-Expert 8.0.6 software. Table S1 illustrates the results of the test factors: the
peak area of monosaccharide-CPMP varied from 66.3 to 73.45. As the objective function of
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the regression equation, we obtained the quadratic equation. Subsequently, using the F-test
and p-value, it is possible to evaluate the significance of the model’s coefficients. The data
obtained from the experiment are fitted multiple times to generate a mathematical model:

Y = 71.55 + 0.4667A + 1.39B − 0.0917C − 1.98D = 0.0750AB + 0.2250AC + 0.0000AD + 0.2250BC − 0.3750BD
+ 0.3250CD − 1.44A2 − 1.33B2 − 1.25C2 − 0.7645D2

where Y stands for the peak area of the Glc-PMP derivative, while A, B, C, and D repre-
sent reaction temperature, reaction time, alkali concentration, and CPMP concentration,
respectively. The significant influencing factors were B (Time, p < 0.0001) and D (CPMP
concentration, p < 0.0001), as shown in Table 2.

Table 2. Variance analysis of the BBD in derivatization of CPMP-monosaccharide.

Source Sum of
Squares DF Mean

Square F-Value p-Value

Model 100.36 14 7.17 9.24 <0.0001
A 2.61 1 2.61 3.37 0.0878
B 23.24 1 23.24 29.95 <0.0001
C 0.1008 1 0.1008 0.1300 0.7239
D 47.20 1 47.20 60.84 <0.0001

AB 0.0225 1 0.0225 0.0290 0.8672
AC 0.2025 1 0.2025 0.2610 0.6174
AD 0.0000 1 0.0000 0.0000 1.0000
BC 0.2025 1 0.2025 0.2610 0.6174
BD 0.5625 1 0.5625 0.7250 0.4088
CD 0.4225 1 0.4225 0.5446 0.4727
A2 13.44 1 13.44 17.32 0.0010
B2 11.42 1 11.42 14.72 0.0018
C2 10.17 1 10.17 13.10 0.0028
D2 3.79 1 3.79 4.89 0.0442

Residual 10.86 14 0.7759
Lack of Fit 3.04 10 0.3039 0.1554 0.9921
Pure Error 7.82 4 1.96

Cor Total 111.23 28

R2 = 0.9023 R2
Adj = 0.8047 R2

Pred = 0.7327 CV = 1.27% Adeq Precision = 10.6553

As a result of these data, it is feasible to establish a model through experimentation.
As can be seen from the precision value of 10.655, the model is suitable for forecasting the
outcomes of experiments. With an R2 adjusted value of 0.8047, the model can predict a
response value of 80.47%. With a determination coefficient of R2 of 0.9023, the model has
excellent suitability and can be used to analyze and predict the peak area of monosaccharide-
CPMP. With the R2

Pred equal to 0.7327, there is no significant difference between it and the
R2, indicating that it was unnecessary to investigate further.

Our study used Design-Expert (11.0) to establish the relationship between the indepen-
dent and dependent variables. Figure 2 depicts the independent and dependent variables’
3D response surface and contour plot and presents the response surface and contour map
of A (Temperature) and B (Time) about the peak area of monosaccharide-CPMP. Based
on the map’s intensity of contours and the response surface’s steepness, the map reflects
how many interlacing factors influence the response surface. With increasing density and
slope, the impact degree will be more pronounced. Maps in Figure 2b is the steepest (corre-
sponding to Figure 2a–c). These results illustrated that time (B) and CPMP concentration
(D) significantly influenced the peak area of monosaccharide-CPMP, while temperature (A)
and alkali concentration (C) had a slight influence. Overall, the pre-column derivatization
conditions of monosaccharide-CPMP were optimized using RSM during the experiment.
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As a result, the optimal conditions were established below: time: 60 min, temperature:
70 ◦C, alkali concentration: 0.4 mol/L, and CPMP concentration: 0.6 mol/L.
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2.3. Mechanism Analysis of CPMP-Glc by UV-Vis and HRMS

UV-Vis, HRMS, and NMR techniques were used to identify the mechanisms involved
in derivatization [29]. As shown in Figure 1A, the maximum absorption wavelength of
CPMP is 278 nm, which is redshifted compared with that of PMP. Figure 1B shows that
CPMP is attached to the benzene ring with substituent 4-CN, increasing its molar extinction
coefficient. In Figure 3A, the methanol solution of CPMP is colorless and transparent, while
the solution of CPMP-Glc is orange, suggesting the absorption spectrum has changed.
Finally, HRMS spectra provide support for the structure of CPMP-Glc. The peak at m/z
561.2101, as shown in Figure 3B, was assigned to [2CPMP-Glc + H]+ (calc. m/z 561.2092).

Molecules 2023, 28, 2186 5 of 13 
 

 

 
Figure 2. Response surface plots showing the effects of variables on the derivatization of CPMP. (a) 
The response surface of the impact of exaction temperature (A, °C ) and time (B, min ); (b) The 
response surface of the effects of temperature (B, min) and alkali concentration (C, mol/L); (c) The 
response surface of the impact of time (B, min) and CPMP concentration (D, mol/L). Red means the 
effect is the greatest; Yellow means the effect is the moderate, and the Green is the weakest. 

2.3. Mechanism Analysis of CPMP-Glc by UV-Vis and HRMS 
UV-Vis, HRMS, and NMR techniques were used to identify the mechanisms involved 

in derivatization [29]. As shown in Figure 1A, the maximum absorption wavelength of 
CPMP is 278 nm, which is redshifted compared with that of PMP. Figure 1B shows that 
CPMP is attached to the benzene ring with substituent 4-CN, increasing its molar extinc-
tion coefficient. In Figure 3A, the methanol solution of CPMP is colorless and transparent, 
while the solution of CPMP-Glc is orange, suggesting the absorption spectrum has 
changed. Finally, HRMS spectra provide support for the structure of CPMP-Glc. The peak 
at m/z 561.2101, as shown in Figure 3B, was assigned to [2CPMP-Glc + H]+ (calc. m/z 
561.2092). 

 
Figure 3. Mechanism analysis: (A) Photograph of CPMP and CPMP-Glc solutions; (B) HRMS data 
of CPMP-Glc. 

2.4. Quality Control for P. cyrtonema Hua. 
When monosaccharides are analyzed directly by HPLC-DAD, they cannot be ob-

served or detected due to the lack of ultraviolet chromophores in saccharides. However, 
the derivatization reaction between chemosensor CPMP and three monosaccharides, Glc, 
Man, and Gal, allows the observation of the metabolites of the various monosaccharides 
conjugated with CPMP. These metabolites are easily separated by the established method.  

Figure 3. Mechanism analysis: (A) Photograph of CPMP and CPMP-Glc solutions; (B) HRMS data of
CPMP-Glc.



Molecules 2023, 28, 2186 6 of 13

2.4. Quality Control for P. cyrtonema Hua.

When monosaccharides are analyzed directly by HPLC-DAD, they cannot be observed
or detected due to the lack of ultraviolet chromophores in saccharides. However, the
derivatization reaction between chemosensor CPMP and three monosaccharides, Glc,
Man, and Gal, allows the observation of the metabolites of the various monosaccharides
conjugated with CPMP. These metabolites are easily separated by the established method.

A comparison of the results displayed in Figure 4A may be sufficient to satisfy the
requirements of qualitative and quantitative analysis. Afterwards, an indirect study of
monosaccharides in PCPs samples was conducted. The first step involved the hydrolysis
of PCPs into monosaccharides with 2 M trifluoroacetic acid, followed by the derivation
of the monosaccharides with CPMP. Using the HPLC technique, the obtained samples
were analyzed. The HPLC chromatogram shown in Figure 4B exhibited three peaks
identified and labeled as follows: peak 1, CPMP-Gal, tR: 4.78 min; peak 2, CPMP-Glc, tR:
5.92 min; and peak 3, CPMP-Man, tR: 12.03 min. A separation degree more significant
than 1.5 has been achieved between the three components above-mentioned, thus meeting
the requirements for HPLC separation. Therefore, this established method is a practical
approach to separating CPMP-monosaccharides and determining indirect monosaccharide
content. On the basis of the linear equation, the contents of CPMP-Gal, CPMP-Glc, and
CPMP-Man were calculated. As displayed in Table 3, the corresponding molar ratio of
Gal, Glc, and Man is 0.58:1.73:1.00 in PCP samples. The glucose content was the highest,
consistent with literature reports [30,31]. Generally, we were able to successfully detect
monosaccharide composition in PCP analytes using the established method, satisfying the
goal of providing a method for the quality control of P. cyrtonema Hua. polysaccharide.
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Figure 4. (A) HPLC-DAD chromatogram of mixing CPMP-monosaccharide standards; (B) HPLC-
DAD chromatogram of PCPs after derivatization; (peak 1, CPMP-Gla, tR = 4.78 min; peak 2, CPMP-
Glc, tR = 5.92 min; peak 3, CPMP-Man, tR = 12.03 min).

Table 3. Determination of monosaccharide composition of PCPs.

Monosaccharide Concentration (µg/mg) Ratio

Gal 1.88 0.58
Glc 5.62 1.73

Man 3.25 1
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2.5. Method Validation

To validate the developed method, we conducted experiments examining linearity,
LOD, and reproducibility. After plotting the relationship between peak area and spiked
concentrations of Glc, Man, and Gal, the linear fitting to the results was completed. Calibra-
tion curves are constructed using Glc, Man, and Gal standards with a concentration range
of 1 to 104 µg/mL. The linear regression and LOD results are displayed in Table 4. A satis-
factory correlation coefficient ranged between 0.9993 and 0.9997 for the three compounds.
LOD values were determined for the three substances and ranged from 2.12 × 10−3 to
5.66 × 10−3 µg/mL. In addition, a six-time continuous injection was used to evaluate the
precision of the present method, which laid the foundation for calculating the relative
standard deviation (RSD) for CPMP-Glc. The RSDs were 0.44% (Table 5). The stability of
the established method was also measured during the 24 h after preparation. The RSD
of the stability was 0.31%, exhibiting that the reproducibility of the presented method is
excellent. As a result of its excellent linear relationship, accuracy, sensitivity, and stability,
the validated method is able to satisfy the requirements of determining monosaccharides.

Table 4. Linearity, regression line, and LOD of the derivatives in the method.

Monosaccharides tR (min) Calibration Curves r2 Linear Range
(µg/mL)

LOD
(µg/mL)

LOQ
(µg/mL)

Gal 4.78 y = 25116x + 12.52 0.9992 1-21 2.12 × 10−3 6.42 × 10−3

Glc 5.92 y = 10871x+16.178 0.9995 5-104 5.22 × 10−3 15.81 × 10−3

Man 12.03 y = 14698x + 6.1496 0.9997 3-52 5.66 × 10−3 17.15 × 10−3

Table 5. Precision, stability, repeatability, and accuracy of CPMP-monosaccharides.

Monosaccharides
Content in Sample

(µg/mL)
Precision Stability Repeatability Sample Adding

Recovery

RSD (%) RSD (%) RSD (%) (%)

Gal 20 0.78 0.72 0.66 103.37
Glc 20 0.44 0.31 1.09 101.25

Man 20 0.98 1.02 1.15 99.87

3. Materials and Methods
3.1. Reagent and Instrument

We collected the rhizomes of P. cyrtonema Hua. (PC) identified by Dr. Jinmei Ou,
Anhui University of Chinese Medicine, from Banzhuyuan in Jinzhai County (Luan, Anhui
Province, China).

The purity of the 4-phenylhydrazine hydrochloride acquired from Shanghai Mack-
lin Biochemical Co., Ltd. (Shanghai, China) was 95%, and it has various substituents
(4-Br, 4-CH3, 4-Cl, 4-CN, 4-OCH3, 4-F, 2-F, and 3-F). Shanghai Bide Medical Technology
Co., Ltd. (Shanghai, China) supplied the monosaccharide standards, including glucose
(Glc), mannose (Man), and galactose (Gal) (purity > 97%). Aladdin Reagent Co., Ltd.
(Shanghai, China) provided 1-phenyl-3-methyl-5-pyrazolone (PMP, purity 99%); reduc-
ing sugar-CPMP derivatives were separated using an Agilent ZORBAX SB C8 column
(4.6 mm × 250 mm, 5 µm particle); MERCK & Co., Inc. (Shanghai, China) provided the
chromatographic methanol and acetonitrile; Waters Xevo G2-XS QTOF spectrometers were
used to collect the high-resolution mass spectra (HRMS) (Tolerance = 10.0 ppm). An
ultraviolet–visible spectrophotometer, SHIMADZU UV-2550, was used to measure the
absorption of ultraviolet-visible light.
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3.2. Synthesis of CPMP

4-(5-hydroxy-3-methyl-1H-pyrazole-1-yl) benzonitrile 3e was synthesized according to
a reported procedure [32–34]. In brief, ethyl acetoacetate (2 mmol, 252 µL), glacial acetic acid
(0.6 mL), and ethanol (2 mL) were added to commercially available 4-cyanophenylhydrazine
hydrochloride (2 mmol, 306.28 mg), and the mixture was reacted at 100 ◦C for 6 h. A light-
yellow solid powder was obtained by silica gel column chromatography, with a yield
of 10%. NMR analysis of the prepared compound showed that the compound was 4-(5-
hydroxy-3-methyl-1H-pyrazole-1-yl) benzonitrile (CPMP). 1H NMR (500 MHz, DMSO) δ
7.98 (d, 2H), 7.88 (d, 2H), 2.51 (s, 2H), 2.14 (s, 3H). This compound was known [31]. Later,
we carried out substrate expansion. PMP derivatives with different substituents (such as
4-H, 4-Br, 4-CH3, 4-Cl, 4-OCH3, 4-F, 3-F, and 2-F) were synthesized according to the method
described above. These compounds were known [32–34].

3.3. Investigation of Spectroscopic Characteristics

A total of 20 mg of each PMP derivative with different substituents (4-H, 4-Br, 4-
CH3, 4-Cl, 4-CN, 4-OCH3, 4-F, 3-F, and 2-F) was transferred to a 100 mL volumetric flask,
and then chromatography-grade methanol was added. The absorbance at the maximum
absorption wavelength was measured using a blank methanol solution as a control, and
the measurement was repeated three times.

The Lambert–Beer law describes how light absorption intensity, concentration, and
light path length are related to wavelength for a given substance. In the classical equation:
A = log (1/T) = εbc, ε reflects the degree of light absorption by the absorbing medium,
which can be used as the characteristic constant of the substance. When b = 1, the value of ε
is the slope of this binary first-order equation. The higher the ε value, the more sensitive the
chemosensor will be. A Lambert–Beer law can calculate the molar extinction coefficient and
absorbance, and the specific values of PMP derivatives can be found in the supplementary
material. According to the above method, weighed samples were dissolved in ethanol and
acetonitrile, respectively. The results of the three solvent assays are shown in Figure 5, and
Tables S2–S4.
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The results showed that when methanol was used as the solvent, the molar absorp-
tion coefficient of each derivative was higher, and CPMP had less crossover with other
peaks at the maximum absorption wavelength. Therefore, CPMP was selected as a novel
sugar chemosensor with high sensitivity and was applied to the quality control method
concerning the Polygonatum polysaccharide used in TCM.

3.4. Optimizing Derivatization Condition by RSM [16]

Variables such as temperature, time, concentration of alkali, and concentration of
CPMP significantly affect the efficiency of the reducing sugar-CPMP derivatization reaction;
furthermore, these factors can interact. Additionally, a complete experiment designed to
explore the relationships between the variables is often time-consuming. To solve this
problem, the RSM was proposed to find the most valuable areas for optimization, such as
reducing the difficulty of the experimental design, maximizing production, minimizing
costs, and minimizing side effects. To optimize the efficiency of the derivatization of
saccharides, we selected four single factors, which include reaction temperature (◦C), time
(h), alkali concentration (mol/L), and CPMP concentration (mol/L). The peak area of
CPMP-monosaccharide was explored using Box–Behnken design (BBD)-RSM (Table 6).
Based on 29 measurement experiments, we estimated the parameters of the model using
the least square method (Table 2). Multiple regression analysis was utilized to analyze the
experiment data, resulting in a relationship between the response variable and the test
variable of a second-order equation. Using Design-Expert 11.0 software, we can compare
multiple regression models and optimize process parameters based on the obtained test
data. Thanks to the outstanding value of the software in comparison with alternative
methods, optimal conditions were identified for verification and detection.

Table 6. Levels and code of derivatization variables used in Box–Behnken design.

Variable
Coded Levels

−1 0 1

Temperature (A, ◦C) 50 70 90
Time (B, min) 30 60 90

Alkali concentration (C, mol/L) 0.3 0.4 0.5
CPMP concentration (D, mol/L) 0.4 0.6 0.8

3.5. High-Performance Liquid Chromatography

This study used Agilent ZORBAX SB-C8 (4.6 mm × 250 mm, 5 µm) as a separation
column with a temperature of 30 ◦C. Moreover, the flow rate, the injection volume, and the
detection wavelength were 1 mL/min, 5 µL, and 278 nm, respectively. The mobile phase
was ammonium acetate (0.02 mol/L)-acetonitrile, gradient elution (0–8 min, CH3CN 20%;
10–13 min, CH3CN 28%; 13–14 min, CH3CN 20%).

3.6. Preparation of P. cyrtonema Hua. Polysaccharides (PCPs)

The PCPs were prepared from P. cyrtonema powder. Briefly, the powder was soaked in
boiling water (1:4 w/v, 100 ◦C) for 30 min and then precipitated using ethanol four times.
Using Sevag’s method, the precipitates were deproteinized and lyophilized before further
analysis.

3.7. Monosaccharide Determination

By modifying a previous report [16], we reacted CPMP and reducing sugar, producing
the reducing sugar-CPMP derivatives. We then took 19.90 mg of CPMP, dissolved 0.2 mL
DMF, and added 0.2 mL (20 mg/mL) of various standard monosaccharide solutions and
the solution of 0.2 mL (0.4 mol/L) N(C2H5)3. This mixture was stirred and reacted at 70 ◦C
for 60 min. We then added 0.2 mL (0.3 mol/L) hydrochloric acid and 1 mL chloroform
after cooling and mixed for 30 s. The mixture was then transferred to a centrifuge tube and
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centrifuged (speed 2000 r/min) for 5 min; we removed the lower layer solution, added
chloroform, and centrifuged again, repeating this process three times. We aspirated the
supernatant and diluted it to 5.0 mL, which was then filtered through a 0.22 µm microporous
membrane. An aliquot of 10 µL sample was injected into HPLC to perform the analysis.

4. Discussion
4.1. Synthesis of CPMP

PMP pre-column derivatization is the main method of quality control for polysaccha-
rides in traditional Chinese medicine. However, the nucleophilicity is insufficient when
the derivatization reagent reacts (such as PMP) with monosaccharides; additionally, its
maximum absorption wavelength is 245 nm. A large proportion of compounds absorb at
this wavelength, which results in a relatively large amount of background interference.
To address these issues, a series of PMP derivatives with different substituents (4-H, 4-Br,
4-CH3, 4-Cl, 4-OCH3, 4-F, 3-F, and 2-F) was synthesized according to the method described
above.

4.2. Establishment of the HPLC Method

Reaction conditions have a significant influence on the results of the reaction. There-
fore, it is essential to select the reaction parameters carefully. RSM is widely used today
for identifying optimal reaction conditions. The five factors selected for optimizing the
efficiency of saccharide derivatization (h), reaction temperature (◦C), acid type, acid con-
centration (eq), and molar ratio (eq) are investigated herein. It was found that the following
conditions were optimal: time: 60 min, temperature: 70 ◦C, alkali concentration: 0.4 mol/L,
and CPMP concentration: 0.6 mol/L.

The monosaccharides lack chromogenic groups, and ultraviolet absorption is very
weak. The conventional HPLC-UV method cannot directly detect them. Through the
derivatization reaction of CPMP and different monosaccharides under optimal conditions,
the monosaccharides were labeled. Subsequently, they were separated by an Agilent
ZORBAX SB-C8 column (4.6 mm × 250 mm, 5 µm) and were determined by a UV detector
at a wavelength of 278 nm.

Next, the monosaccharides in the P. cyrtonema Hua. polysaccharide from Jinzhai
of Anhui were examined indirectly. A PCP sample was hydrolyzed, and then a CPMP
precursor was derived. As shown in Table 4, the monosaccharides of PCPs include glucose,
mannose, and galactose, with a compositional ratio of 1.73:1.00:0.58. Therefore, the method
is also appropriate for monosaccharide measurement in PCPs.

4.3. Mechanism Analysis

The possible reaction mechanism was further investigated through UV-Vis and HRMS
techniques [29]. As shown in Figure 1A, the maximum absorption wavelength of CPMP
is 278 nm, which is redshifted compared with that of PMP. Figure 1B shows that CPMP
is attached to the benzene ring with the substituent 4-CN, increasing its molar extinction
coefficient. In Figure 3A, the methanol solution of CPMP is colorless and transparent, while
the solution of CPMP-Glc is orange, suggesting the absorption spectrum has changed. In
the HRMS spectra of the solution of CPMP-Glc, a peak at m/z 561.2101 was observed,
as depicted in Figure 3B. Based on the calculation of [2CPMP-Glc + H]+ is 561.2092, we
deduce that the conjugated product of two CPMP and one Glc is present in the derivative
system. This result further supports the structure of CPMP-Glc.
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4.4. Comparative Analysis with Existing Methods

According to our approach, the LOD (limit of detection) for the detection of monosaccha-
rides is less than 0.006 µg/mL. On the other hand, among the reported approaches [26–28],
the LODs are generally higher than 0.4 mg/mL. Based on the quantum dots (QD) technique,
the LOD of glucose was 0.811 µg/mL and 0.901 µg/mL, respectively. However, using the
reagent TPEA-BAP, the LOD of glucose only reached 0.468 µg/mL, as shown in Table 7. In
contrast, the CPMP compound gave a lower detection limit at 0.00522 µg/mL. Additionally,
the CPMP reagent possesses higher sensitivity (11593 for PMP; 23,382 for CPMP) and less
noise interference (detection at 245 nm for PMP and 278 nm for CPMP). As a result, our
developed approach is more widely useful.

Table 7. Comparison of CPMP with other glucose probes reported.

Reagent LOD (µg/mL) Reference

TPEA-BAP 0.468 [26]
Red-QDs@SiO2@green-QDs@APBA 0.811 [27]

Graphene QDs 0.901 [28]
CPMP 0.00522 This work

5. Conclusions

In this study, we have presented a chemosensor method to measure the monosac-
charide composition in PCP analytes and achieved satisfactory results for establishing a
method of quality control of P. cyrtonema Hua. This approach includes three steps: the
synthesis of chemosensor CPMP, the hydrolysis of polysaccharide analyte, and the derivati-
zation and detection of monosaccharides. Among the synthesized PMP derivatives bearing
various groups, the CPMP molecule possessed higher sensitivity (ε = 23382.49 L/mol/cm
in CH3OH) and less background interference (λmax = 278 nm) and thus was chosen. Ac-
cording to the established HPLC approach, the main monosaccharide components of the
P. cyrtonema Hua. polysaccharide were glucose, mannose, and galactose, with a compo-
sitional ratio of 1.73:1.00:0.58. The method is appropriate for monosaccharide analysis
and content measurement and can be utilized for the quality control of the P. cyrtonema
Hua. polysaccharide. Furthermore, the developed approach has a lower LOD (less than
0.006 µg/mL). These features give this approach significant advantages. There is a marked
difference in color or transparency between CPMP and CPMP-Glc. Therefore, the adduct’s
absorption spectrum is changed, providing the possibility of visualizing different monosac-
charides.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28052186/s1, Table S1: The yield optimization of
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coefficient of PMP with different substituents in acetonitrile solvent.
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