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Abstract: Biothiols, including glutathione (GSH), homocysteine (Hcy) and cysteine (Cys), play crucial
roles in various physiological processes. Though an array of fluorescent probes have been designed
to visualize biothiols in living organisms, few one-for-all imaging agents for sensing biothiols with
fluorescence and photoacoustic imaging capabilities have been reported, since instructions for syn-
chronously enabling and balancing every optical imaging efficacy are deficient. Herein, a new
near-infrared thioxanthene-hemicyanine dye (Cy-DNBS) has been constructed for fluorescence and
photoacoustic imaging of biothiols in vitro and in vivo. Upon treatment with biothiols, the absorption
peak of Cy-DNBS shifted from 592 nm to 726 nm, resulting in a strong NIR absorption as well as a
subsequent turn-on PA signal. Meanwhile, the fluorescence intensity increased instantaneously at
762 nm. Then, Cy-DNBS was successfully utilized for imaging endogenous and exogenous biothiols
in HepG2 cells and mice. In particular, Cy-DNBS was employed for tracking biothiols upregulation
in the liver of mice triggered by S-adenosyl methionine by means of fluorescent and photoacous-
tic imaging methods. We expect that Cy-DNBS serves as an appealing candidate for deciphering
biothiols-related physiological and pathological processes.
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1. Introduction

Sulfhydryl-containing amino acids, such as cysteine (Cys), homocysteine (Hcy) and
glutathione (GSH) are bound up with many diseases [1–3]. For example, malfunction
of Cys level has been associated with hair depigmentation, slowed growth rate and so
on. In particular, the abnormal concentration of Cys in the tumor site is significantly
higher than that in normal tissues, and it can even reflect different stages of tumor pro-
gression [4,5]. An anomalous level of Hcy gives rise to cardiovascular and Alzheimer’s
disease [6,7]. Alterations in GSH homeostasis have profound impacts on cell physiology,
and it has been demonstrated that GSH deficiency is linked with cancer, liver damage and
neurodegenerative diseases [8–10]. Additionally, targeting glutathione metabolic pathways
has been extensively studied [2,11,12]. For instance, S-Adenosyl methionine (SAM), an
intermediate metabolite of methionine, is used for the treatment of depression, liver disor-
ders and osteoarthritis [13–17]. Moreover, the metabolites of SAM, such as Hcy, GSH and
decarboxylated SAM, exert vital influences on the function of liver [18–21]. Unfortunately,
the contents of SAM are significantly reduced in liver diseases. To maintain normal liver
function, exogenous SAM must be supplemented to compensate for its deficiency, which
is beneficial to various tissues, especially the liver [22–24]. Thus, tracking the levels of
biothiols in the liver is highly conducive for investigating the liver-protective effects of
drugs such as SAM.
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Owing to their significant roles, efforts to design efficient and handy methods for
detecting biothiols with high sensitivity and selectivity are still advancing, which con-
tributes to the understanding of cellular biothiols-related physiopathology [25–30]. Among
these approaches, optical imaging, such as near-infrared fluorescence imaging (NIRFI),
enables non-invasive and real-time visualization of disease-relevant biomarkers with high
sensitivity and specificity, drawing great attention [31–37]. However, the penetration depth
of NIRFI is usually limited, making it inaccessible for visualizing bioactive species in deep
tissue. In contrast, photoacoustic imaging (PAI) is a burgeoning molecular imaging tech-
nique that utilizes the PA effect to convert absorbed light energy into ultrasound signals,
which assists researchers to profile deeper tissues with high spatial resolution [38–40].
Hence, the drawbacks of NIRFI can be offset by PAI, bringing out the best in each other.
Therefore, NIRFI/PAI with complementary advantages of fluorescence and photoacoustic
imaging, is expected to perfect imaging output of biomarkers, which endows the ability to
self-calibrate to avoid the false-positive signals and systematic errors [41–44]. Nevertheless,
to date, the combination of NIRFI and PAI for multiscale analysis of biomarkers has not
yet been fully exploited. Recently, thioxanthene-hemicyanine dye reported by Liang’s
group provided an energy balance strategy by transforming existing hemicyanine dyes
into thioxanthene-hemicyanine scaffolds, permitting reliable dual modality NIRFI/PAI
of biomolecules of interest [45]. We envisioned that an all-in-one imaging agent based on
thioxanthene-hemicyanine scaffold for imaging biothiols is highly desirable.

Hemicyanine dyes that display intramolecular charge transfer (ICT) characteristic are
important building blocks for advanced optical probes. The ICT process depends on both
donor and acceptor strength. When a strong electron-withdrawing group was introduced
into the hydroxyl group of the hemicyanine fluorophore, the electron-donating ability of the
donor group was weakened, which hampers the charge transfer in the fluorophore. Thus,
the fluorescence of the probe could be quenched through blocking ICT process [46,47]. With
all this in mind, we constructed a biothiols-activable probe Cy-DNBS with DNBS. Upon
exposure to biothiols, the 2,4-dinitrophenylsulfonyl (DNBS) moiety was specifically cleaved
and then Cy-DNBS was converted into Cy-OH, resulting in a strong NIR absorption at
726 nm accompanied by the enhanced fluorescence signal at 762 nm. Subsequently, Cy-
DNBS was utilized for NIRFI/PAI of endogenous and exogenous biothiols in living cells
and mice. Notably, Cy-DNBS have been employed successfully for real-time visualizing
alterations in biothiols levels in liver induced by administration of SAM. Taken together,
with complementary merits of fluorescence and photoacoustic imaging, Cy-DNBS was
successfully applied for dynamically monitoring biothiols in vitro and in vivo, suggesting
its enormous potential in imaging biothiols.

2. Results and Discussion
2.1. Design and Synthesis of Cy-DNBS

We first considered the leaving moiety of the probe since small biomolecules had
a limited lifetime in biological system, which called for cleaved groups with excellent
electron-withdrawing ability to translate biomarkers into optical signals rapidly. Given
that, the first choice of masking group was 2,4-dinitrophenylsulfonyl group (DNBS), which
has often been chosen as the responsive unit for biothiols [48–51]. Therefore, by modifying
the hydroxyl group in the fluorophore, we envisioned that the fluorescence could be
totally quenched through blocking intramolecular charge transfer (ICT) process, thus
minimizing background fluorescence interference. Then, by covalently connecting DNBS
to fluorophore, we designed and constructed Cy-DNBS. The reaction of biothiols and
Cy-DNBS generated Cy-OH and thereby restored the strong absorption and emission at
726 nm, 762 nm, respectively. The detailed synthetic route and recognition mechanism
were shown in Scheme 1. Furthermore, the structures of Cy7, Cy-OH and Cy-DNBS were
fully characterized by 1H NMR, 13C NMR and high-resolution mass spectra (HRMS), with
the details compiled in the supporting information (Figures S10–S19).



Molecules 2023, 28, 2229 3 of 14

Molecules 2023, 28, 2229 3 of 14 
 

 

Scheme 1. Furthermore, the structures of Cy7, Cy-OH and Cy-DNBS were fully character-

ized by 1H NMR, 13C NMR and high-resolution mass spectra (HRMS), with the details 

compiled in the supporting information (Figures S10–S19).  

 

Scheme 1. (a) Synthetic route of Cy-DNBS and (b) proposed biothiols-sensing mechanism of Cy-

DNBS. 

2.2. Optical Properties of Cy-DNBS towards Biothiols 

Before exploring the feasibility of Cy-DNBS for sensing biothiols in vitro and in vivo, 

the response behaviors of Cy-DNBS to biothiols were investigated. The absorption spectra 

of Cy-DNBS were first studied after three biothiols were added to PBS buffer (pH 7.4). As 

depicted in Figure 1a–c, free Cy-DNBS exhibited a maximum absorption peak at 592 nm 

(ε = 3.33 × 104 M−1cm−1) and possessed excellent photostability (Figure S2). However, upon 

the addition of three biothiols, the absorption peak at 592 nm attenuated sharply, and a 

new strong absorption peak appeared at around 726 nm (ε = 3.42 × 104 M−1cm−1), resulting 

from the departure of DNBS moiety and the restored ICT process. To further elaborate on 

the shift in maximum absorption peak and the sensing mechanism of Cy-DNBS towards 

biothiols, HRMS and high-performance liquid chromatography (HPLC) analysis were 

performed to elucidate the reaction processes. The peaks of m/z 452.20277 and m/z 

682.16604 (Figure S1) were assigned to Cy-OH and Cy-DNBS, respectively, which was 

consistent with the mechanism proposed by Chakrapani et al. [52]. In addition, the HPLC 

analysis (Figure S3) also supported the results as stated above, and the retention time of 

Cy-OH and Cy-DNBS were 20 min and 21.5 min, respectively. Since the major absorption 

of Cy-DNBS was in the range of NIR, we validated the capability of Cy-DNBS for PAI. 

Scheme 1. (a) Synthetic route of Cy-DNBS and (b) proposed biothiols-sensing mechanism of Cy-DNBS.

2.2. Optical Properties of Cy-DNBS towards Biothiols

Before exploring the feasibility of Cy-DNBS for sensing biothiols in vitro and in vivo,
the response behaviors of Cy-DNBS to biothiols were investigated. The absorption spectra
of Cy-DNBS were first studied after three biothiols were added to PBS buffer (pH 7.4). As
depicted in Figure 1a–c, free Cy-DNBS exhibited a maximum absorption peak at 592 nm
(ε = 3.33 × 104 M−1cm−1) and possessed excellent photostability (Figure S2). However,
upon the addition of three biothiols, the absorption peak at 592 nm attenuated sharply,
and a new strong absorption peak appeared at around 726 nm (ε = 3.42 × 104 M−1cm−1),
resulting from the departure of DNBS moiety and the restored ICT process. To further
elaborate on the shift in maximum absorption peak and the sensing mechanism of Cy-
DNBS towards biothiols, HRMS and high-performance liquid chromatography (HPLC)
analysis were performed to elucidate the reaction processes. The peaks of m/z 452.20277
and m/z 682.16604 (Figure S1) were assigned to Cy-OH and Cy-DNBS, respectively, which
was consistent with the mechanism proposed by Chakrapani et al. [52]. In addition, the
HPLC analysis (Figure S3) also supported the results as stated above, and the retention
time of Cy-OH and Cy-DNBS were 20 min and 21.5 min, respectively. Since the major
absorption of Cy-DNBS was in the range of NIR, we validated the capability of Cy-DNBS
for PAI. Similarly, to the absorption spectra, as shown in Figure 1d–f, an unspectacular PA
signal was observed from free probe. In contrast, upon addition of 2 equivalents of Cys,
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Hcy and GSH, augmented PA signals positioned at 725 nm occurred, and the PA intensity
was 4.3-fold, 3.3-fold and 6.0-fold higher than that of the probe alone, respectively. Taken
together, these results indicated that Cy-DNBS appeared to be a promising NIR PAI agent
for imaging biothiols.
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Figure 1. Absorption spectra of Cy-DNBS (10 µM) in the presence of different concentrations
(0–50 µM) of (a) Cys, (b) Hcy, (c) GSH and PA spectra of Cy-DNBS (10 µM) mixed with 20 µM (d) Cys,
(e) Hcy or (f) GSH in PBS solution. (Insets in (d–f): PA images of the Cy-DNBS solution with or
without biothiols).

Then, the fluorescent responses of Cy-DNBS to a series of concentrations of biothiols
were investigated. As illustrated in Figure 2a–d, the fluorescence spectra showed that
Cy-DNBS displayed an augmented fluorescence peak centered at 762 nm and featured
concentration-dependent behaviors. From the fluorescence titration curves and regression
equation, the limit of detection of Cys, Hcy and GSH were measured to be as low as 0.25,
0.04 and 0.13 µM, respectively (Figure S4). Selectivity was a key parameter for the probe,
and Cy-DNBS responded specifically to biothiols over other bioactive species needed to
be assessed. After incubating Cy-DNBS with other competing amino acids in PBS buffer,
negligible fluorescence and PA signals were found from interfering species compared to
three biothiols, hinting its outstanding selectivity (Figures 2e, S5 and S6).

To further explore the response of Cy-DNBS to biothiols following the change in time,
the fluorescence spectra were immediately acquired upon Cy-DNBS mixed with three
biothiols. As illustrated in Figure 2f, fluorescence intensity of Cy-DNBS increased rapidly
and reached a plateau within 100 s. The results indicated that Cy-DNBS could fulfill the
demand of rapid identification of biothiols, which was beneficial to capture the variation of
biothiols quickly. In addition, it was worth noting that the fluorescent quantum yield of
Cy-OH was 0.04 in DMSO by using ICG (Φ = 0.13 in DMSO) as a reference. Fortunately, the
low-fluorescence quantum yield promoted the outputs of photoacoustic signals, ensuring
a balanced platform for bimodal imaging. These impressive properties encouraged us to
explore applications of Cy-DNBS in cells.
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Figure 2. Fluorescence spectra of Cy-DNBS (10 µM) towards different concentrations of (a) Cys,
(b) Hcy and (c) GSH. (d) The plot of fluorescence intensity against concentration in PBS solution
determined from (a–c). (e) Selectivity of Cy-DNBS (10 µM) towards 20 µM biothiols and other
competing species. (f) Time-dependent behaviors of Cy-DNBS towards biothiols. λex = 680 nm,
λem = 700–900 nm. Slits, 5 nm/5 nm.

2.3. Intracellular Biothiols Imaging with Cy-DNBS

Prior to imaging biothiols in cells, we evaluated the biocompatibility of Cy-DNBS in
HepG2 cells through conventional MTT assay. It can be seen from Figure S7 that no obvious
cytotoxicity was observed within the tested concentration range. Following on from this,
we enquired the locating tendency of Cy-DNBS in organelles. After Cy-DNBS were co-
incubated with three commercial organelle dyes (Mito-, Lyso-Tracker and DAPI) for 30 min,
the confocal images were acquired. The results (Figure S8) illustrated that Cy-DNBS were
successfully uptaken by cells and prone to remain in the mitochondria and lysosome, with
Pearson correlation coefficients (PCC) of 0.74, 0.76 and 0.29 for mitochondria, lysosome and
nuclei, respectively. The results were exciting because biothiols are abundant in the two
organelles and remarkable indicators of organelles’ function [53,54]. We next examined
whether Cy-DNBS could be used to image intracellular biothiols. Firstly, N-Ethylmaleimide
(NEM), a thiol-specific scavenger, was used to reduce intracellular biothiols prior to incu-
bation of cells with Cy-DNBS [55]. As displayed in Figure 3a, the cells treated with NEM
exhibited much weaker fluorescence than untreated cells. Then, exogenous Cys, Hcy and
GSH were added to improve intracellular biothiols content. As expected, fluorescence
intensity of cells significantly enhanced compared to Cy-DNBS alone (Figures 3b and S9).
All the results showed that Cy-DNBS was suitable for real-time visualization of endogenous
biothiols fluctuations in living cells and could be used for a follow-up survey of biothiols
in vivo.
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bars: 25 µm.

2.4. Dynamically Tracking Biothiols in Tumor by NIRFI and PAI

Given the probe’s excellent performance in biothiols detection in HepG2 cells, we fur-
ther studied the applications of Cy-DNBS for tracking biothiols-related dynamic processes
in the tumor of a mouse model. By using an excitation wavelength of 740 nm and emission
wavelength of 790 ± 20 nm, the interference of spontaneous fluorescence was effectively
avoided. After Cy-DNBS (100 µL, 50 µM) was injected into the tumor (tumor group) and
normal tissue (control group), respectively, images were recorded immediately. Fluores-
cence signals increased significantly in both groups within one minute and fluorescence
intensity in tumor tissues was nearly four times that of normal tissue (Figure 4a,b). The
result could be explained by the reported truth that cancer cells possess higher biothiols con-
tent than normal tissues [11,56]. In addition, there were no obvious changes in fluorescence
intensity of tumor and normal tissue after 2 min, indicating that Cy-DNBS has reached
equilibrium with endogenous biothiols. These results demonstrated that Cy-DNBS could
respond quickly to biothiols and differentiate tumor from normal tissues and therefore
provided guidance for early diagnosis of tumor progression.

Then, we employed Cy-DNBS for PAI of biothiols in a tumor-bearing mouse model.
As depicted in Figure 4c,d, upon injection with Cy-DNBS in two different groups (tumor,
normal tissue), respectively, almost no obvious PA signals were observed in normal tissue
over time, while strong PA signals were found in tumor, and the intensity was about
four times as strong as that of normal tissue. Interestingly, both the fluorescence and
photoacoustic intensity of tumor tissue were four times that of normal tissue, and the two
were mutually compatible, indicating the excellent authenticity of the imaging outputs.

PAI possessed the benefits of high resolution and deep imaging depth, which enabled
us not only to detect biothiols in tumor, but also to precisely assess the content of biothiols
in different tumor regions through capturing numerous two-dimensional tomographic
images. It can be seen from Figure 4e that PA intensity was very weak on the tumor
surface and increased sharply as the tumor depth deepened, suggesting that there was
a highly heterogeneous distribution of biothiols in solid tumors. By contrast, in normal
tissues, PA signals hardly change with tissue depth, indicating that normal tissues had
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no characteristics of distribution differences. These results suggested that PAI provided
us with a toolkit for accurately locating and mapping the distribution and abundance of
bioactive species at different depths of tumor.
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2.5. Real-Time Visualizing Biothiols in Liver of Drug-Treated Mouse Model

Liver is vital for digesting food and getting rid of toxic substances, and its dysfunction
can lead to a series of diseases. It is well confirmed that the treatment of SAM could be
effective against liver disease; hence, we are determined to select SAM as a model drug for
visualizing biothiols kinetics in opposing liver diseases [18,20,21]. To prove the feasibility
of Cy-DNBS for detecting excess biothiols caused by SAM treatment, we established an
SAM-treated mouse model and subcutaneously injected SAM (200 µL, 100 mg/kg) every
other day for two weeks. After post injection of Cy-DNBS via tail vein, the fluorescence
signals of PBS and SAM group were monitored. As shown in Figure 5a,b, it is clear that
mouse administrated with SAM exhibited significantly brighter fluorescence in the liver
than that of PBS-treated mouse. Meanwhile, more biothiols were directly found in the liver
of the SAM group based on the fluorescence intensities of main organs resected from the
mice at 10 min post injection (Figure 5c,d). To further investigate the biothiols fluctuations
induced by administration of SAM, the PAI was carried out. The intensity sharply enhanced
over time and reached its plateau at 5 min post injection (Figure 5e,f). Noticeably, only
when mice were incubated with SAM could we observe apparent augmented signals from
the acquired PA images. These results implied that Cy-DNBS could be used for tracking
biothiols dynamics in the liver during drug therapy and thus provided feedback on the
effects of medicine.
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1 
 

 
Figure 5. In vivo optical imaging of biothiols in liver of SAM/PBS-treated mouse model. (a) Both of
SAM/PBS-treated mice were injected with Cy-DNBS (50 µM in PBS, 200 µL) via tail vein, and fluores-
cent images were acquired immediately at one-minute intervals. λex = 740 nm, λem = 790 ± 20 nm.
(b) Changes in fluorescence intensity in the liver over time measured in part a. (c) Fluorescent
images of representative organs of mice injected tail intravenously with Cy-DNBS (50 µM in PBS,
200 µL). λex = 740 nm, λem = 790 ± 20 nm. (d) Relative fluorescence intensity of different organs in
(c). (e) Temporal profile of PA725 signals determined in (f). (f) PA725 signals of lung of mice injected
tail intravenously with Cy-DNBS (50 µM in PBS, 200 µL) were recorded at five-minutes intervals.

3. Conclusions

In summary, a near-infrared fluorescent and photoacoustic probe Cy-DNBS was
designed and synthesized by covalently linking thioxanthene-hemicyanine fluorophore
with a biothiols-responsive unit (DNBS). Cy-DNBS could selectively respond to biothiols
and realized sensitive detection of endogenous and exogenous biothiols in HepG2 cells. In
addition, Cy-DNBS could fulfill visualization of biothiols in tumor and differentiate tumor
region from normal tissues with high confidence. Furthermore, with the complementary
advantages of NIRFI and PAI, Cy-DNBS was successfully applied to precisely monitor
the fluctuations of biothiols in the liver triggered by administration of SAM. Accordingly,
the dual-modality imaging probe can report the treatment efficacy of drugs that work by
regulating the content of biothiols, which may offer a molecular tool for drug screening.

4. Materials and Methods

All chemicals used in the synthesis of Cy-DNBS were purchased commercially and
used directly without other purification. The intermediates and probe were purified by
column chromatography. Silica gel was shipped from Qingdao Haiyang Chemical Co.,
Ltd. (China), and the size of silica gel particle was around 300–400 mesh. All solvents used
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for column chromatography were distillation grade. HPLC was carried out on Thermo
Scientific Dionex Ultimate 3000 with acetonitrile/H2O as eluents. All 1H NMR and 13C
NMR spectra were acquired at 298 K in CDCl3 or CD3OD on Bruker DRX-400, using TMS as
internal reference. The ESI-MS spectra were obtained through Thermo Fisher Scientific LCQ
Fleet electron-spray mass spectrometer with positive or negative mode. The HR-MS spectra
were presented in positive mode unless otherwise noted. Absorption and fluorescence
spectra were recorded using Perkin-Elmer Lambda 35 spectrophotometer and FluoroMax-4
spectrofluorometer, respectively. All the spectroscopic experiments were performed in
3 mL PBS buffer (pH 7.40) by applying a 1 cm optical path standard quartz cuvette as a
container. Additionally, the spectral data were processed by Origin 2019 software. The
melting point was measured by SGW®X-4 melting point apparatus. In vivo imaging of
mice was carried out on IVIS Lumina K Series III instrument (PerkinElmer), and isoflurane
for anesthetizing mice was purchased from RWD Life Science. The acquired raw images
of mice were studied with Living Image 4.5. Confocal imaging was performed with Leica
SP8 STED 3X and Zeiss LSM710 microscope. The PCC was determined by one-to-one-pixel
matching method in ImageJ software.

4.1. Synthesis and Characterization
4.1.1. Synthesis of Indolenine Salt (InS)

To a solution of 5-chloro-1-pentyne (2.3 mL, 14.2 mmol, 1 eq) in 25 mL acetonitrile,
was added potassium iodide (4.71 g, 28.4 mmol, 2 eq). After stirring at 50 ◦C for 30 min,
2,3,3-trimethylindoles (2.26 g, 14.2 mmol, 1 eq) were added dropwise to the mixture, and
then the mixture was heated to reflux. After the reaction completed, the flask was cooled to
room temperature, and the inorganic salt was removed by filtration, washed by DCM for
several times and used in the next step without further purification (2.51 g, 50% yield. Mp:
189–191 ◦C, Rf = 0.74 (dichloromethane/methanol = 20:1)). ESI-MS calculated 226.15902 for
C16H20N+, [M-I]+; found m/z: 226.15829.

4.1.2. Synthesis of Cy7

Compound InS (2.51 g, 7.11 mmol, 2 eq), trans-2-chloro-3-(hydroxymethyl) cyclohexyl-
1-ene-1-formaldehyde (3.68 g, 3.56 mmol, 1 eq) and sodium acetate (0.59 g, 7.11 mmol,
2 eq) in 100 mL acetic anhydride were heated to reflux under nitrogen atmosphere for
3 h. After the flask was cooled to room temperature, the mixture was poured into 300 mL
of cold diethyl ether. The precipitated yellow-green solid was washed with cold diethyl
ether, and dried to afford light green powder (1.9 g, 74% yield. Mp: 231–234 ◦C, Rf = 0.48
(dichloromethane/methanol = 20:1)). 1H NMR (400 MHz, CDCl3) δ 8.37 (d, J = 14.1 Hz,
2H), 7.47–7.39 (m, 6H), 7.33 (s, 2H), 6.35 (d, J = 14.1 Hz, 2H), 4.37 (t, J = 7.3 Hz, 4H), 2.77 (t,
J = 6.1 Hz, 4H), 2.47 (td, J = 6.6, 2.5 Hz, 4H), 2.19–2.02 (m, 6H), 2.01–1.92 (m, 2H), 1.76 (d,
J = 21.4 Hz, 12H); 13C NMR (101 MHz, CDCl3) δ 172.5, 150.7, 144.6, 142.1, 140.9, 128.9, 127.8,
125.4, 122.2, 111.1, 101.5, 82.9, 70.2, 49.3, 43.4, 28.2, 26.9, 26.0, 20.6, 16.2. ESI-MS calculated
587.31875 for C40H44ClN2

+, [M-I]+; found m/z: 587.31747.

4.1.3. Synthesis of Cy-OH

3-Hydroxythiophenol (0.27 g, 2.14 mmol, 1.5 eq) and potassium carbonate (0.29 g,
2.10 mmol, 1.5 eq) were dissolved in 15 mL acetonitrile, and the mixture was stirred at
room temperature for 20 min. Then, 10 mL Cy7 (1 g, 1.4 mmol, 1 eq) in acetonitrile was
added dropwise into the reaction solution, which was heated to 50 ◦C. After the reaction
completed, the solvent was removed by rotary distillation under reduced pressure, and the
resulting crude product was purified by column chromatography (CH2Cl2/CH3OH = 50:1,
v/v) to give a blue solid of 0.53 g, with a yield of 65%. Mp: 290–293 ◦C, Rf = 0.63
(dichloromethane/methanol = 20:1). 1H NMR (400 MHz, CD3OD) δ 8.19 (d, J = 13.5 Hz, 1H),
7.58–7.48 (m, 3H), 7.45–7.38 (m, 1H), 7.33 (d, J = 7.9 Hz, 1H), 7.30–7.24 (m, 1H), 6.96–6.90 (m,
1H), 6.85 (dd, J = 8.8, 2.2 Hz, 1H), 6.31 (d, J = 13.5 Hz, 1H), 4.25 (t, J = 7.4 Hz, 2H), 2.82–2.75
(m, 2H), 2.70 (t, J = 6.1 Hz, 2H), 2.51 (t, J = 2.6 Hz, 1H), 2.38 (td, J = 6.5, 2.6 Hz, 2H), 2.03
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(dd, J = 14.1, 6.8 Hz, 2H), 1.93 (dd, J = 11.9, 6.0 Hz, 2H), 1.76 (s, 6H); 13C NMR (101 MHz,
CD3OD) δ 173.4, 171.4, 159.9, 157.1, 143.6, 142.3, 141.4, 141.1, 135.5, 131.2, 129.8, 126.2, 123.8,
123.5, 122.0, 114.6, 113.2, 111.7, 101.0, 83.9, 71.3, 50.4, 43.8, 33.2, 29.0, 27.6, 27.0, 22.0, 16.5.
ESI-MS calculated 452.20236 for C30H30NOS+, [M-I]+; found m/z: 452.20426.

4.1.4. Synthesis of Cy-DNBS

To a stirred solution of intermediate compound Cy-OH (0.53 g, 0.91 mmol, 1 eq)
and triethylamine (0.09 g, 0.91 mmol, 1 eq) in 10 mL CH2Cl2 under argon atmosphere,
2,4-dinitrobenzenesulfonyl chloride (0.36 g, 1.37 mmol, 1.5 eq) was added quickly. Af-
ter the reaction finished, the mixture was diluted with CH2Cl2 and then washed with
saturated brine, the organic layer was dried over sodium sulfate anhydrous and concen-
trated under reduced pressure. The residue was separated by column chromatography
(CH2Cl2/CH3OH = 30:1, v/v) to obtain a blue solid of 0.41 g, yield 48%. Mp: 96–99 ◦C,
Rf = 0.33 (dichloromethane/methanol = 20:1). 1H NMR (400 MHz, CD3OD) δ 8.91 (d,
J = 2.2 Hz, 1H), 8.62 (dd, J = 8.7, 2.3 Hz, 1H), 8.50 (d, J = 2.2 Hz, 1H), 8.47–8.40 (m, 2H), 8.32
(d, J = 8.7 Hz, 1H), 8.26 (d, J = 8.6 Hz, 1H), 7.77–7.69 (m, 2H), 7.64–7.50 (m, 4H), 7.20 (dd,
J = 8.5, 2.4 Hz, 1H), 7.15 (s, 1H), 6.92 (d, J = 14.8 Hz, 1H), 4.60 (t, J = 7.4 Hz, 2H), 2.84–2.78
(m, 2H), 2.73 (t, J = 6.1 Hz, 2H), 2.56 (t, J = 2.6 Hz, 1H), 2.47–2.39 (m, 2H), 2.18–2.09 (m, 2H),
1.98–1.92 (m, 2H), 1.83 (s, 6H). 13C NMR (101 MHz, CD3OD) δ 181.2, 153.1, 151.2, 150.1,
147.7, 144.3, 142.5, 137.1, 135.5, 135.1, 133.5, 133.2, 133.2, 132.2, 130.6, 130.5, 129.8, 129.7,
128.0, 126.8, 124.0, 122.6, 122.1, 120.0, 119.7, 115.0, 109.7, 83.5, 71.9, 52.9, 45.9, 33.4, 28.1,
27.9, 27.9, 21.3, 16.4. ESI-MS calculated 682.16762 and 246.96664 for C36H32N3O7S2

+ and
C6H3N2O7S-, found m/z: 682.16803 and 246.96629, respectively.

4.2. Detection Methods
4.2.1. Optical Study

Cy-DNBS was dissolved in 1.5 mL dimethyl sulfoxide (DMSO) to prepare 10 mM
stock solutions. The stock solution of three biothiols were prepared by dissolving Cys, Hcy
and GSH in PBS buffer, respectively. Then, the stock solution was stored in the refrigerator
at −20 ◦C for use. Fluorescence spectra were measured with a 5 nm slit for both excitation
and emission.

4.2.2. Quantum Yield Calculation

The quantum yield was measured by using ICG (Φ = 0.13 in DMSO) as a standard.
The following equation was used to calculate quantum yield of Cy-DNBS Φx:

Φx = Φs (As Fx/Ax Fs) (nx/ns) 2

where Φs is the quantum yield of ICG, A is the absorbance at the excitation wavelength, F
is the area under the corrected emission curve, and n is the refractive index of the solvents
used, respectively.

4.2.3. MTT Assay

HepG2 cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco)
supplemented with 10% fetal bovine serum (FBS; Gibco) and glutamine (2 mM) in an
atmosphere of 5% CO2 and 95% air at 37 ◦C. The cellular cytotoxicity of Cy-DNBS towards
HepG2 cells were evaluated using the classical MTT assay. An amount of 100 µL of DMEM
medium containing 1000–10,000 HepG2 cells was seeded into each well of 96-well plate.
Then, Cy-DNBS was diluted to different concentrations with culture medium and gradually
added to each well sequentially according to the concentration gradient. The cells were
incubated at 37 ◦C, 5% CO2, for 24 h. Next, 40 µL of MTT solution (2.5 mg/mL) was added
to each well, and the cells were incubated for another 4 h. After the original medium were
removed, 150 µL of DMSO was added to each well and placed on a shaker for 10 min to
allow the crystals to dissolve effectively. Finally, the absorbance value of each well at 490 nm
was measured in a microplate reader and repeated three times to calculate cell viability.
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4.2.4. Cell Imaging

Firstly, to improve the biothiols content of cells, DMEM medium containing exogenous
Cys (2 mL, 4 µM) was incubated with HepG2 cells in the confocal dishes for 30 min. Then,
the medium was replaced with Cy-DNBS (2 mL, 4 µM) in DMEM medium. Meanwhile,
the cells were incubated with three commercial organelle dyes (Mito-Tracker, Lyso-Tracker
and DAPI, 1.5 mL, 1 µM) for 30 min, respectively. At last, the cells were washed with
2 mL PBS buffer 3 times before imaging on laser confocal microscope. Green channel
(λex = 488 nm, λem = 500–620 nm), Red channel (λex = 633 nm, λem = 680–800 nm), Blue
channel (λex = 405 nm, λem = 420–550 nm).

4.2.5. Imaging of Cy-DNBS towards Endogenous and Exogenous Biothiols

The HepG2 cells were divided into two groups, which were incubated with DMEM
medium in the presence and absence of NEM (2 mL, 1 mM) for 30 min. Then, the medium
was replaced with DMEM medium containing Cys, Hcy and GSH solution (2 mL, 1 mM),
respectively. After culturing the cells for 30 min, the medium was replaced with DMEM
medium containing Cy-DNBS (2 mL, 4 µM) and incubated for another 30 min. At last,
the cells were washed with PBS buffer 3 times and placed under confocal fluorescence
microscope for direct imaging.

4.2.6. In Vivo Fluorescence Imaging

For in vivo fluorescence imaging of biothiols in tumor, mice were anaesthetized using
isoflurane. Cy-DNBS (100 µL, 50 µM) was injected into the subcutaneous tumor and normal
tissues (control group) of the mice, respectively, and then mice were immediately imaged.
As for imaging biothiols in the liver, the mice were divided into two groups, including SAM
and PBS Group. Both groups received SAM/PBS (200 µL, 100 mg/kg) intraperitoneally
every two days for two weeks. Then, Cy-DNBS (100 µL, 50 µM) was injected by tail
vein. After imaging was completed, the mice were sacrificed, and the main organs (heart,
liver, spleen, lung and kidney) were harvested and subjected to ex vivo imaging. The
fluorescence imaging was performed with a band path of 770–810 nm upon excitation at
740 nm.

4.2.7. In Vivo Photoacoustic Imaging

For in vivo photoacoustic imaging of biothiols in tumor, isoflurane was used to anaes-
thetize mice during imaging. Cy-DNBS (100 µL, 50 µM) was injected into the subcutaneous
tumor and normal tissues (control group) of the mice, respectively. Then, mice were imme-
diately imaged. Other operating conditions of PA imaging in the liver are similar to that of
fluorescence imaging. The excitation wavelength at 725 nm was selected according to the
UV-Vis spectra.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28052229/s1, Figure S1: Mass spectrum acquired by
mixed Cy-DNBS with GSH; Figure S2: The photostability of Cy-DNBS determined by UV-Vis
spectrometer; Figure S3: HPLC analysis of the reaction between Cy-DNBS and GSH; Figure S4: linear
relationship between fluorescence intensity and concentration of biothiols; Figure S5: histogram of
the fluorescence intensity of Cy-DNBS towards various amino acids; Figure S6: histogram of the
PA intensity of Cy-DNBS towards various amino acids; Figure S7: The cell viability of HepG2 cells
after incubating with Cy-DNBS; Figure S8: the distribution of probes in organelles determined by
confocal imaging system; Figure S9: fluorescence intensity of probes was calculated from Figure 3.
Figures S10–S19: 1H NMR, 13C NMR and HRMS of Cy7, Cy-OH and Cy-DNBS.
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