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Abstract: The Lewis-acidic character and robustness of NHC-Au(I) complexes enable them to catalyze
a large number of reactions, and they are enthroned as the catalysts of choice for many transformations
among polyunsaturated substrates. More recently, Au(I)/Au(III) catalysis has been explored either by
utilizing external oxidants or by seeking oxidative addition processes with catalysts featuring pendant
coordinating groups. Herein, we describe the synthesis and characterization of N-heterocyclic
carbene (NHC)-based Au(I) complexes, with and without pendant coordinating groups, and their
reactivity in the presence of different oxidants. We demonstrate that when using iodosylbenzene-type
oxidants, the NHC ligand undergoes oxidation to afford the corresponding NHC=O azolone products
concomitantly with quantitative gold recovery in the form of Au(0) nuggets ~0.5 mm in size. The
latter were characterized by SEM and EDX-SEM showing purities above 90%. This study shows that
NHC-Au complexes can follow decomposition pathways under certain experimental conditions, thus
challenging the believed robustness of the NHC-Au bond and providing a novel methodology to
produce Au(0) nuggets.

Keywords: NHC-Au(I) complexes; pendant ligands; iodosylbenzene-type oxidants; oxidized NHC=O
compounds; Au(0) nuggets

1. Introduction

Fundamental comprehension of the intrinsic reactivity of NHC-based gold complexes
is needed to evaluate their success in different fields, such as in the biological sector [1–5] or
in catalysis. NHC ligands are typically described as strongly σ-donating, which form very
stable NHC-metal bonds throughout a catalytic cycle [6,7]. Complexes of transition metals
with N-heterocyclic carbene (NHC) ligands are commonly applied as catalysts for a variety
of C-C and C-heteroatom bond formations, C-H functionalizations, cross-couplings, atom-
economic additions, olefin metathesis, and many other transformations [8–12]. Moreover,
there is high variability of the steric and electronic parameters of NHC ligands, which
allows effective tuning of the catalyst activity [13].

Focusing on gold catalysis, a large number of NHC-Au complexes have been success-
fully used in Lewis acid catalysis for the cyclization and rearrangements of polyunsaturated
substrates [14,15]. However, in order to further expand the scope of applications of these
complexes, it is necessary to explore experimental conditions where NHC-gold complexes
might suffer from instability. For instance, the exploration of Au(I)/Au(III) catalysis using
external oxidants or oxidant-free catalysis with ligands featuring pendant coordinating
groups has become prominent in the last decade, but the intrinsic decomposition of gold
complexes is underexplored. In a related work, Ananikov reported the unusual role of
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bases in the deactivation of NHC–metal catalysts (metal = Ni(II), Pd(II) and Pt(II)), un-
dergoing metal reduction to M(0) and formation of NHC=O coupling azolone products
(Figure 1a) [8]. In their study it is demonstrated that a base-mediated azolone NHC=O
coupling reaction is integrated into the catalytic M/NHC systems and metal-free NHC
derivatives are present in the catalytic mixture. A proposed mechanism of the revealed
transformation includes NHC-OR reductive elimination, as implied by a series of mechanis-
tic studies including 18OH− labeling experiments. Similar decomposition pathways were
reported on triazolylidene Cu(I) complexes, which decompose into mesoionic oxides in the
presence of CsOH [16]. Almost no reports exist for a detailed description of NHC-Au(I)
decomposition pathways [17].
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Figure 1. (a) Examples of azolone decomposition pathways of NHC-M, and (b,c) strategies to recover
highly pure Au(0) (>23 karats).

Herein, we show how distinct NHC-Au(I) complexes undergo a controlled decomposi-
tion pathway towards the formation of the oxidized NHC=O azolone counterpart, together
with the formation of naked eye-observable Au(0) nuggets. The NHC-Au(I) complexes
studied under oxidative conditions cover various types, from typical IPrAuCl to novel
(NHC-hemilabile)Au(I) complexes. Indeed, the ability of related triazolylidene ligands to
bear pendant pyridine or pyrimidine groups for Au(I)/Au(III) redox processes has recently
been studied [18]. We show that only typical NHC-Au(I) complexes such as IPr-Au-Cl and
SIPr-Au-Cl are robust and remain intact after exposure to oxidants, and the gold complexes
with NHC-hemilabile ligands or other NHC derivatives undergo the azolone/Au(0) nugget
decomposition pathway. The origin of the O-atom in the azolone-products obtained is
discussed. Remarkably, a straightforward and reliable chemical methodology to produce
Au(0) nuggets from Au complexes is not available, and the main source of gold(0) nuggets
are, like natural ores, hypogenic in origin.19 Native gold grains are usually small in size
(10–500 mm), with a composition of 5 to <30% Ag, typical of hypogene gold, although Ag
can be less than 1% depending on the goldfield of origin [19]. Supergene gold biominer-
alization has also been studied [20,21]. Recently, an Fe-based MOF/polymer composite
(Fe-BTC/PpPDA) has been reported as a selective and efficient methodology to extract
trace amounts of gold from water up to high purities (23.9 karats (K); >99%) (Figure 1b) [22].
Reduction of Au3+ to Au(0), mediated by the MOF-polymer composite, is proposed. On
the other hand, recovery of Au(0) from ores or waste electronic materials entails stepwise
tedious processes such as reduction with metallic Zn, HCl treatment, centrifugation and
pyrolysis (Figure 1c) [23]. The decomposition to Au(0) observed in our systems could be
used as a methodology to obtain metallic gold more easily, as we show that Au(0) nuggets
of up to ~500 µm can be afforded in one step by treatment of NHC-Au(I) complexes with
external oxidants.
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2. Results and Discussion
2.1. Synthesis of Novel NHC-Au(I) Complexes (1–4)

The synthesis of imidazolinium salts L1, L2, L3 and L4 was achieved by standard
procedures [24,25]. L1–L3 contain a pendant pyridine or quinoline whereas L4 contains a
non-coordinating arene moiety (Figure 2).
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Figure 2. Synthesis of complexes 1–4 from the respective imidazolinium salt ligand precursors L1–L4.

The synthesis of NHC-Au(I) complexes was based on previously reported works [26,27].
Complexes 1, 2 and 3 were obtained by reacting the corresponding imidazolinium salt L1,
L2 or L3 (1 eq), chloro(dimethylsulfide)gold(I) (1 eq), and potassium carbonate (3 eq), in
acetonitrile for 24 h at 80 ◦C. After this time, the reaction mixture was filtered over Celite®

and all volatiles were removed under vacuum. The product was purified by column
chromatography. The fractions that contained the product were combined, and the solvent
was removed under vacuum to afford the gold(I) complexes as solids. Complex 4 was
obtained analogously from imidazolinium salt L4 (Figure 2).

X-ray molecular structures of complexes 1, 2, 3 and 4 were obtained (Figure 3). In
complexes 1–3, the pendant coordinating arm did not show any interaction with the metal
center, and the linear coordination for the Au(I) center was confirmed in all cases, since the
angle formed between the carbenic carbon, the gold center and the halide atom was close
to 180◦ (for 1, 177.4(4)◦; for 2, 175.4(2)◦; for 3, 178.38(8)◦; for 4, 179.12(16)◦). No H-bonding
network was observed with the non-coordinating pendant groups.

Complexes 1–4 were asymmetrical; therefore, the two methylenes of the imidazolidine
ring appeared at different 1H NMR chemical shifts: for complexes 1 and 3, the two -NCH2-
appeared as multiplets at 4.54 and 3.90 ppm, respectively, and for complex 2, at 4.68 and
4.08 ppm. For complex 4, the two -NCH2- appeared at 4.22 and 3.96 ppm. On the other
hand, the characteristic 13C NMR peak of the Ccarbene-Au appeared at 201.0, 203.7, 192.2
and 195.5 ppm for 1, 2, 3 and 4, respectively.
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Figure 3. X-ray molecular structures of complexes 1, 2, 3 and 4 (ellipsoids set at 50% probability
and H atoms removed for clarity). Selected bond distances (Å): for 1, Au1-C11 2.007(13), Au1-I2
2.5580(10); for 2, Au1-C1 1.981(9), Au1-I1 2.5467(8); for 3, Au1-C10 2.000(3), Au1-I2 2.5516(2); for 4,
Au1-C3 1.966(6), Au1-Cl2 2.262(3). Selected angles (◦): for 1, C11-Au1-I2 177.4(4); for 2, C1-Au1-I1
175.4(2); for 3, C10-Au1-I2 178.38(8); for 4, C3-Au1-Cl2 179.12(16).

2.2. Reactivity of Novel NHC-Au(I) Complexes (1–4) with External Oxidants

Complexes 1–3 were reacted with external oxidants in order to stabilize the NHC-
Au(III) species, taking advantage of the pendant coordinating arms (pyridine-type for 1
and 3, and quinoline-type for 2). The external oxidants used were PhI(OAc)2, PhI(Cl)2,
H2O2, XeF2, CH3CO3H under different solvents and temperatures (Table 1). However,
the expected NHC-Au(III) species could not be stabilized in any case, and the mixture
underwent a decomposition pathway involving the formation of a) the corresponding
NHC=O azolones and b) Au(0) nuggets.

The formation of the NHC=O azolone products L1ox, L2ox, L3ox, L4ox was monitored
by HRMS, and L2ox and L3ox were fully characterized by 1D and 2D NMR. In some
reactions, the NHC-Au(I) complexes were treated with silver salts (as halide scavengers)
and the oxidant. The aim of using a silver salt as additive was to promote the halide
abstraction from the gold(I) starting complex and generate a reactive species that, hopefully,
would evolve to a gold(III) complex in the presence of an oxidant, expecting the hemilabile
N-donor arm to be coordinated to gold in the case of using complexes 1–3. In addition, the
halide abstraction could likely induce the formation of head-to-tail dimeric Au(I) species
with the CˆN ligand bridging two metals [18,28,29]. However, the synthesis of such dimeric
species was not the focus of our interest.

When complex 1 was reacted with PhI(OAc)2, regardless whether AgOAc was added
or not, Au(0) nuggets and azolones L1ox and L1ox-I were formed (entries 1,2). The azolones
were detected by ESI-MS and, in the case of the reaction in entry 3, the L1ox-I product
was isolated in 53% yield. When the oxidant was changed to H2O2, the outcome of the
reaction in presence of AgOAc was mainly the starting complex 1, whereas in the absence
of AgOAc, L1ox-I could be detected by ESI-MS as well. L1ox-I was also detected in the
reaction of 1 with PhI(Cl)2 at room temperature. Intriguingly, the formation of azolones
that underwent a C-H iodination on the most activated position of the heteroaromatic
system of the ligand was also observed. In this manner, products L1ox-I and L2ox-I were
isolated and characterized. Indeed, the 2D NMR experiments revealed that the iodination
occurred at the para position to the imidazolinone substituent (see Supplementary Material,
Sections S5.7 and S5.9). The selective C-H halogenation at the para position to N-substituted
positions and C5-halogenation of 8-aminoquinolines is a reactivity pattern that has already
been reported [30–34]. Neither the reactions with H2O2 nor that with PhI(Cl)2 afforded
Au(0) nuggets (entries 4–6). A blank experiment was conducted with complex 2; without
oxidant and additives, the complex was recovered after being heated at 100 ◦C overnight
(entry 7). When using PhI(OAc)2, Au(0) nuggets were obtained in high yields (56–91%), and
L2ox and L2ox-I products were detected by ESI-MS in all cases (entries 8–11). The isolation
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of both L2ox and L2ox-I azolones allowed their full characterization. When complex 2 was
reacted with CH3CO3H as oxidant (entry 12), Au(0) nuggets were formed in moderate
yield (34%) and NMR revealed the presence of complex 2 and L2ox.

Table 1. Reactivity of gold(I) complexes towards the formation of gold(0) nuggets and azolones (Lxox).
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9 2 PhI(OAc)2 - 1,2-DCE 90 90 L2ox (22) and
L2ox-I (17)

10 2 PhI(OAc)2 AgOAc DCM 70 91 Detected MS
11 2 PhI(OAc)2 - MeCN 90 56 L2ox (34)
12 2 CH3CO3H - 1,2-DCE 90 34 Detected NMR
13 3 PhI(OAc)2 AgOAc 1,2-DCE 90 >99 L3ox (60)
14 3 XeF2 - CDCl3 rt 0 Detected MS
15 4 PhI(OAc)2 - DCM rt 0 0

16 a 4 PhI(OAc)2 - DCM 100 97 Detected MS
17 4 PhI(OAc)2 - 1,2-DCE 90 32 Detected MS
18 IPrAuCl PhI(OAc)2 AgOAc 1,2-DCE 90 0 0
19 IPrAuCl PhI(OAc)2 - 1,2-DCE 90 0 0
20 SIPrAuCl PhI(OAc) AgOAc 1,2-DCE 90 0 0
21 SIPrAuCl PhI(OAc) - 1,2-DCE 90 11 6

22 b 2 PhI(OAc)2 H2O MeCN 90 88 L2ox (48)
23 b 2 PhI(OAc)2 H2

18O MeCN 90 97 L2ox (41)

* Isolated yield; a 5 h of reaction; b 60 equivalents of additive.

The reaction of complex 3 with PhI(OAc)2 and AgOAc yielded Au(0) quantitatively,
and azolone L3ox was isolated in 60% yield and characterized (entry 13). On the contrary,
when the oxidant XeF2 was tested with complex 3 at room temperature, no Au(0) nuggets
were formed (entry 14). However, the formation of azolone L3ox was detected by ESI-MS.

Complex 4 was employed to search for contrast with the complexes that contained a
hemilabile pendant arm. The reaction with PhI(OAc)2 in DCM at room temperature did
not provide Au(0) nuggets nor azolone, as the starting complex was recovered (entry 15).
However, by heating at 100 ◦C for 5 h, the mixture decomposed, affording Au(0) nuggets in
a 97% yield, and the corresponding L4ox azolone was detected by ESI-MS (entry 16). When
4 was reacted with PhI(OAc)2 in 1,2-DCE at 90 ◦C, Au(0) nuggets were obtained in a 32%
yield (entry 17).

Interestingly, the commercial IPrAuCl was also reacted with PhI(OAc)2 under the
same experimental conditions as 1–4, and in this case, neither azolone product nor Au(0)
nuggets were formed, and the complex was recovered after the reaction time (entries 18–19).
Additionally, when the commercial saturated SIPrAuCl analog complex was reacted with
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PhI(OAc)2, a very low 11% conversion to Au(0) nuggets was obtained along with a 6%
conversion to the corresponding azolone, as determined by NMR, according to the reported
description of the azolone (entries 20,21) [35]. The stability of these well-known complexes
is remarkable compared to that of 1–4, showing that when a structural modification of the
most typical NHC ligands, such as IPr and SIPr, is performed, a sharp change in reactivity
occurs. Additionally, it is worth mentioning that there are examples of unsaturated NHC-
Au(I) complexes bearing a hemilabile pyridine moiety that could be oxidized with PhI(Cl)2
to the corresponding NHC-Au(III) complexes without observing decomposition [36,37].

The origin of the O-atom in azolones was investigated by reacting complex 2, with
PhI(OAc)2 as the oxidant and water as the additive, under nitrogen atmosphere (Table 1,
entries 22,23, and Figure 4). In order to track the origin of the O-atom, a control reaction was
carried out using distilled H2O, and another using 97% labeled 18O-water (see Supporting
Material, Section S6). The reaction crudes were analyzed by ESI-HRMS. For the control
experiment, a major peak at m/z = 374.2 was obtained, corresponding to the NHC=16O
azolone L2ox, whereas for the reaction with H2

18O two major peaks were obtained at
m/z = 374.2 and m/z = 376.2, corresponding to the NHC=16O and NHC=18O azolones L2ox,
respectively. According to the isotopic pattern of such peaks, a 35% of 18O incorporation
was obtained, suggesting that the O-atom in the azolones obtained in the reaction outcomes
may come from adventitious water. The low 18O incorporation from water suggests that
an oxygen-transferring mechanism may exist, and that at some point of the mechanism,
water might react with the oxidant to deliver a 18O-labeled reactive intermediate. Further
investigations would be needed to elucidate the mechanism; at this stage, the alternative
possibility of considering acetate to be the O-atom source cannot be ruled out [38].
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Figure 4. Reaction of complex 2 with PhI(OAc)2 (2 eq) and water or 18O-labeled water (60 eq), and
peaks of L2ox obtained by ESI-HRMS(+).

2.3. Characterization and Reactivity of the Au(0) Nuggets

On the other hand, the formation of large Au(0) nuggets was naked-eye evident
(Figure 5). The metallic gold grains were easily filtered/decanted and represented quanti-
tative recovery (up to 90%) of all the Au(I) into Au(0) nuggets. The Au(0) nuggets were
characterized by SEM and SEM-EDX, showing grains of 0.4–0.5 mm diameter mean size
and purity up to 90% by EDX (only C and N impurities from the carbon tape support).
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Figure 5. Reaction outcome with Au(0) precipitate (left), and SEM images of the isolated Au(0)
nuggets at ×30 and ×500 (middle and right), from the reaction employing complex 1 (1 eq), AgOAc
(1 eq) and PhI(OAc)2 (2 eq) in 1,2-DCE, at 90 ◦C overnight, under N2 atmosphere in the absence of
light (Table 1, entry 1).

The Au(0) nuggets were tested as a heterogeneous catalyst for transformations typi-
cally catalyzed by gold complexes, such as Sonogashira, A3 and Glaser couplings [39–43].
None of these attempts resulted in effective coupling, which is in line with the macroscopic
size of the Au(0) nuggets and the absence of more reactive Au(0) nanoparticles.

3. Materials and Methods

All reagents and solvents were purchased from Sigma Aldrich-Merck (Madrid, Spain),
Fischer Scientific (Madrid, Spain), TCI (Windrush, Belgium) or Fluorophen (Glossip, United
Kingdom) and were used without further purification. NMR spectra were recorded at 298
K unless otherwise specified, on Bruker spectrometers (Billerica, MA, USA)) operating
at 400 MHz (1H NMR) and 101 MHz (13C{1H} NMR), or on a Varian Mercury 200 MHz
spectrometer (Palo Alto, CA, USA), and referenced to residual solvent (δ in ppm and J
in hertz). High resolution mass spectra (HRMS) were recorded on a Bruker Microsoft-Q
IITM or a QTOF maxis Impact (Bruker) spectrometer using ESI source at Servais Tècnics de
Recerca, University of Girona, or at the National and Kapodistrian University of Athens. For
reactions carried out under inert atmosphere, a N2 drybox with O2 and H2O concentrations
<1 ppm was employed, or standard Schlenk techniques were followed. SEM images of the
Au(0) nuggets were carried out with a scanning electron microscope FE-SEM Hitachi S-4100
(Hitachi, Chiyoda City, Japan). Digital images were collected and processed by Quarz PCI
program. SEM-EDX analysis was performed with a scanning electron microscope Zeiss
DSM 960 Germany (EDX Bruker, Quantax Esprit Spectrometer SVE III, Billerica, MA, USA).

Synthesis of complexes 1–3. For the synthesis of NHC-Au(I) complexes 1, 2 and 3,
the corresponding imidazolinium salt L1, L2 or L3 (1 eq), chloro(dimethylsulfide)gold(I)
(1 eq), and potassium carbonate (3 eq), were reacted in acetonitrile for 24 h at 80 ◦C. After
this time, the reaction mixture was filtered over Celite® and all volatiles were removed
under vacuum. The product was purified by column chromatography. The fractions that
contained the product were combined, and the solvent was removed under vacuum to
afford the gold(I) complexes as solids.

Complex 1. The imidazolinium iodide salt L1 (102.4 mg, 0.23 mmol, 1.0 eq.), K2CO3
(126.7 mg, 0.92 mmol, 4.0 eq.) and [AuCl(SMe2)] (87.2 mg, 0.30 mmol, 1.3 eq.) were
reacted in acetonitrile (1 mL). The product was purified by column chromatography using
DCM:hexane (4:1). By slow diffusion of pentane into a concentrated solution of complex 1
in chloroform, pale yellow crystals suitable for X-ray diffraction analysis were obtained
(59.3 mg, 40% yield). 1H NMR (400 MHz, CDCl3) δ 8.58 (d, J = 8.3 Hz, 1H, CHpy), 7.63 (t,
J = 7.8 Hz, 1H, CHpy), 7.43 (t, J = 7.8 Hz, 1H, CHAr), 7.24 (d, J = 7.8 Hz, 2H, CHAr), 7.02
(d, J = 7.5 Hz, 1H, CHpy), 4.59–4.52 (m, 2H, NCH2), 3.95–3.87 (m, 2H, NCH2), 2.97 (hept,
J = 6.8 Hz, 2H, CH(CH3)2), 2.53 (s, 3H, CH3), 1.39 (d, J = 6.8 Hz, 6H, CH(CH3)2), 1.26 (d,
J = 6.9 Hz, 6H, CH(CH3)2). 13C{1H} NMR (101 MHz, CDCl3) δ 201.0 (Ccarbene-Au), 157.3
(Cpy), 151.9 (Cpy), 146.2 (CAr, 2C), 138.3 (CHpy), 134.7 (CAr), 130.3 (CHAr), 124.8 (CHAr, 2C),
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120.5 (CHpy), 111.4 (CHpy), 53.1 (NCH2), 48.7 (NCH2), 28.7 (CH(CH3)2, 2C), 25.0 (CH(CH3)2,
2C), 24.6 (CH(CH3)2, 2C), 24.4 (CH3). HRMS (ESI+): calcd. for C21H27AuIN3 [M + H]+: m/z
646.0988; found: m/z 646.0984; [M + Na]+: m/z 668.0807; found: 668.0840; [2M − I]+: m/z
1163.2780; found: 1163.2804.

Complex 2. The imidazolinium iodide salt L2 (180.0 mg, 0.37 mmol, 1.0 eq.), K2CO3
(261.2 mg, 1.89 mmol, 5.1 eq.) and [AuCl(SMe2)] (139.1 mg, 0.47 mmol, 1.3 eq.) were reacted
in acetonitrile (2 mL). After the filtration over Celite®, the product was purified by filtering
the residue over a pad of silica using DCM. The solvent was removed to obtain a yellow
solid. It was washed with hexane and diethyl ether to afford complex 2 as a white solid
(105.8 mg, 42% yield). 1H NMR (400 MHz, CDCl3) δ 8.96 (dd, J = 4.2, 1.7 Hz, 1H, CHQuin),
8.23 (dd, J = 8.3, 1.7 Hz, 1H, CHQuin), 8.10 (dd, J = 7.3, 1.4 Hz, 1H, CHQuin), 7.87 (dd, J = 8.2,
1.4 Hz, 1H, CHQuin), 7.60 (dd, J = 8.3, 7.4 Hz, 1H, CHQuin), 7.50 (dd, J = 8.3, 4.2 Hz, 1H,
CHQuin), 7.42 (t, J = 7.8 Hz, 1H, CHAr), 7.25 (d, J = 7.8 Hz, 2H, CHAr), 4.72–4.64 (m, 2H,
NCH2), 4.12–4.04 (m, 2H, NCH2), 3.23 (hept, J = 6.9 Hz, 2H, CH(CH3)2), 1.43 (d, J = 6.8 Hz,
6H, CH(CH3)2), 1.39 (d, J = 6.8 Hz, 6H, CH(CH3)2). 13C{1H} NMR (101 MHz, CDCl3) δ 203.7
(Ccarbene-Au), 150.4 (CHQuin), 146.8 (CAr, 2C), 144.1 (CQuin), 137.6 (CQuin), 136.6 (CHQuin),
134.6 (CAr), 130.0 (CHAr), 129.6 (CQuin), 128.8 (CHQuin), 128.3 (CHQuin), 126.4 (CHQuin),
124.7 (CHAr, 2C), 122.0 (CHQuin), 54.4 (NCH2), 53.0 (NCH2), 28.7 (CH(CH3)2, 2C), 25.3
(CH(CH3)2, 2C), 24.6 (CH(CH3)2, 2C). HRMS (ESI+): calcd. for C24H27AuIN3 [M + H]+:
m/z 682.0988; found: m/z 682.0974; [2M − I]+: m/z 1235.2780; found: 1235.2746.

Complex 3. The imidazolinium iodide salt L3 (67.5 mg, 0.17 mmol, 1.0 eq.), K2CO3
(91.1 mg, 0.66 mmol, 4.0 eq.) and [AuCl(SMe2)] (63.8 mg, 0.22 mmol, 1.3 eq.) were reacted
in acetonitrile (1 mL). The product was purified by column chromatography using DCM.
By slow diffusion of pentane into a concentrated solution of complex 3 in chloroform,
crystals suitable for X-ray diffraction analysis were obtained (32.9 mg, 33% yield). 1H NMR
(400 MHz, CDCl3) δ 8.54 (d, J = 8.2 Hz, 1H, CHpy), 7.62 (t, J = 7.9 Hz, 1H, CHpy), 7.02 (d,
J = 7.5 Hz, 1H, CHpy), 6.94 (s, 2H, CHAr), 4.57–4.48 (m, 2H, NCH2), 3.94–3.85 (m, 2H, NCH2),
2.52 (s, 3H, CH3py), 2.30 (s, 3H, CH3Ar), 2.27 (s, 6H, CH3Ar). 13C{1H} NMR (101 MHz, CDCl3)
δ 192.2 (Ccarbene-Au), 157.3 (Cpy), 151.9 (Cpy), 139.3 (CAr), 138.3 (CHpy), 135.5 (CAr), 135.1
(CAr, 2C), 130.0 (CHAr, 2C), 120.6 (CHpy), 112.0 (CHpy), 50.3 (NCH2), 48.8 (NCH2), 24.3
(CH3py), 21.2 (CH3Ar), 18.2 (CH3Ar, 2C). HRMS (ESI+): calcd. for C18H21AuIN3 [M + Na]+:
m/z 626.0338; found: m/z 626.0336; [(C18H21N3)2Au]+: m/z 755.3131; found: 755.3150; [2M
− I]+: m/z 1079.1841; found: 1079.1830.

Complex 4. For the synthesis of NHC-Au(I) complex 4, imidazolinium salt L4 (60.1 mg,
0.18 mmol, 1.0 eq) and chloro(dimethylsulfide)gold(I) (54.8 mg, 0.19 mmol, 1.0 eq) were
mixed in acetone (0.6 mL), under nitrogen atmosphere, and stirred at room temperature
for 10 min. Then, potassium carbonate (27.6 mg, 0.20 mmol, 1.1 eq) was added and the
mixture was stirred and heated at 60 ◦C for 16 h. After this time, the reaction mixture
was cooled down to room temperature, then the solvent was removed under reduced
pressure, and DCM was added. The mixture was filtered over a pad of silica, which was
washed with more DCM, and the resulting solution was concentrated to the minimal
volume. Next, pentane was added to precipitate the desired product. It was washed
with more pentane, and it was dried under vacuum. Complex 4 was obtained as a white
solid (75.5 mg, 67% yield). 1H NMR (400 MHz, CDCl3) δ 7.40–7.24 (m, 4H, CHAr), 6.94 (d,
J = 0.7 Hz, 2H, CHAr), 4.11 (t, J = 9.6 Hz, 2H, NCH2), 3.96 (td, J = 10.4, 1.7 Hz, 2H, NCH2),
2.76 (q, J = 7.6 Hz, 2H, CH2CH3), 2.31 (s, 6H, CH3), 2.30 (s, 3H, CH3), 1.35 (t, J = 7.6 Hz, 3H,
CH2CH3). 13C{1H} NMR (101 MHz, CDCl3) δ 195.0 (Ccarbene-Au), 141.2 (CAr), 139.1 (CAr),
138.4 (CAr), 135.6 (CAr, 2C), 134.8 (CAr), 129.9 (CHAr, 2C), 129.9 (CHAr), 129.5 (CHAr), 128.4
(CHAr), 127.5 (CHAr), 53.3 (NCH2), 51.0 (NCH2), 24.4 (CH2CH3), 21.2 (CH3), 18.1 (CH3, 2C),
15.0 (CH2CH3). HRMS (ESI+): calcd. for C20H24AuClN2 [M + Na]+: m/z 547.1186; found:
m/z 547.1181; [2M + Na]+: m/z 1071.2479; found: 1071.2438; [2M − Cl]+: m/z 1013.2899;
found: 1013.2865.

Compound L1ox-I. 1H NMR (400 MHz, 228K, CDCl3) δ 7.91–7.83 (m, 2H, CHpy), 7.38
(t, J = 7.7 Hz, 1H, CHAr), 7.23 (d, J = 7.6 Hz, 2H, CHAr), 4.23 (t, J = 8.2 Hz, 2H, NCH2), 3.71
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(t, J = 8.2 Hz, 2H, NCH2), 2.98 (hept, J = 6.8 Hz, 2H, CH(CH3)2), 2.63 (s, 3H, CH3), 1.23 (d,
J = 6.9 Hz, 6H, CH(CH3)2), 1.20 (d, J = 6.6 Hz, 6H, CH(CH3)2). 13C{1H} NMR (101 MHz,
CDCl3) δ 157.7 (Cpy), 156.2 (C=O), 152.1 (Cpy), 148.0 (CAr, 2C), 147.3 (CHpy), 132.8 (CAr),
129.2 (CHAr), 124.3 (CHAr, 2C), 112.2 (CHpy), 86.2 (Cpy-I), 45.7 (NCH2), 41.7 (NCH2), 28.9
(CH(CH3)2, 2C), 28.8 (CH3), 24.6 (CH(CH3)2, 2C), 24.4 (CH(CH3)2, 2C). HRMS (ESI+): calcd
for C21H26IN3O [M + H]+: m/z 464.1193; found: m/z 464.1193; [M + Na]+: m/z 486.1013;
found: m/z 486.1012; [2M + Na]+: m/z 949.2133; found: m/z 949.2141.

Compound L2ox. 1H NMR (400 MHz, CDCl3) δ 8.93 (dd, J = 4.2, 1.8 Hz, 1H, CHAr),
8.17 (dd, J = 8.3, 1.8 Hz, 1H, CHAr), 7.93 (dd, J = 7.5, 1.4 Hz, 1H, CHAr), 7.71 (dd, J = 8.2,
1.4 Hz, 1H, CHAr), 7.56 (dd, J = 8.2, 7.5 Hz, 1H, CHAr), 7.42 (dd, J = 8.3, 4.1 Hz, 1H, CHAr),
7.35 (dd, J = 8.3, 7.1 Hz, 1H, CHAr), 7.23 (d, J = 7.7 Hz, 2H, CHAr), 4.45–4.40 (m, 2H, NCH2),
3.90–3.84 (m, 2H, NCH2), 3.32 (hept, J = 6.9 Hz, 2H, CH(CH3)2), 1.32 (d, J = 6.9 Hz, 6H,
CH(CH3)2), 1.30 (d, J = 6.8 Hz, 6H, CH(CH3)2). 13C{1H} NMR (101 MHz, CDCl3) δ 159.5
(C=O), 149.3 (CHQuin), 148.5 (CAr, 2C), 144.3 (CQuin), 138.3 (CQuin), 136.5 (CHQuin), 133.8
(CAr), 129.7 (CQuin), 128.8 (CHAr), 127.5 (CHQuin), 126.7 (CHQuin), 126.1 (CHQuin), 124.2
(CHAr, 2C), 121.3 (CHQuin), 47.4 (NCH2), 47.0 (NCH2), 28.8 (CH(CH3)2, 2C), 24.8 (CH(CH3)2,
2C), 24.5 (CH(CH3)2, 2C). HRMS (ESI+): calcd. for C24H27N3O [M + H]+: m/z 374.2227;
found: m/z 374.2211; [M + Na]+: m/z 396.2046; found: 396.2036; [2M + Na]+: m/z 769.4200;
found: m/z 769.4164.

Compound L2ox-I. 1H NMR (400 MHz, CDCl3) δ 8.88 (dd, J = 4.1, 1.6 Hz, 1H, CHQuin),
8.39 (dd, J = 8.5, 1.6 Hz, 1H, CHQuin), 8.13 (d, J = 8.1 Hz, 1H, CHQuin), 7.69 (d, J = 8.0 Hz,
1H, CHQuin), 7.49 (dd, J = 8.6, 4.1 Hz, 1H, CHQuin), 7.35 (dd, J = 8.3, 7.1 Hz, 1H, CHAr),
7.23 (d, J = 7.4 Hz, 2H, CHAr), 4.46–4.39 (m, 2H, NCH2), 3.89–3.83 (m, 2H, NCH2), 3.28
(hept, J = 6.9 Hz, 2H, CH(CH3)2), 1.32 (d, J = 6.9 Hz, 6H, CH(CH3)2), 1.29 (d, J = 6.8 Hz,
6H, CH(CH3)2). 13C{1H} NMR (101 MHz, CDCl3) δ 159.2 (C=O), 149.9 (CHQuin), 148.4
(CAr, 2C), 144.8 (CQuin), 140.9 (CHQuin), 139.4 (CQuin), 137.7 (CHQuin), 133.5 (CAr), 131.2
(CQuin), 129.0 (CHAr), 128.5 (CHQuin), 124.2 (CHAr, 2C), 122.9 (CHQuin), 95.3 (CQuin-I), 47.4
(NCH2), 47.0 (NCH2), 28.8 (CH(CH3)2, 2C), 24.8 (CH(CH3)2, 2C), 24.5 (CH(CH3)2, 2C).
HRMS (ESI+): calcd. for C24H26IN3O [M + H]+: m/z 500.1193; found: m/z 500.1184; [M +
Na]+: m/z 522.1013; found: 522.0999.

Compound L3ox. 1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 8.4 Hz, 1H, CHpy), 7.51
(t, J = 7.9 Hz, 1H, CHpy), 6.93 (s, 2H, CHAr), 6.78 (d, J = 7.3 Hz, 1H, CHpy), 4.31–4.23 (m,
2H, NCH2), 3.74–3.67 (m, 2H, NCH2), 2.47 (s, 3H, CH3py), 2.29 (s, 3H, CH3Ar), 2.25 (s, 6H,
CH3Ar). 13C{1H} NMR (101 MHz, CDCl3) δ 156.3 (Cpy), 155.9 (C=O), 152.4 (Cpy), 138.0 (CAr),
137.7 (CHpy), 137.0 (CAr, 2C), 133.1 (CAr), 129.5 (CHAr, 2C), 116.8 (CHpy), 109.9 (CHpy), 43.2
(NCH2), 42.0 (NCH2), 24.5 (CH3py), 21.1 (CH3Ar), 18.0 (CH3Ar, 2C). HRMS (ESI+): calcd. for
C18H21N3O [M + H]+: m/z 296.1757; found: m/z 296.1774; [M + Na]+: m/z 318.1577; found:
318.1595; [2M + Na]+: m/z 613.3261; found: m/z 613.3278.

4. Conclusions

In summary, novel NHC-Au(I) complexes (1–4) were synthesized and thoroughly
characterized, and their reactivity in front external oxidants was analyzed. In contrast to the
stability shown by commercial IPr- and SIPr-Au(I) complexes, complexes 1–4 underwent
a controlled decomposition pathway to form oxidized NHC=O azolones as the main
organic product, and quantitative conversion of all the Au(I) contained in complexes into
macroscopic Au(0) nuggets (~0.4–0.5 mm). Azolones and M(0) have previously been
described as decomposition products of NHC-metal complexes (M = Pd(II), Pt(II), Ni(II)),
and we show herein a singular case of gold transforming this decomposition pathway,
representing a good strategy to recover gold nuggets of high purity from soluble gold
species (as NHC-Au(I)).



Molecules 2023, 28, 2302 10 of 12

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28052302/s1, Figure S1–S80, Table S1–S6, Schemes S1–S8.
CCDC 2238757 (1), 2238754 (2), 2238755 (3), 2238756, (4) contain the supplementary crystallographic
data for this paper [44].

Author Contributions: Conceptualization, G.C.V. and X.R; methodology and formal analysis, P.F.,
A.T.P. and N.V.T.; writing—original draft preparation and editing, P.F, N.V.T., G.C.V. and X.R.;
funding acquisition, G.C.V. and X.R. All authors have read and agreed to the published version of
the manuscript.

Funding: The research project was supported by MINECO-Spain, PID2019-104498GB-I00 to X.R.,
as well as by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “1st Call
for H.F.R.I. Research Projects to support Faculty Members & Researchers and the procurement of
high-cost research equipment grant” (Project Number: 16).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or supplementary material.

Acknowledgments: X.R. is grateful for an ICREA-Acadèmia award. Athanasios Zarkadoulas is
acknowledged for carrying out the catalytic activity evaluation experiments. We also thank L.
Capdevila and STR-UdG for technical support.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds 1–4 are available from the authors.

References
1. Hemmert, C.; Gornitzka, H. Luminescent bioactive NHC–metal complexes to bring light into cells. Dalton Trans. 2016, 45, 440–447.

[CrossRef] [PubMed]
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