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* Correspondence: krzysztof.owsianik@cbmm.lodz.pl (K.O.); e.sokolowska@ujd.edu.pl (E.R.-S.);
piotr.balczewski@cbmm.lodz.pl (P.B.)

Abstract: This paper presents the use of O,S-acetals in a new modification of the oxo-Friedel–Crafts–
Bradsher cyclization. In this reaction, under mild reaction conditions (25 ◦C), three- and four-ring
fused RO-acenes (major) and/or HO(CH2)2S-acenes (minor) are formed, the latter products having
never been observed before in this type of cyclization. In this way, two electronically different
fluorophores could be obtained in a single cyclization reaction, one of them having strong electron
donor properties (+M effect of alkoxy groups) and the other having donor-acceptor properties (+M
and −I effects of the HO(CH2)2S-group, Hammett’s constants). Further increasing the reaction
temperature, HCl concentration or prolonging reaction time, surprisingly, yielded a 2:1 mixture
of cis and trans dimeric isomers, as the only products of this cyclization. The DFT calculations
confirmed a greater stability of the cis isomer compared to the trans isomer. The formation of
unexpected dimeric products and HO(CH2)2S-acenes sheds light on the mechanism of oxo-Friedel–
Crafts–Bradsher cyclization, involving competitive O/S atom protonation in strained O,S-acetals and
in strain-free side groups of intermediate species.

Keywords: acenes; cyclization; O,S-acetals; electrophilic aromatic substitution; Friedel–Crafts–Bradsher
reactions; fluorescence

1. Introduction

Organic electronics and optoelectronics are relatively new fields of basic knowledge
and technology, which have become a subject of interest to chemists, physicists and process
engineers [1]. Therefore, a search for organic fluorescent and semiconducting materials
for the construction of new-generation electronic devices, such as organic light-emitting
diodes (OLEDs), organic field-effect transistors (OFETs), organic solar cells (OPVs), organic
solar concentrators (OSCs), organic lasers, etc., has drawn the attention of numerous multi-
disciplinary joint laboratories [2]. Among aromatic hydrocarbons, linearly fused acenes are
being considered as key organic compounds for achieving these goals. Anthracene and its
derivatives are particularly attractive due to high thermal stability [3], relatively good solu-
bility, low price, blue photoluminescent [4] and electroluminescent properties [5]. Many
blue-light-emitting materials with an anthracene core structure [6–18] have been developed;
however, deep blue is still in demand due to the lack of electrically and photochemically
stable light-emitting materials [19,20].

In the literature, examples of intramolecular cyclizations of o-formyl [21], o-acyl [22]
and o-carboxy [23] diarylmethanes as well as o-carboxy [24,25] diarylketones, leading to
the required fused aromatic systems, have been described. The first two types of reactions
and our present modification of the oxo-Friedel–Crafts–Bradsher cyclization, utilizing O,S-
acetals, lead directly to fused aromatic hydrocarbons, while the remaining transformations
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require additional steps involving reductions in intermediate products, i.e., anthrones or
anthraquinones, followed by aromatization of the obtained cyclic system. In addition,
these reactions require harsh reaction conditions, such as high concentrations of Brønsted
acids and high temperatures up to 180 ◦C or more, which preclude the presence of most
substituents on the aromatic system [26–28]. Only a few examples of reactions, carried out
under milder, non-aqueous reaction conditions, are known [29,30]. Our approach employs
a dilute, aqueous methanolic solution (2:1) of hydrochloric acid as a strong carbocation
solvating medium and room temperature, being the mildest reaction conditions ever used
in these types of intramolecular, electrophilic and aromatic cyclizations [31–33]. These
mild conditions allow for the installation of thermally and chemically sensitive functional
groups on aromatic systems and, thus, the oxo-Friedel–Crafts–Bradsher cyclization gives
rise to highly substituted, fused aromatics, as we demonstrated in this study.

Earlier, we obtained hetero (XR = OR, SR)-substituted acenes I via cyclization of
diarylmethanol derivatives, i.e., ortho-O,O-acetals III (path a, Scheme 1) via oxo-Friedel–
Crafts–Bradsher cyclization [32–34] or S,S-dithioacetals IV (path b, Scheme 1) via the thio-
Friedel–Crafts–Bradsher cyclization [3]. In both hetero-Friedel–Crafts–Bradsher cyclizations,
a new benzene ring, fused to two other (hetero)aromatic moieties, ArI and ArII, is formed
in the acene I. It is worth noting that the cyclization of O,O-acetals III took place only in
the Brønsted acid aqueous solutions and did not occur under anhydrous conditions in the
presence of Lewis acid (FeCl3/KI). On the other hand, the cyclization of S,S-dithioacetals
IV proceeded exclusively in the presence of FeCl3/KI in an organic solvent solution.
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Scheme 1. The hetero-Friedel–Crafts–Bradsher cyclization of O,O-, O,S- and S,S-acetals.

This differentiated behavior of O,O-acetals and S,S-dithioacetals is due to the greater
hydrolytic susceptibility of acetal C-O bonds than dithioacetal C-S bonds towards relatively
dilute Brønsted acids and a lack of reactivity of the FeCl3/KI system towards C-O bonds.
In this way, suitable reaction conditions can be selected for the preservation of sensitive
substituents on the aromatic system.

In the present study, we employed O,S-acetals (1,3-oxathiolanes) II, which possess
C-O and C-S bonds, as precursors of three- and four-ring fused aromatics I. Both bonds
are cleaved under different reaction conditions, yielding carbocation intermediates that
are active in the new oxo-Friedel–Crafts–Bradsher cyclization modification (Scheme 1).
The importance of O,S-acetals, as carbocation-equivalent reagents for carbon–carbon bond
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formation and as protecting groups for carbonyl compounds, has been well documented.
Generally, O,S-acetals are prepared via condensation of carbonyl compounds with mercap-
toalcohols in the presence of protic acids [35–37]. Among O,S-acetals, 1,3-oxathiolanes and
1,3-oxathianes have long been used [38,39]. They are considerably more stable than the
O,O-acetals under acidic conditions and easier to remove than S,S-acetals [40]. Mechanistic
studies on the rate of acid-catalyzed cleavage show that O,S-acetals have a stability that
lies between S,S-dithioacetals and O,O-acetals [41].

2. Results and Discussion
2.1. Synthesis

The synthesis of a series of three- and four-ring fused aromatics 7 and 13 was based on
the new modification of the oxo-Friedel–Crafts–Bradsher reaction [3], employing cyclization
of O,S-acetals 5 and 12 (Scheme 2). The strategy of the synthesis involved is as follows:
(1) protection of the aldehyde group in ortho-bromo aromatic aldehydes 1 and 10 with
1,2-mercaptoethanol to give O,S-acetals 2 and 12, (2) the Br/Li exchange reaction in the
latter followed by condensation with aromatic aldehydes 3 to afford diarylmethanols 4, (3)
protection of the hydroxyl group in 4 with methyl or benzyl halides to obtain diarylmethyl
or benzyl ethers 5 and 6 to avoid the formation of lactones from the reaction of free hydroxyl
with aldehyde groups and (4) acid-driven cyclization of 5 and 12 to the corresponding
acenes 7 and 13 (Scheme 2).

Turning to a more detailed discussion of this synthesis, the first O,S-acetalization step
was performed with 2-mercaptoethanol, catalytic amount of p-TsOH and the corresponding
ortho-bromo aromatic aldehydes 1 or 10 in refluxing benzene using the Dean-Stark trap to
remove water (24 h). The crude reaction mixture was purified with column chromatography
to give a colorless solid of o-bromo O,S-acetals 2 in 80% yield and 11 as colorless oil in a 74%
yield (Scheme 2). Ortho-lithiation of 2 in THF at low temperature followed by the reaction
with different aromatic aldehydes 3 led to diarylmethanols 4 in up to an 88% yield, which
were next converted to the corresponding ethers 5, 6 with methyl or benzyl halides (Method
B, Scheme 2). Product 6a was obtained in a 94% yield; however, it decomposed on silica gel
during attempts of purification and, therefore, was not used in further transformations. It
should be noted that the last two steps can be carried out as a one-pot procedure, which
was found to also be effective in the synthesis of ether 12 directly from o-bromo O,S-acetal
11 (Method A, Scheme 2). The synthesized alcohols 4 and ethers 5, 6 and 12 were obtained
as inseparable mixtures of two diastereoisomers, which were used in further reactions.
However, in the case of o-(O,S-acetalaryl)arylmethyl methyl ether 5d, the major and minor
diastereoisomers were successfully separated by column chromatography over silica. In
the 1H NMR spectra, characteristic singlets at around 5.5 ppm due to OCHS, multiplets at
around 5.3 ppm from 1,3-dioxolane ring and singlets at around 6.5 ppm from the dibenzylic
proton were observed for the discussed compounds.

Cyclization reaction. As mentioned, in the case of O,O-acetals, especially five- and
six-membered ones, the cyclization to acenes proceeded only with Brønsted acids in an
aqueous media (path a, Scheme 1) [31–33] with the cleavage of C-O acetal bonds, while
with six-membered S,S-acetals, the cyclization occurred only with Lewis acids in anhydrous
media with the cleavage of the C-S dithioacetal bonds (path b, Scheme 1). One of the reasons
for this differentiated behavior is the lower electron density on the bigger sulfur atom than
on the oxygen atom and the lower electronegativity of the former, which means that the 1,3-
dithiane sulfur atoms in moderately concentrated mineral acid aqueous solutions at room
temperature do not undergo an effective protonation, with the consequence that they also
do not undergo apparent hydrolysis through the intermediate benzyl-type carbocations
that are required for the thio-Friedel–Crafts–Bradsher cyclization to occur.

We discovered that a different situation exists in strained five-membered O,S-acetals,
in which both C-O and C-S bonds can be cleaved in the presence of mineral acids (HCl),
especially when the reaction conditions were intensified (higher HCl concentration, higher
temperature, longer reaction time). Therefore, in this study, we installed ortho-O,S-acetal
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moiety on one of the aryl groups in 5 and 12 to benefit from the ability to cleave both C-O
and C-S bonds under different reaction conditions (Method C and D, Scheme 2) and to
study the mechanism of this electrophilic modification.
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Thus, having in hand o-(O,S-acetalaryl)arylmethyl methyl ethers 5 and 12, we started
the investigation of the oxo-Friedel–Crafts–Bradsher cyclization with these substrates
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(Table 1). The cyclization was performed with aqueous solution of hydrochloric acid in
methanol (r.t., 72 h, Method C, Scheme 2) and in the presence of the FeCl3/KI in methanol
under anhydrous conditions (65 ◦C, 12 h, Method D, Scheme 2). The latter conditions
gave better yields (up to 78%) of fused RO-acenes 7 while the former ones delivered up
to 53% yields and required longer reaction times. Interestingly, the yield of the four-ring
acene 13 was 62% when the aldehyde 10 was used while the yield of another four-ring
acene 7d was only 15% when the aldehyde 3d was employed, both aldehydes derived from
benzothiophene. The structure of 7d was unambiguously confirmed via X-ray analysis
(Figure 1).

Table 1. A comparison of the cyclization results of ethers 5 and 12.

Substrate Reaction Conditions RO-Acene (Yield) 1 HO(CH2)2S-Acene (Yield) 1
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Table 1. Cont.

Substrate Reaction Conditions RO-Acene (Yield) 1 HO(CH2)2S-Acene (Yield) 1
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drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.

Increasing the reaction temperature, HCl concentration or prolonging reaction time
resulted in the formation of unexpected HO(CH2)2S-acenes 8 in yields up to 27%, which
had never been observed in this type of reaction before.

Surprisingly, neither the acene 7 nor the acene 8 was formed in this case. TLC and
HPLC analysis confirmed the presence of the two products (Scheme 3). In both 1H and
13C NMR spectra, doubling signals were observed in a 2:1 ratio, which corresponded to
the formation of the two isomers cis-9b/trans-9b. In the 13C NMR spectrum, characteristic
signals due to cis-9b/trans-9b carbonyl groups were observed at 195.09 and 194.34 ppm.
The presence of the latter was further confirmed by observation of the band at 1697 cm−1

in the IR spectrum and by the DFT calculation.
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2.2. DFT Calculations for 9a and 9b

The optimized geometries and electronic structures of both the cis- and trans-isomers
of 9b in the gas phase, at the ground state obtained from DFT calculations using the
gradient-corrected three-parameter hybrid functional (B3LYP) with the 6-31++G(d,p) basis
set, are presented in Figure 2 (see also Tables S1 and S2 in Supplementary Materials).
According to the DFT calculations, the cis-9b is more thermodynamically stable than the
trans-9b by 4.58 kcal/mol (Figure 2a). It is seen from Figure 2b that cis-9b is also chemically
more stable with HOMO-LUMO energy gap (EG) of 3.871 eV compared to the trans isomer
with EG = 3.742 eV. The higher thermodynamic and chemical stability of the cis isomer
compared to the trans isomer may be due to the presence of an intramolecular non-covalent
interaction between the S atom of the substituent attached to the cyclohexadiene ring of the
cis isomer and the H atom of the cyclohexanone ring (dashed pink lines in Figures 2a and 3),
as revealed by the non-covalent interaction (NCI) analysis (see Supplementary Materials for
details). The distance between non-covalently bonded S and H atoms (2.746 Å) is smaller
by 0.25 Å than the sum of their van der Waals radii (3.00 Å). The geometrical parameters
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of this interaction, and especially the C-H···S angle of 144.69◦ (Figure 3), indicated that
it could be treated as a weak unconventional hydrogen bond of the C-H···S type. This
interaction forms a closed seven-membered ring S(7) (Figure 2a). The distance between the
corresponding S and H atoms in trans-9b is 4.534 Å, so this kind of non-covalent interaction
has no possibility to occur in this molecule. It is worth noting that in the case of the trans
isomer, the S atom is involved in the formation of short non-covalent contacts with the
hydrogen atoms attached to aromatic carbons (Figure 3). Different non-covalent interactions
involving the sulfur atom, i.e., C-H···S (in cis-9b) and two C-H···S (in trans-9b) interactions
(Figures 2a and 3), led to differences in the molecular configuration of the two isomers. For
example, in cis-9b, the distance between the sulfur atom and the cyclohexan-1-one 4-Csp3

atom is only 3.692 Å, while in the trans isomer, it is about 1.5 Å greater. In the cis isomer,
the C-H···S interaction forms an intramolecular ring S(7) that prevents free rotation around
the Csp3-Csp3 bond connecting the two-ring systems.
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Figure 3. Color-filled reduced-density gradient (RDG) isosurfaces depicting non-covalent interactions
in cis-9b (left) and trans-9b (right). The pink and red dashed lines denote weak C-H···S hydrogen
bonds, respectively.

2.3. Mechanistic Considerations and DFT Calculations

The formation of two unexpected types of products 8 and 9 made it possible to
explain not only a pathway for obtaining these products but also to propose the over-
all mechanism of the oxo-Friedel–Crafts–Bradsher cyclization reaction using O,S-acetals
(Scheme 4). To make the proposed mechanism credible, we performed DFT calculations
(B3LYP 6-311++G(d,p)) in the gas phase in the ground state and the quantitative analysis
of molecular surfaces [42,43] for 5b, 16a and 16b. As a result of this analysis, the largest
minima of electrostatic potential (ESP) on the van der Waals surfaces of the compounds
and more precise ESP values on the local surfaces (surface corresponding to a given atom)
were calculated for oxygen and sulfur atoms in the O,S-acetal 5b as well as for the MeO
oxygen and X atom (X = O, S) in the XCH2CH2YH side chains in 16a and 16b (Scheme 4,
Figure 4). ESP values reflect the electron density in these atoms. As the electron density
in a given atom decreases, its affinity for the proton also decreases, making the atom less
basic, and vice versa. The atom is red, indicating that it is rich in electrons, and if the color
of the atom gradually changes toward yellow and green, then the atom becomes steadily
less rich in electrons.

Thus, on the basis of the obtained experimental and calculation data, we assumed that
both oxygen and sulfur atoms can be protonated in strained five-membered O,S-acetals
systems, with an obvious preference for the O,S-acetal oxygen atom because the difference
in the ESP values between oxygen (−22.836 kcal/mol) and sulfur (−16.859 kcal/mol) atoms
in 5b is only −5.977 kcal/mol. It means that the difference in electron density in sulfur
and oxygen in the cyclic O,S-acetal, and consequently affinity of the latter for the proton,
may be regarded as comparable (cf. 16b, vide infra). We also assumed that protonation
of the sulfide sulfur atom in the strain-free side groups of intermediates 15–18 (X = S)
and also in the final products 9b would be more difficult than in the strained O,S-acetals
because the difference in the ESP values between oxygen (−31.478 kcal/mol) and sulfur
(−21.292 kcal/mol) atoms in 16b is twice as high as in 5b and equals 10.186 kcal/mol.
However, the protonation in 16b to give 17 (X = S) can be possible, to some extent, under
harsh reaction conditions, SUCH AS higher HCl concentration, higher temperature and/or
longer reaction times. This minor pathway, as in the case of major pathway for 16a, also
leads to carbocation 19 and then to anthracene 7b.

Thus, the possible protonation of both heteroatoms leads to O,S-acetal cleavage and
formation of the reactive benzylic carbocation 14 followed by the intramolecular SEAr
cyclization to give 15 and next aromatization one of the benzene rings to form 16a,b.
Preferential protonation of oxygen in 16a or sulfur atoms in 16b (the latter under harsh con-
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ditions), as mentioned above, produces 17, which next undergoes aromatization through
the intermediate dibenzylic carbocation 19 to give the major cyclization product 7. Protona-
tion of the MeO oxygen atom in 16b gives 18 and, after aromatization through 19, delivers
the minor aromatic product 8b of the oxo-Friedel–Crafts–Bradsher reaction. Finally, the
obtained product 7b couples with the intermediate dibenzylic carbocation 20 to give the
dimeric products cis-9b and trans-9b. This reaction predominates over pathways leading to
7b and 8b at higher temperature (65 ◦C) and higher HCl concentration (c = 0.34 mol/dm3).

Scheme 4. General mechanism for the oxo-Friedel–Crafts–Bradsher cyclization reaction using O,S-
acetals on the example of the O,S-ether 5b cyclization.
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Figure 4. (a) Molecular structures of 5b, 16a and 16b optimized at the DFT theory B3LYP/6-
311++G(d,p) (see also Tables S3–S5 in Supplementary Materials), (b) electron density maps from total
SCF B3LYP mapped with ESP (isovalue = 0.02; blue corresponds to low electron densities, whereas
red corresponds to high electron densities), (c) the largest minima of ESP (blue points) on the van der
Waals surfaces and the ESP values on the local surfaces corresponding to O1, O2 and O3 atoms (italic).

2.4. Electron Character of RO-Acenes 7, 13 and HO(CH2)2S-Acenes 8

The electron nature of the obtained highly substituted acenes 7 and 8 and, in conse-
quence, their photophysical properties are related to the character of the substituents at-
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tached to the acene system. The measure of the electron effect exerted by these substituents
is the Hammett constants, which were calculated using the ACD/Percepta program [44].
The methoxy and methylene-1,3-dioxa groups with negative σp values of −0.27 and −0.13,
respectively, have a strong electron donor character and increase electron density in acene
systems 7a–d and 13. On the other hand, the small but positive values of σp = 0.07 constants
confirm a weak electron-acceptor character of the HO(CH2)2S- group when attached to
electron-rich acenes 8b and 8c substituted by electron-donating alkoxy groups [3,45].

The electron effects operating in the discussed functional groups (MeO, methylene-
1,3-dioxa- and HO(CH2)2S-) were further analyzed with the σind and σres Hammett’s
components. They show that the electron-donating properties of the methoxy group with
σind/σres = 0.30/−0.58 and methylene-1,3-dioxa group with σind/σres = 0.35/−0.48 are
connected with a dominance of the positive resonance (+M) effect over the inductive (−I)
effect of both alkoxy-type substituents.

On the other hand, in the HO(CH2)2S- group with σind/σres = 0.26/−0.21, the predom-
inantly negative inductive effect (−I) dominates over the resonance effect. It accounts for
the electron-withdrawing character of the RS group in electron-rich aromatics 8b and 8c.

2.5. Photopysical Properties

Thus, RO-acenes 7 and 13 belong to a group of highly substituted donor chromophores
absorbing UV light in a typical range of 270–395 nm and emitting blue light at 380–445 nm [32].
Sulfur-substituted products, represented here by HO(CH2)2S-acenes 8b and 8c, belong to a
group of donor-acceptor chromophores that normally absorb light in a range of 270–425 nm
and emit blue light at longer wavelengths of 404–457 nm [3]. UV/Vis absorption and
emission spectra of the obtained substituted acene derivatives 7b, 7c, 8c and 13 are shown
in Figure 5 and Table 2.
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(10−5 mol/dm3, 25 ◦C).

In particular, in a range of 240–300 nm electron-donor anthracene 7b, 7c and a weak
electron donor-acceptor anthracene 8c due to the presence of the thio group with the
−I effect, revealed almost identical absorption maxima at c.a. 269 nm and the same
absorption profile. A further comparison of absorption spectra of electron-rich three-ring
acenes (7b, 7c), with the four-ring acene 13 of the same electron character, showed a
redshift by 11 nm in a range of 240–300 nm, which indicated the effect of a larger aromatic
conjugation in 13 (Figure 5a). In a range of 300–420 nm, all investigated compounds
exhibited absorption bands of lower intensity in the long-wavelength part of the spectrum.
The TD-DFT calculations in the gas phase, made for 7b, revealed, in this part of the
spectrum, two strong transitions, i.e., HOMO→ LUMO (0.97), corresponding to a band
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at 380.79 nm and HOMO-1 → LUMO (0.73), HOMO → LUMO+1 (0.26) at 346.56 nm
(Figure 6).

Table 2. Absorption and emission maxima (λmax), Stokes shifts in dichloromethane solution
(10−5 mol/dm3, 25 ◦C) for 7b,c, 8c and 13 (underlined values are highest absorption maxima in
the lower part of the spectrum in the 300–420 nm range).

Compound Absorption
λmax (nm)

Emission 1

λmax (nm)
Stokes Shift

(cm−1)

7b 269, 322, 339, 357, 376 385, 406 621

7c 270, 323, 339, 356, 372, 393 416, 438 1472

8c 269, 363, 379, 400 408, 428 553

13 280, 302, 317, 330, 363, 383 404, 424 1420
1 Excited at 339 nm (7b, 7c), 362 nm (8c) and 330 nm (13).
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The fluorescence spectra of the obtained acenes exhibited blue emission and covered a
region from 385 to 438 nm (Figure 5b). A redshift of 19–31 nm was observed for emission
maxima of 7c, 8c and 13 relative to 7b.

3. Materials and Methods

Organic solvents were purchased from commercial sources (ChemPur, Piekary Śląskie,
Poland) and used as received or dried using standard procedures. Tetrahydrofuran (THF)
was purchased from J.T. Baker and purified on Solvent Purification System (MBraun
SPS-800). All reagents were from commercial suppliers (Sigma-Aldrich, Merck–USA,
Beijing, China) and used without further purification. The 1H NMR and 13C NMR spectra
were measured with a Bruker AV 200 or AV 500 spectrometer (Billerica, MA, USA), with
chemical shifts given in ppm relative to TMS as an internal standard. High-resolution
mass spectrometry (HRMS) measurements were performed using SQ Detector 2 mass
spectrometer (Waters, Milford, MA, USA). Melting points were measured using Boetius
apparatus. Thin-layer chromatography (TLC) was performed on precoated Merck 60 (F254
60, Darmstad, Germany) silica gel plates with fluorescent indicator, with detection by
means of UV light at 254 and 360 nm. Column chromatography was performed on Merck
silica gel (Kieselgel 60, Darmstad, Germany, 230–400 mesh) or using Pure FlashPrep 850
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Chromatography System (Büchi, Flawil, Switzerland). The UV-Vis absorption spectra were
recorded in 1 cm cuvettes on a Shimadzu UV-2700 spectrophotometer (Kioto, Japan) using
two types of light source: a D2 64604 deuterium lamp and a Wl L6380 halogen lamp (Kioto,
Japan, 220–600 nm). The emission spectra were obtained with the Horiba Jobin Yvon,
FluoroMax-4 spectrofluorometer (Glasgow, UK), using a xenon lamp as a light source. The
IR absorption spectra were recorded on Nicolet 6700 FT-IR spectrometer (Thermo Scientific,
Waltham, MA, USA).

3.1. Synthesis of o-Bromopiperonal O,S-acetal 2

2-Mercaptoethanol (7.50 g, 96.05 mmol, 6.7 mL) and p-TsOH·H2O (10 mol%, 1.83 g)
were added to a solution of o-bromopiperonal 1 (20 g, 87.32 mmol) in benzene (200 mL) and
refluxed for 24 h using the Dean–Stark trap to remove water. The mixture was concentrated
and purified with column chromatography using toluene as an eluent to give a colorless
solid of 2 (20 g, 80%). mp = 72–73 ◦C. (Lit.: 73–74 ◦C [46])

1H NMR (500 MHz, CDCl3): 7.11 (s, 1H), 6.95 (s, 1H), 6.23 (s, 1H), 5.96 (d, J = 10.1 Hz,
1H), 5.95 (d, J = 10.1 Hz, 1H), 4.64–4.50 (m, 1H), 3.92 (dt, J = 9.0, 6.1 Hz, 1H), 3.28–3.08
(m, 2H) ppm. 13C{1H} NMR (126 MHz, CDCl3): 148.3, 147.7, 132.7, 112.5, 112.4, 107.3,
102.0, 85.8, 72.2, 33.7 ppm. Anal. calcd for C10H9BrO3S: C, 41.54, H, 3.14, S, 11.09; found C,
41.49, H, 3.17, S, 11.03. HRMS (ESI): m/z [M + H]+ calcd for C10H10BrO3S: 288.9534; found
288.9536.

3.2. General Procedure for the Synthesis of o-(O,S-acetalaryl)arylmethanols 4

o-Bromopiperonal O,S-acetal 2 (0.289 g, 1.0 mmol) was placed in the round-bottom
flask (50 mL) and dissolved in dry THF (8 mL) under argon atmosphere. The temperature
of the resulting solution was lowered to −78 ◦C and n-BuLi (1.1 mmol, 2.5 M in hexanes)
was added. The resulting mixture was stirred under argon for 15 min and then the
corresponding aromatic aldehyde 3a–d (1.2 mmol) in dry THF (5 mL) was added. Stirring
was continued for 2 h at−78 ◦C and the reaction mixture was warmed to room temperature.
The saturated aqueous NH4Cl solution was added and organic layer was concentrated.
The residue was diluted with ethyl acetate (3 × 10 mL), washed with water (15 mL) and
dried over anhydrous MgSO4. After filtration, ethyl acetate was removed in vacuum and
the crude product 4 was purified by column chromatography over silica gel with a mixture
of toluene/ethyl acetate (1:1 v/v) as an eluent.

(6-(1,3)-Oxathiolan-2-yl-benzo[d][1,3]dioxol-5-yl)(3,4,5-trimethoxyphenyl)methanol 4a. 1H
NMR (200 MHz, C6D6): 7.44 (s, 1H), 7.13 (s, 1H), 6.84 (s, 2H), 6.34 (s, 1H), 6.24 (d, J = 2.5 Hz,
1H), 5.32 (dd, J = 5.9, 1.2 Hz, 2H), 3.98 (ddd, J = 9.3, 6.1, 2.2 Hz, 1H), 3.88 (s, 3H), 3.46 (s,
6H), 3.29 (ddd, J = 9.3, 6.1, 6.1 Hz, 1H), 2.87–2.67 (m, 2H), 2.58 (ddd, J = 9.3, 6.1, 2.2 Hz, 1H)
ppm. 13C{1H} NMR (50 MHz, C6D6): 152.6, 147.0, 146.2, 137.6, 136.9, 135.4, 129.5, 126.8,
107.0, 106.5, 102.9, 102.0, 99.8, 83.3, 70.4, 70.1, 59.0, 54.2, 32.4. Anal. calcd for C20H22O7S: C,
59.10, H, 5.46, S, 7.89; found C, 59.11, H, 5.50, S, 7.82. HRMS (ESI): m/z [M + Na]+ calcd for
C20H22O7SNa: 429.0984; found 429.0985. Yield: 68%, colorless oil.

(6-(1,3)-Oxathiolan-2-yl-benzo[d][1,3]dioxol-5-yl)(benzo[d][1,3]dioxol-5-yl)methanol 4b. Two
diastereoisomers (A and B, 2:1)—1H NMR (200 MHz, C6D6): 7.39 (s, 1H, B), 7.37 (s, 1H,
A), 7.09 (d, J = 1.6 Hz, 1H, B), 7.06 (d, J = 1.6 Hz, 1H, A), 7.01 (s, 1H, A), 6.97 (s, 1H, B),
6.93–6.76 (m, 2H, A+B), 6.71–6.53 (m, 2H), 6.22 (s, 1H, B), 6.17 (s, 1H, A), 6.03 (s, 1H, A),
5.97 (s, 1H, B), 5.38–5.18 (m, 8H), 3.88 (ddd, J = 8.9, 6.4, 2.4 Hz, 2H, A+B), 3.20 (ddd, J = 9.3,
4.7, 4.7 Hz, 2H, A+B), 2.76–2.58 (m, 2H, A+B), 2.56–2.40 (m, 2H, A+B), 2.15 (s br, 2H, A+B)
ppm. 13C{1H} NMR (50 MHz, C6D6): 146.8, 146.8, 146.7, 146.7, 146.1, 146.1, 145.7, 136.5,
136.3, 134.9, 129.4, 129.3, 126.8, 119.0, 118.9, 106.7, 106.6, 106.4, 106.3, 106.1, 99.9, 99.6, 82.90,
82.5, 70.2, 70.1, 69.8, 63.2, 32.4, 32.4 ppm. Anal. calcd for C18H16O6S: C, 59.99, H, 4.48, S,
8.90; found C, 59.95, H, 4.50, S, 8.86. HRMS (ESI): m/z [M + Na]+ calcd for C18H16O6SNa:
383.0566; found 383.0565. Yield: 32%, yellowish oil.

6-(1,3-Oxatiolan-2-yl)benzo[d](1,3-dioxol-5-yl)(benzo[b]thien-2-yl)methanol 4d. Two di-
astereoisomers (A and B, 1:1)—1H NMR (200 MHz, C6D6): 7.67–7.46 (m, 4H, A+B), 7.43 (s,
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1H, A), 7.41 (s, 1H, B), 7.20–6.94 (m, 6H, A+B), 6.40 (s, 1H, A), 6.35 (s, 1H, B), 6.31 (s, 2H,
A+B), 5.33 (dd, J = 14.5, 5.1 Hz, 4H, A+B), 4.08–3.84 (m, 2H, A+B), 3.50–3.30 (m, 1H, A), 3.27
(dt, J = 15.3, 8.9 Hz, 1H, B), 2.70 (td, J = 16.2, 9.4 Hz, 2H, A+B), 2.60–2.43 (m, 2H, A+B) ppm.
13C{1H} NMR (50 MHz, C6D6): 147.7, 146.9, 146.6, 138.9, 138.6, 133.8, 129.4, 122.9, 122.4,
121.2, 120.2, 106.6, 106.2, 100.0, 82.9, 70.1, 68.0, 32.5 ppm. Anal. calcd for C19H16O4S2: C,
61.27, H, 4.33, S, 17.22; found C, 61.25, H, 4.36, S, 17.22. HRMS (ESI): m/z [M + Na]+ calcd
for C19H16O4S2Na: 395.0388; found 395.0387. Yield: 88%, yellowish oil.

3.3. General Procedure for the One-Pot Synthesis of o-(O,S-acetalaryl)arylmethyl Methyl Ethers 5
from o-Bromopiperonal O,S-acetal 2 (Method A)

o-Bromopiperonal O,S-acetal 2 (0.289 g, 1.0 mmol) was placed in the round-bottom
flask (50 mL) and dissolved in dry THF (8 mL) at −78 ◦C under argon atmosphere. Next,
n-BuLi (1.1 mmol, 2.5 M in hexanes) was added. The resulting mixture was stirred under
argon for 15 min, and then the corresponding aromatic aldehyde 3a–c or 3d (1.2 mmol) was
added in dry THF. Stirring was continued for 2 h at −78 ◦C and 5 equiv. of MeI was added.
The reaction mixture was warmed to room temperature. The saturated aqueous NH4Cl
solution was added, and organic layer was concentrated. The residue was diluted with
ethyl acetate (3 × 10 mL), washed with water (15 mL) and dried over anhydrous MgSO4.
After filtration, ethyl acetate was removed in vacuum and the crude product 5 was purified
by column chromatography over silica gel with a mixture of toluene/ethyl acetate (1:1 v/v)
as an eluent.

5-[Methoxy-(3,4,5-trimethoxyphenyl)methyl]-6-[1,3]oxathiolan-2-ylbenzo[1,3]dioxole 5a. Two
diastereoisomers (A and B, 1.4: 1)—1H NMR (200 MHz, C6D6): 7.62 (s, 1H, A), 7.56 (s, 1H,
B), 7.11 (s, 1H, B), 7.09 (s, 1H, A), 6.90 (s, 2H, B), 6.82 (s, 2H, A), 6.52 (s, 1H, B), 6.45 (s, 1H,
A), 5.59 (2×s, 2H, A+B), 5.36–5.24 (m, 4H, A+B), 4.13–3.94 (m, 2H, A+B), 3.90 (2×s, 6H,
A+B), 3.51 (4×s, 18H, A+B), 3.46, 3.36, 3.32, 3.38–3.19 (m, 2H, A+B), 2.86–2.68 (m, 2H, A+B),
2.66–2.51 (m, 2H, A+B) ppm. 13C{1H} NMR (50 MHz, CDCl3): 152.0, 151.8, 146.7, 146.5,
146.3, 146.2, 135.7, 135.0, 131.3, 130.6, 130.1, 106.3, 106.1, 105.6, 105.5, 102.8, 102.5, 100.0, 82.0,
81.9, 79.9, 79.6, 70.7, 70.6, 59.5, 55.8, 54.8, 32.9, 32.7, 28.4 ppm. Anal. calcd for C21H24O7S: C,
59.99, H, 5.75, S, 7.62; found C, 59.91, H, 5.70, S, 7.66. HRMS (ESI): m/z [M + Na]+ calcd for
C21H24O7SNa: 443.1140; found 443.1136. Yield: 83%, yellowish crystals, mp: 110–112 ◦C.

5-((5-(1,3-Oxathiolan-2-yl)benzo[d][1,3]dioxol-6-yl)(methoxy)methyl)benzo[d][1,3]dioxole 5b.
Two diastereoisomers (A and B, 1.6: 1)—1H NMR (500 MHz, C6D6): 7.46 (s, 1H, A), 7.41
(s, 1H, B), 7.04 (s, 1H, B), 7.00 (s, 1H, A), 6.97 (s, 1H, A), 6.91 (s, 1H, B), 6.78 (d, J = 8.00 Hz,
1H, B), 6.72 (d, J = 8.00 Hz, 1H, A), 6.58 (d, J = 8.00 Hz, 1H, B), 6.55 (d, J = 8.00 Hz, 1H,
A), 6.30 (s, 1H, B), 6.23 (s, 1H, A), 5.35 (s, 1H, A), 5.28 (s, 1H, B), 5.25–5.14 (m, 8H, A+B),
3.93–3.83 (m, 2H, A+B), 3.23–3.14 (m, 2H, A+B), 3.15 (s, 3H, A), 3.11 (s, 3H, B), 2.68–2.56 (m,
2H, A+B), 2.50–2.36 (m, 2H, A+B) ppm. 13C{1H} NMR (126 MHz, C6D6): 149.1, 149.0 (2×s),
148.7 (2×s), 148.2, 137.0, 136.7, 134.2, 133.1, 133.0, 129.0, 121.7, 121.6, 109.0, 108.9, 108.8
(2×s), 108.7, 108.5, 108.0, 101.9, 101.7, 84.4, 84.3, 82.4, 82.2, 72.4, 72.4, 57.3, 34.6, 34.5 ppm.
Anal. calcd for C19H18O6S: C, 60.95, H, 4.85, S, 8.56; found C, 60.98, H, 4.80, S, 8.50. HRMS
(ESI): m/z [M + Na]+ calcd for C19H18O6SNa: 397.0722; found 397.0723. Yield: 65%, white
crystals, mp: 116–117 ◦C.

5-(Methoxy(3-methoxyphenyl)methyl)-6-(1,3-oxathiolan-2-yl)benzo[d][1,3]dioxole 5c. Two
diastereoisomers A and B (5.5:1)—1H NMR (500 MHz, CDCl3): 7.57 (s, 1H, B), 7.52 (s, 1H,
A), 7.30 (s, 1H, A), 7.26 (s, 1H, B), 7.15 (d, J = 4.55 Hz, 4H, A+B), 7.05 (s, 1H, B), 7.01 (s, 1H,
A), 6.76 (s br, 2H, A+B), 6.45 (s, 1H, A), 6.38 (s, 1H, B), 5.58 (s, 1H, B), 5.52 (s, 1H, A), 5.28 (d,
J = 18.56 Hz, 4H, A+B), 4.03–3.92 (m, 2H, A+B), 3.37 (s, 3H, A), 3.34 (s, 3H, B), 3.30 (s, 3H,
B), 3.32–3.21 (m, 2H, A+B), 3.26 (s, 3H, A), 2.79–2.68 (m, 2H, A+B), 2.55–2.48 (m, 2H, A+B)
ppm. 13C{1H} NMR (126 MHz, CDCl3): 160.1, 148.2, 147.9, 143.8, 143.4, 133.3, 132.3, 129.4,
129.4, 128.1, 119.5, 119.4, 113.1, 112.7, 112.6, 108.3, 107.8, 107.7, 107.2, 101.0, 83.5, 81.4, 71.5,
56.4, 54.5, 33.7 ppm. Anal. calcd for C19H20O5S: C, 63.32, H, 5.59, S, 8.90; found C, 63.29, H,
5.51, S, 8.94. HRMS (ESI): m/z [M + Na]+ calcd for C19H20O5SNa: 383.0929; found 383.0930.
Yield: 67%, yellowish oil.
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5-((Benzo[b]thien-2-yl)(methoxy)methyl)-6-(1,3-oxathiolan-2-yl)benzo[d][1,3]dioxole 5d. Two
diastereoisomers (A and B, 1.3:1 ratio). Major diastereoisomer A—1H NMR (200 MHz, C6D6):
7.65–7.43 (m, 3H), 7.29–6.98 (m, 4H), 6.38 (s, 1H), 5.83 (s, 1H), 5.42–5.30 (m, 2H), 3.99 (dd,
J = 11.1, 4.4 Hz, 1H), 3.38–3.19 (m, 1H), 3.31 (s, 3H), 2.75 (ddd, J = 9.6, 6.6, 6.6 Hz, 1H), 2.54
(dd, J = 11.1, 4.4 Hz, 1H) ppm. Anal. Calcd for C20H18O4S2: C, 62.16, H, 4.69, S, 16.59;
Found C, 62.13, H, 4.64, S, 16.55. HRMS (ESI): m/z [M + Na]+ calcd for C20H18O4S2Na:
409.0544; found 409.0545. Yield: 43%, yellowish oil. Minor diastereoisomer B—1H NMR (200
MHz, C6D6): 7.66–7.41 (m, 3H), 7.20–6.99 (m, 4H), 6.45 (s, 1H), 5.71 (d, J = 1.1 Hz, 1H), 5.32
(dd, J = 6.6, 1.3 Hz, 2H), 3.93 (ddd, J = 8.7, 6.4, 2.1 Hz, 1H), 3.33–3.11 (m, 1H), 3.27 (s, 3H),
2.71 (ddd, J = 9.7, 6.4, 6.4 Hz, 1H), 2.56–2.41 (m, 1H) ppm. 13C{1H} NMR (50 MHz, C6D6):
148.3, 147.4, 140.4, 139.7, 132.5, 132.2, 128.1, 124.1, 123.7, 122.4, 122.0, 108.3, 108.0, 101.2, 83.6,
79.0, 71.5, 56.5, 33.6 ppm. Anal. calcd for C20H18O4S2: C, 62.16, H, 4.69, S, 16.59; found
C, 62.19, H, 4.51, S, 16.50. HRMS (ESI): m/z [M + Na]+ calcd for C20H18O4S2Na: 409.0544;
found 409.0546. Yield: 33%, yellowish oil. Yield: 92% (diastereoisomers A+B).

3.4. Procedure for the Synthesis of o-(O,S-acetalaryl)arylmethyl Benzyl Ether 6a

o-Bromopiperonal O,S-acetal 2 (0.289 g, 1.0 mmol) was placed in the round-bottom
flask (50 mL) and dissolved in dry THF (8 mL) at −78 ◦C under argon atmosphere. Next,
n-BuLi (1.1 mmol, 2.5 M in hexanes) was added. The resulting mixture was stirred under
argon for 15 min and then 3,4,5-trimethoxybenzaldehyde 3a (0.235 g, 1.2 mmol) was added
in dry THF. Stirring was continued for 2 h at −78 ◦C then benzyl bromide (BnBr) (0.171 g,
1.0 mmol) was added. The reaction mixture was warmed to room temperature. The
saturated aqueous NH4Cl solution was added, and organic layer was concentrated. The
residue was diluted with ethyl acetate (3 × 10 mL), washed with water (15 mL) and dried
over anhydrous MgSO4. After filtration, ethyl acetate was removed in vacuum and the
crude product 6a was obtained as a yellow oil. The product decomposed on silica gel
during purification attempts.

5-((Benzyloxy)(3,4,5-trimethoxyphenyl)methyl)-6-(1,3-oxathiolan-2-yl)benzo[d][1,3]dioxole 6a.
Two diastereoisomers (A:B, 2:1)—1H NMR (200 MHz, C6D6): 7.65 (s, 1H, B), 7.58 (s, 1H, A),
7.55–7.36 (m, 4H, A+B), 7.33–7.25 (m, 2H, A+B), 7.20–7.14 (m, 2H, A+B), 7.15–6.98 (m, 4H,
A+B), 6.96 (s, 2H, A), 6.87 (s, 2H, B), 6.44 (s, 1H, B), 6.38 (s, 1H, A), 5.90 (s, 1H, B), 5.87 (s,
1H, A), 5.32 (d, J = 1.3 Hz, 2H, A), 5.27 (d, J = 1.3 Hz, 2H, B), 4.95–3.85 (m, 2H, A+B), 4.73 (d,
J = 12.0 Hz, 1H, B), 4.58 (d, J = 12.0 Hz, 1H, B), 4.67 (d, J = 12.2 Hz, 1H, A), 4.52 (d, J = 12.2 Hz,
1H, A), 4.02 (s, 3H, B), 3.91 (s, 3H, A), 3.51 (s, 6H, A), 3.44 (s, 6H, B), 3.41–3.16 (m, 2H, A+B),
2.76 (dt, J = 9.6, 6.6 Hz, 2H, A+B), 2.54 (ddd, J = 9.6, 5.0, 2.0 Hz, 2H, A+B) ppm. Yield: 94%
(crude product), yellow oil.

3.5. General Procedure for the Synthesis of o-(O,S-acetalaryl)arylmethyl Methyl Ethers 5 from
o-(O,S-acetalaryl)arylmethanols 4 (Method B)

o-(O,S-Acetalaryl)arylmethanol 4a,b or 4d (1.0 mmol) and KI (5 mol%) were placed
in the round-bottom flask (50 mL) and dissolved in dry THF (8 mL) at room temperature;
then, NaH (1.1 mmol) was added and stirred for 30 min under argon atmosphere. Then,
the resulting mixture was treated with MeI (1.5 mmol) and was left at room temperature
overnight. After 12 h, the residue was diluted with ethyl acetate (3 × 10 mL), washed
with water (15 mL) and dried over anhydrous MgSO4. After filtration, ethyl acetate was
removed in vacuum and the crude product 5 was purified by column chromatography over
silica gel with a mixture of toluene/ethyl acetate (1:1 v/v) as an eluent.

3.6. General Procedure for the Synthesis of MeO-Substituted Acenes 7, 13 and 8 Using HClaq
(Method C)

To a solution of o-(O,S-acetalaryl)arylmethyl methyl ether 5 or 11 (0.8 mmol), dissolved
in MeOH (20 mL), aqueous solution of 1N or 2N HCl (4 mL) was added and the resulting
mixture was stirred at the relevant temperature (see Table 1) until disappearance of the
starting material (monitoring by TLC). The reaction mixture was extracted with ethyl
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acetate (50 mL) and the organic layer was washed with water (30 mL), saturated solution of
NaHCO3 (30 mL) and again with water (30 mL). After drying over anhydrous MgSO4 and
filtration, the solvent was removed in vacuum and the crude products were purified by
column chromatography over silica gel with a mixture of n-hexane/ethyl acetate 10:1 (v/v)
to afford corresponding acenes 7 and 13. A mixture of n-hexane/ethyl acetate 3:1 (v/v) was
used to purify anthracene 8.

3.7. General Procedure for the Synthesis of MeO-Substituted Acene 7 Using FeCl3/KI in MeOH
(Method D)

To a solution of o-(O,S-acetalaryl)arylmethyl methyl ether 5 (1.1 mmol) in dry MeOH
(10 mL), FeCl3 (0.195 g, 1.2 mmol) and KI (0.199 g, 1.2 mmol) were added. The mixture was
refluxed until disappearance of the starting material (monitoring by TLC, Table 1). After
completion of the reaction, the solvent was removed. To the crude product, ethyl acetate
(10 mL) was added and the resulting mixture was poured onto the saturated solution of
Na2S2O3 (10 mL). The organic layer was dried over anhydrous MgSO4. After filtration, the
solvent was evaporated and the crude products were purified with column chromatography
(n-hexane/ethyl acetate, 10:1 v/v) to give MeO-acenes 7 in up to 72% yield accompanying
by HO(CH2)2S-acenes 8 in up to 27% yields (Table 1).

5,7,8,9-Tetramethoxyanthra[2,3-d][1,3]dioxole 7a [34]. 1H NMR (200 MHz, C6D6): 8.52 (s,
1H), 7.74 (s, 1H), 7.37 (s, 1H), 7.20 (s, 1H), 5.35 (s, 2H), 4.01 (s, 3H), 3.93 (s, 3H), 3.81 (s, 3H),
3.56 (s, 3H) ppm. 13C{1H} NMR (50 MHz, CDCl3): 152.6, 148.0, 147.4, 140.6, 138.5, 128.9,
128.7, 124.0, 122.1, 121.3, 114.9, 103.3, 101.0, 95.8, 95.0, 61.8, 61.4, 55.9 ppm.

HRMS (ESI): m/z [M + Na]+ calcd for C19H18O6Na: 365.1001; found 365.0998. Yield:
53% (Method C), yellow crystals, mp: 130–132 ◦C.

5-methoxyanthra[2,3-d:6,7-d’]bis[1,3]dioxole 7b. 1H NMR (500 MHz, CDCl3): 7.77 (s, 1H),
7.42 (s, 2H), 7.13 (s, 2H), 6.04 (s, 4H), 4.02 (s, 3H) ppm. 13C{1H} NMR (126 MHz, CDCl3):
150.5, 147.6, 147.5, 129.5, 121.3, 119.8, 106.4, 102.6, 101.0, 97.1, 62.1 ppm. HRMS (ESI): m/z
[M + Na]+ calcd for C17H12O5Na: 319.0582; found 319.0584. Yield: 36% (Method D), yellow
crystals, mp: 129–130 ◦C.

5,7-Dimethoxyanthra[2,3-d][1,3]dioxole 7c [34]. 1H NMR (200 MHz, C6D6): 7.74 (s, 1H),
7.69 (d, J = 9.3 Hz, 1H), 7.54 (d, J = 2.5 Hz, 1H), 7.28 (dd, J = 9.3, 2.5 Hz, 1H), 7.23 (s, 1H),
7.14 (s, 1H), 5.35 (s, 2H), 3.79 (s, 3H), 3.55 (s, 3H) ppm. 13C{1H} NMR (126 MHz, C6D6):
158.3, 151.2, 149.4, 148.5, 130.9, 129.9, 129.5, 126.0, 123.9, 122.2, 120.8, 104.1, 101,7, 99.1, 98.1,
62.0, 55.4 ppm.

HRMS (ESI): m/z [M + Na]+ calcd for C17H14O4Na: 305.0790; found 305.0796. Yield:
78% (Method D), yellowish oil.

5-Methoxy-6H-[1,3]benzodioxolo[3,2-b]dibenzothiophene 7d. 1H NMR (500 MHz, C6D6):
7.90 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.59 (s, 1H), 7.43 (d, J = 7.9 Hz, 1H), 7.17–7.12 (m, 1H),
7.10–7.06 (m, 2H), 5.25 (s, 2H), 3.70 (s, 3H) ppm. 13C{1H} NMR (126 MHz, C6D6): 149.0,
148.45, 146.1, 140.6, 135.9, 131.0, 128.7, 127.8, 124.9, 123.5, 122.5, 116.7, 115.9, 111.3, 104.7,
101.5, 98.2, 60.3 ppm. Anal. Calcd for C18H12O3S: C, 70.11, H, 3.92, S, 10.40; Found C, 70.09,
H, 3.96, S, 10.44. HRMS (ESI): m/z [M + Na]+ calcd for C18H12O3SNa: 331.0405; found
331.0403. Yield: 62% (Method D) yellowish oil.

2-(Anthra[2,3-d:6,7-d’]bis[1,3]dioxol-10-ylthio)ethanol 8b. 1H NMR (500 MHz, DMSO-d6):
8.10 (s, 1H), 7.99 (s, 2H), 7.25 (s, 2H), 6.12 (s, 4H), 4.77 (br s, 1H), 3.33 (m, 2H), 2.79 (t, J = 6.8
Hz, 2H) ppm. 13C{1H} NMR (126 MHz, DMSO-d6): 149.1, 147.4, 132.0, 128.62, 126.6, 125.1,
103.1, 101.9, 101.6, 60.5, 39.1. HRMS (ESI): m/z [M + H]+ calcd for C18H15O5S: 343.0640;
found 343.0636. Yield = 25% (Method C), yellowish oil.

2-(7-Methoxyanthra[2,3-d][1,3]dioxol-10-ylthio)ethanol 8c. 1H NMR (500 MHz, C6D6):
8.45 (s, 1H), 8.25 (d, J = 2.7 Hz, 1H), 7.78 (s, 1H), 7.52 (d, J = 9.0 Hz, 1H), 7.18 (dd, J = 9.0,
2.7 Hz, 1H), 6.98 (s, 1H), 5.22 (s, 2H), 3.55 (s, 3H), 3.16 (t, J = 6.3 Hz, 2H), 2.61 (t, J = 6.3 Hz,
2H) ppm. 13C{1H} NMR (126 MHz, C6D6): 158.5, 149.8, 147.2, 135.7, 134.1, 130.3, 128.2,
127.9, 124.4, 120.8, 119.7, 103.3, 103.2, 102.0, 100.8, 61.0, 54.6, 38.9 ppm. 1H NMR (500 MHz,
DMSO-d6): 8.30 (s, 1H), 8.06 (s, 1H), 8.03 (s, 1H), 7.88 (d, J = 9.0 Hz, 1H), 7.35 (s, 1H), 7.13 (d,
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J = 9.0 Hz, 1H), 6.15 (s, 2H), 4.78 (br s, 1H), 3.92 (s, 3H), 3.43–3.25 (m, 2H), 2.84 (t, J = 6.7, Hz,
2H) ppm. 13C{1H} NMR (126 MHz, DMSO-d6): 158.1, 149.9, 147.3, 135.0, 133.8, 130.8, 128.0,
127.9, 127.2, 124.3, 119.6, 103.5, 103.5, 102.0, 101.4, 60.6, 55.6, 38.8 ppm. HRMS (ESI): m/z
[M + H]+ calcd for C18H17O4S: 329.0848; found 329.0845. Yield: 27% (Method C), yellow
solid, mp: 153–154 ◦C.

3.8. Synthesis of 3-Bromobenzo[b]thiophene-2-carbaldehyde O,S-acetal 11

2-Mercaptoethanol (2.62 mmol, 205 mg, 184 µL) and p-TsOH·H2O (50 mg, 0.2 mmol,
10 mol%) were added to a solution of 3-bromobenzo[b]thiophene-2-carbaldehyde 10
(2.62 mmol, 0.633 g) in benzene (6 mL), and the resulting mixture was refluxed for 24 h
using the Dean–Stark trap to remove water. The mixture was concentrated and purified
with column chromatography using toluene as an eluent. Evaporation of the solvent gave
a colorless oil of 11 (0.580 g, 74%) [47].

1H NMR (200 MHz, C6D6): 7.67 (d, J = 7.6 Hz, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.20–7.10
(m, 1H), 7.10–6.99 (m, 1H), 6.55 (s, 1H), 4.10–3.95 (m, 1H), 3.55–3.33 (m, 1H), 2.92–2.72 (m,
1H), 2.57 (ddd, J = 12.6, 8.0, 5.2 Hz, 1H) ppm. 13C{1H} NMR (50 MHz, C6D6): 140.6, 138.2,
137.7, 128.7, 125.6, 125.0, 122.9, 122.6, 82.2, 72.1, 33.7 ppm. Anal. calcd for C11H9BrOS2: C,
43.86, H, 3.01, S, 21.29; found C, 43.83, H, 2.98, S, 21.35. HRMS (ESI): m/z [M + H]+ calcd
for C11H10BrOS2: 300.9356; found 300.9347.

3.9. Synthesis of o-(O,S-acetalaryl)arylmethyl Methyl Ether 12

o-Bromothioacetal 11 (500 mg, 1.66 mmol) was placed in the round-bottom flask
(50 mL) and dissolved in dry THF (6 mL) at −78 ◦C under argon atmosphere. Next, n-BuLi
(0.7 mL, 2.6 M in hexanes, 1.83 mmol) was added. The resulting mixture was stirred for
15 min under argon and then solution of the aldehyde 3a (326 mg, 1.66 mmol) in dry THF
(4 mL) was added. After 2 h, MeI (1.13 g, 8.0 mmol) was added. The reaction mixture
was warmed to room temperature and stirred for 12 h. The saturated aqueous NH4Cl
solution was added, and organic layer was concentrated. The residue was diluted with
ethyl acetate (3 × 10 mL), washed with water (15 mL) and dried over anhydrous MgSO4.
After filtration, ethyl acetate was removed in vacuum and the crude product was purified
by column chromatography over silica gel with a mixture of toluene/ethyl acetate (10:1
v/v). Fraction with Rf = 0.65 yielded 617 mg of product 12.

2-(3-(Methoxy(3,4,5-trimethoxyphenyl)methyl)benzo[b]thien-2-yl)-1,3-oxathiolane 12. Two
diastereoisomers (A and B)—1H NMR (500 MHz, CDCl3): 8.04 (d, J = 8.2 Hz, 1H, A), 8.02
(d, J = 8.2 Hz, 1H, B), 7.58 (d, J = 8.2 Hz, 2H, A+B), 7.24–7.03 (m, 10H, A+B), 6.96 (s, 1H,
A), 6.95 (s, 1H, B), 6.83 (s, 1H, A), 6.82 (s, 1H, B), 5.87 (s, 1H, A), 5.82 (s, 1H, B), 4.10 (dddd,
J = 15.6, 9.2, 6.2, 2.9 Hz, 2H, A+B), 3.82 (s, 1H, A), 3.81 (s, 1H, B),3.55–3.39 (m, 2H, A+B),
3.49 (s, 6H, A), 3.48 (s, 6H, B), 3.29 (s, 6H, A+B), 3.00–2.84 (m, 2H, A+B), 2.66–2.59 (m, 2H,
A+B) ppm. 13C{1H} NMR (126 MHz, CDCl3): 153.8, 143.4, 143.2, 139.7 (2×s), 138.8, 138.7,
138.3, 137.7, 136.3, 136.2, 132.9, 132.5, 129.1, 128.3, 125.4, 125.0, 124.2, 124.1, 123.9, 122.6,
122.5, 104.3, 81.4, 81.3, 79.2, 79.1, 72.2, 71.9, 60.2, 56.6, 55.6, 34.0, 21.2 ppm. Anal. calcd for
C22H24O5S2: C, 61.09; H, 5.59; S, 14.82; found C, 61.06, H, 5.52, S, 14.77. HRMS (ESI): m/z
[M + Na]+ calcd for C22H24O5S2Na: 455.0963; found 455.0965. Yield: 86%, yellowish oil.

3.10. Synthesis of Acene 13 Using HClaq

To a solution of o-(O,S-acetalaryl)arylmethyl methyl ether 12 (0.073 g, 0.17 mmol),
dissolved in MeOH (4 mL), the aqueous solution of 2 N HCl (0.8 mL) was added and
the resulting mixture was stirred at room temperature for 12 h. The reaction mixture was
extracted with ethyl acetate (20 mL) and the organic layer was washed with water (10 mL),
saturated solution of NaHCO3 (15 mL) and again with water (10 mL), then dried over
anhydrous MgSO4. After filtration, ethyl acetate was removed in vacuum and the crude
product was purified with PLC plate with a mixture of hexane/acetone (3:1 v/v). Fraction
with Rf = 0.45 yielded 9 mg of product 13.
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7,8,9,11-Tetramethoxybenzo[b]naphtho[2,3-d]tiophene 13. 1H NMR (500 MHz, C6D6): 8.71
(d, J = 7.7 Hz, 1H), 8.47 (s, 1H), 7.49 (d, J = 7.7 Hz, 1H), 7.34 (s, 1H), 7.28 (dd, J = 7.7, 7,7
Hz, 1H), 7.15 (dd, J = 7.7, 7.7 Hz, 1H), 3.79 (s, 6H), 3.66 (s, 3H), 3.44 (s, 3H) ppm. 13C{1H}
NMR (126 MHz, CDCl3): 153.2, 152.4, 147.7, 142.0, 140.0, 136.7, 134.5, 127.0, 126.4, 126.2,
125.8, 124.7, 123.0, 122.5, 111.4, 96.6, 60.9, 60.7, 60.1, 55.1 ppm. Anal. calcd for C20H18O4S:
C, 67.78; H, 5.12; S, 9.05; found C, 67.75, H, 5.15, S, 9.09. HRMS (ESI): m/z [M + Na]+ calcd
for C20H18O4SNa: 377.0823; found 377.0821. Yield: 15%; yellowish crystals.

Crystal structure data: C20H18O4S, M = 340.40, monoclinic, space group P21/n (No. 14),
a = 12.1338(3) Å, b = 7.37769(18) Å, c = 19.7054(6), β = 103.602(3)◦, V = 1714.54(8) Å3, Z = 4,
T = 293(2) K, Dcalc = 1.373 g·cm−3, CuKα radiation, 2θmax = 134.912◦, 15,804 reflections
collected, 3063 reflections unique and 2763 reflections with I > 2σ(I). Final GooF = 1.042,
R1 = 0.0388 and wR2 = 0.1095 for 2763 reflections and 231 parameters [48].

3.11. Synthesis of Dimeric Isomers cis-9b and trans-9b from o-(O,S-acetalaryl)arylmethyl Methyl
Ether 5b Using HClaq

To a solution of o-(O,S-acetalaryl)arylmethyl methyl ether 5b (0.3 g, 0.8 mmol), dis-
solved in MeOH (20 mL), aqueous solution of 2 N HCl (4 mL) was added and the resulting
mixture was stirred for 0.5 h at 65 ◦C until disappearance of the starting material (monitor-
ing by TLC). The reaction mixture was extracted with ethyl acetate (50 mL) and the organic
layer was washed with water (30 mL), saturated solution of NaHCO3 (30 mL) and again
with water (30 mL). After drying over anhydrous MgSO4 and filtration, the solvent was
removed in vacuum and the crude products were purified by column chromatography over
silica gel with a mixture of n-hexane/ethyl acetate in a 2:1 (v/v) ratio to afford isomeric
cis-9b and trans-9b (2:1) as a deep-red solid in 55% yield (0.274 g).

1H NMR (500 MHz, C6D6, A+B): 7.60 (s, 1H, A), 7.55 (d, J = 1.7 Hz, 1H, B), 7.30 (dd,
J = 8.0, 1.8 Hz, 1H, B), 7.22 (d, J = 1.7 Hz, 1H, B), 7.14 (s, 1H, B), 7.12 (s, 1H, B), 7.11 (s,
1H, A), 7.04 (dd, J = 8.1, 1.7 Hz, 1H, B), 6.73 (s, 1H, B), 6.67 (d, J = 1.8 Hz, 1H, A), 6.63 (d,
J = 8.0 Hz, 1H, A), 6.64 (d, J = 8.0 Hz, 1H, B), 6.58 (s, 1H, A), 6.53 (d, J = 8.1 Hz, 1H, B), 6.48
(s, 1H, A), 6.44 (d, J = 2.1 Hz, 1H, A), 6.42 (s, 1H, A), 6.40 (d, J = 1.7 Hz, 1H, B), 6.31 (d,
J = 6.0 Hz, 1H, A), 6.32 (d, J = 3.7 Hz, 1H, A), 5.53 (s, 1H, B), 5.44 (s, 1H, A), 5.29–5.08 (m,
16H, A+B), 3.61 (td, J = 6.3, 2.5 Hz, 2H, A), 3.24 (dtd, J = 16.9, 11.2, 5.7 Hz, 2H, B), 2.67–2.58
(m, 1H, A), 2.51–2.42 (m, 1H, A), 2.22 (dt, J = 13.7, 5.5 Hz, 1H, B), 2.15–2.06 (m, 1H, B) ppm.
13C{1H} NMR (126 MHz, C6D6, A+B): 195.1, 194.3, 155.5, 155.2, 151.5, 151.4, 149.0, 148.7,
148.4, 148.2 (2×s) 148.0, 147.9, 147.8 (2×s) 147.0, 146.9, 146.8, 146.5, 140.9 (2×s) 135.8, 134.7,
134.6 (2×s), 132.4, 132.0, 126.2, 125.8, 125.4, 125.3, 125.2, 124.8, 123.0, 122.7, 122.2, 122.0,
111.0, 110.8, 109.4, 109.1, 109.0, 108.9, 108.6, 108.5, 108.2, 108.0, 107.7, 105.2, 105.0, 104.3,
104.2, 101.8, 101.1 (2×s), 101.0, 100.7 (2×s), 61.2, 60.4, 50.4, 50.3, 35.6, 35.1 ppm. HRMS
(ESI): m/z [M + Na]+ calcd for C34H24O10SNa: 647.0988; found 647.0989; m/z [M + K]+

calcd for C34H24O10SK: 663.0727; found 663.0732. FT-IR (vmax/cm−1, neat): 926, 1005, 1239,
1440, 1471, 1500, 1696, 2895. Deep-red solid, mp: 118–119 ◦C.

4. Conclusions

In summary, in this study, we presented a new modification of the oxo-Friedel–Crafts–
Bradsher (F-C-B) cyclization reaction using O,S-acetals, which have not been previously
studied in this type of reaction. Unlike other hetero-F-C-B modifications, involving O,O-
acetals and S,S-dithioacetals, this reaction is more flexible and can be carried out both in
aqueous solutions and under anhydrous conditions, which is important for water-sensitive
substrates. Like other hetero-F-C-B cyclizations, oxo-F-C-B cyclization may be a source
of highly substituted acenes, the hallmark of this type of reaction. Interestingly, in this
modification, two kinds of electron donor and donor-acceptor acenes can be obtained in
one reaction step. The formation of two types of products 8 and 9, which have never been
observed in this type of cyclization, and the support of DFT calculations made it possible
to propose a general reaction mechanism for this new modification of oxo-Friedel–Crafts–
Bradsher cyclization.
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