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Abstract: A new bicyclic nonene, tsaokoic acid (1), was isolated from the fruits of Amomum tsao-ko,
together with three known compounds (2–4). The structure of 1 was elucidated by analyzing
spectroscopic data including 1D and 2D NMR spectra and compounds 2–4 were identified as tsaokoin,
vanillin, and tsaokoarylone, respectively, by comparing their NMR spectra with previously reported
data. Compounds 1–4 showed possible inhibitory activity against acetylcholinesterase (AChE) in
silico molecular docking simulations. They were submitted to in vitro assay system and exhibited
moderate inhibitory activity with IC50 values of 32.78, 41.70, 39.25, and 31.13 µM, respectively.

Keywords: Amomum tsao-ko; Zingiberaceae; bicyclic nonene; acetylcholinesterase

1. Introduction

Amomum tsao-ko Crevost et Lemair (Zingiberaceae) is a medicinal food known as
“Cho-Gwa” in Korea and “Caoguo” or “Tsao-ko” in China [1]. The genus Amomum is
distributed in tropical and subtropical regions of Asia and Oceania, and A. tsao-ko grows
mainly in Southwestern China and Northern Vietnam [2,3]. The fruit of A. tsao-ko has
been used as a spice and a traditional medicine in Asia to treat stomach disorders, dyspep-
sia, nausea, vomiting, diarrhea, malaria, throat infections, and abdominal pain [4–6]. It
exhibits pharmacological activities such as anti-inflammatory, anti-tumor, anti-oxidant, anti-
biotic, anti-diabetic, and neuroprotective effects [3,5,7]. Previous phytochemical studies on
A. tsao-ko fruit isolated various natural compounds including flavonoids, terpenoids, and
diarylheptanoids [2].

Alzheimer’s disease (AD) is a neurodegenerative disorder accompanied by clinical
symptoms such as cognitive and language impairment, mental and behavioral difficulties,
and problems with daily living activities. Although AD pathogenesis has not been clearly
elucidated, one cause may be early loss of basal forebrain cholinergic neurons [8]. This
explains the essential role of acetylcholine (ACh) in cognitive decline (including memory,
attention, sensory, and learning) in AD [9]. Since cholinergic neurotransmission plays an
important role in cognitive function, improving the acetylcholinesterase (AChE) brain level
is crucial to treat AD. AChE is a cholinergic enzyme found primarily at neuromuscular
junctions and chemical synapses of the cholinergic type responsible for terminating a
synaptic transmission. Therefore, AChE inhibitors enhance cholinergic neurotransmission
by increasing Ach levels [8,9].
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In this study, a new compound, tsaokoic acid (1), was isolated with three known
compounds, tsaokoin (2), vanillin (3), and tsaokoarylone (4), from the A. tsao-ko fruits
(Figure 1). 1–4 were tested for their AChE-inhibitory activity using an in silico molecular
docking and an in vitro enzyme assay. This study describes their isolation, structure
identification, and AChE-inhibitory activity.
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Figure 1. Chemical structures of isolates 1–4 from A. tsao-ko.

2. Results and Discussion
2.1. Structure Elucidation

Compound 1 was obtained as white needles, and it exhibited a molecular ion peak at
m/z 181.0868 [M − H]− (calcd for 181.0870) in the HRESIMS, consistent with the molecular
formula C10H14O3. The UV spectrum of 1 showed an absorption maximum at 240 nm. In
the IR spectrum of 1, a hydroxyl group and carboxylic acid functionality were observed at
2954 and 1685 cm−1, respectively. In the 1H and 13C NMR spectra of 1, as shown in Table 1,
four methylene functionalities appeared at δH 2.32 (1H, ddt, J = 17.8, 6.0, 1.5 Hz), 2.22 (1H,
ddt, J = 18.0, 9.4, 2.9)/δC 30.8 (C-4), 1.72 (1H, dddd, J = 16.4, 8.4, 5.2, 4.1), 1.55 (1H, m)/26.0
(C-7), 1.55 (2H, m)/25.4 (C-8), and 2.03 (1H, dq, J = 5.8, 2.4), 1.45 (1H, m)/34.2 (C-9). Four
methines were also observed at δH 6.78 (1H, dq, J = 6.0, 1.5 Hz)/δC 136.5 (C-3), 3.94 (1H,
dt, J = 9.6, 4.8)/68.9 (C-5), 3.01 (1H, ddt, J = 9.8, 3.3, 1.6)/40.9 (C-1), and 2.41 (1H, dddd,
J = 12.6, 8.0, 4.0, 1.4)/44.6 (C-6) together with a quaternary carbon peak at δC 135.9 (C-2),
indicating the presence of a bicyclic nonene [1]. In the HMBC spectrum of 1, the bicyclic
nonene group was confirmed by the correlations of H-1/C-2, C-9, H-3/C-1, C-2, C-4, C-5,
H-4/C-2, C-3, C-5, C-6, H-6/C-1, C-2, C-4, C-5, C-7, H-7/C-1, C-5, C-6, C-8, C-9, H-8/C-1,
C-6, C-9, and H-9/C-1, C-2, C-6, C-7, C-8. In addition, the 13C NMR resonance at δC 170.7
(C-10) displayed a carboxylic acid in 1. A hydroxyl group was expected from molecular ion
peak of HRESIMS. The carboxylic acid was positioned at C-2 due to the HMBC correlation
between the proton H-3 at δH 6.78 and the carboxylic carbon at δC 170.7 (C-10) (Figure 2)
which are three bonds away from each other. The hydroxyl group was assigned at C-5
(δC 68.9) as a secondary hydroxyl since the H-5 at δH 3.94 showed two-bond correlations
with C-4 and C-6 and three-bond connectivities with C-1, C-3, and C-7 in the HMBC NMR
spectrum of 1. As a result, the structure of 1 was similar to tsaokoin (2) [1], except for the
carboxylic acid in 1 instead of an aldehyde group in tsaokoin (2) at C-10.
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Table 1. 1H (400 MHz) and 13C (100 MHz) NMR data for 1 and 2.

Position
1 a 2 b

δC Type δH (J in Hz) δC Type δH (J in Hz)

1 40.9 CH 3.01 ddt (9.8, 3.3, 1.6) 37.3 CH 2.98 m
2 135.9 C 144.9 C
3 136.5 CH 6.78 dq (6.0, 1.5) 146.5 CH 6.64 ddd (5.6, 3.2, 1.3)
4 30.8 CH2 2.32 ddt (17.8, 6.0, 1.5) 31.2 CH2 2.53 dtt (18.4, 5.2, 1.5)

2.22 ddt (18.0, 9.4, 2.9) 2.40 td (8.6, 2.9)
5 68.9 CH 3.94 dt (9.6, 4.8) 68.4 CH 4.05 dt (8.8, 4.8)
6 44.6 CH 2.41 dddd (12.6, 8.0, 4.0, 1.4) 42.8 CH 2.44 dt (8.8, 2.8)
7 26.0 CH2 1.72 dddd (16.4, 8.4, 5.2, 4.1) 25.0 CH2 1.78 td (8.8, 5.2)

1.55 m 1.63 m
8 25.4 CH2 1.55 m 24.7 CH2 1.56 ddd (15.6, 7.2, 1.9)
9 34.2 CH2 2.03 dq (5.6, 2.4) 32.3 CH2 2.12 ddd (20.8, 7.6, 5.1)

1.45 m 1.41 tdd (13.2, 5.6, 1.7)
10 170.7 COOH 193.8 CHO 9.42s

a Data were measured in CD3OD. b Data were measured in CDCl3.

The relative configuration of 1 was determined by analyzing its NOESY spectrum
(Figure 2). The NOE correlations of H-1/H-5, H-1/H-6, and H-5/H-6 indicated that the
three protons of H-1, H-5, H-6 are cofacial, while a hydroxyl group at C-5 is on the opposite
side. Therefore, the structure of 1 was determined as a new compound, rel-(1R,5R,6S)-5-
hydroxybicyclo[4.3.0]non-2-ene-2-carboxylic acid (Figure 1), namely, “tsaokoic acid”.

Compound 2 was isolated as a colorless oil and its molecular formula determined as
C10H14O2 based on the HRESIMS ([M + H]+, m/z 167.1072, calcd for 167.1067). The 1H and
13C chemical shifts (Table 1) of 2 also exhibited peak values for bicyclic nonene fragments
that were identical to those of tsaokoin [1,10]. 13C NMR resonances at C-2 (δC 144.9) and
C-3(δC 146.5) showed larger chemical shifts compared to those of 1. Unlike 1, δH 9.42 (s)/δC
193.8 (C-10) showed the presence of carbaldehyde group instead of carboxylic group at
C-2 position, which was supported by the HMBC correlations between H-10/C-1, C-2, and
C-3 and NOESY correlations of H-3/H-10. The relative configuration of 2 was confirmed
as 1R,5R,6S, which is the same as compound 1 based on the NOE correlations of H-1/H-5,
H-5/H-6, and H-1/H-6 in compound 2. Thus, 2 was identified as the known compound,
rel-(1R,5R,6S)-5-hydroxybicyclo[4,3,0]non-2-ene-2-carboxaldehyde (Figure 1) [10,11].

Relative configurations for 1 and 2, were determined according to their NOESY data
as described in the results. Compounds 1 and 2 have the same relative configurations
as they showed identical NOESY correlations of H-1/H5, H-1/H-6, and H-5/H-6, which
indicate that the three protons of H-1, H-5, and H-6 are in cis configuration with each
other. To determine their absolute configurations, Mosher’s esterification experiments were
performed for 1 and 2. However, the results showed identical 1H NMR spectra of (R)- and
(S)-MTPA esters, indicating racemic mixtures. The optical rotation values of 1 and 2 were
[α]22

D −1.65 (c 0.1, MeOH) and [α]20
D −0.96 (c 0.1, CH2Cl2), respectively, which indicates

that they were not perfectly racemic. However, we were unable to find any differences in
chemical shifts in the 1H NMR spectra of (R)- and (S)-MTPA esters of compounds 1 and 2.
Thus, we think that 1 and 2 are racemic mixtures. All figures, including 1D and 2D NMR
spectra of compounds 1 and 2, and the 1H NMR data for MPTA esters of compounds 1 and
2, were provided in the supplementary materials (Figures S1–S24).

2.2. AChE-Inhibitory Activities of 1–4

In the present study, compounds 1–4 showed possible inhibitory activity against AChE
in molecular docking simulations, and thus, in vitro assays have been performed against
AChE and more details are as follows.
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2.2.1. In Silico Docking Simulation

Before the in vitro anti-AChE activity test, an in silico docking simulation was per-
formed to predict the specific pharmacological effects of the four compounds (1–4) against
AChE. The binding sites in the enzyme and binding energies of each compound were
predicted through a docking simulation utilizing three systems (Autodock vina, Autodock
4, LeDock). Figure 3 shows the binding sites of the AChE receptor and ligands. FP1, the
positive control, had two hydrogen bonds and two hydrophobic interactions with AChE
(Figure 3a). The binding affinity of the tested compounds was compared to those of the
control (FP1) for hydrogen bonding and hydrophobic interaction. Tsaokoic acid (1) and
tsaokoin (2) did not have hydrophobic interactions with the enzyme and thus showed
lower binding affinities than the control (FP1) (Figure 3b,c). Vanillin (3) possessed one
hydrogen bond and one hydrophobic interaction with AChE, showing a lower binding
force than the control (Figure 3d). On the other hand, tsaokoarylone (4) showed a stronger
binding affinity than the control (FP1) as four hydrophobic interactions and two hydrogen
bonds were observed (Figure 3e).
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Figure 3. The pharmacophores of the tested compounds indicate the interactions between the receptor
(AChE) and ligands (1–4 and FP1). The green and red arrows indicate the hydrogen bond donor and
acceptor, respectively. The yellow color indicates a hydrophobic interaction or van der Waals Force.
(a) FP1, a positive control, (b) 1, (c) 2, (d) 3, and (e) 4.

The docking scores of the receptor and compounds are shown in Table 2. Higher
absolute values indicate a stronger binding affinity. A control group (FP1) showed −5.6,
−5.11, and −2.52 for the Autodock Vina, Autodock 4, and LeDock systems, respectively.
Tsaokoic acid (1), tsaokoin (2), and vanillin (3) showed scores to AChE with values of
−5.8~−6.8 (Autodock Vina), −5.17~−6.07 (Autodock 4), and −2.7~−3.32 (LeDock), which
were higher than those of FP1. On the other hand, tsaokoarylone (4) showed the highest
docking scores, −7.2, −8.58, and −4.1, which corresponded to the docking simulation
results. All the docking simulations were repeated three times.
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Table 2. In silico docking scores of the control and the compounds 1–4 against AChE.

Compound Autodock
Vina a Autodock4 a LeDock a No. of

H-Bond
H-Bond

Interacting Residues
Hydrophobic

Interacting Residues

FP1 b −5.6 −5.11 −2.52 2 HIS447B, TYR449B ILE451B, TRP86B
1 −6.8 −5.24 −3.32 1 TYR124B
2 −6.3 −6.07 −2.93 2 HIS447B, SER125B
3 −5.8 −5.17 −2.7 1 TYR341B TYR124B
4 −7.2 −8.58 −4.1 2 TYR72B, TYR124B PHE338B, TRP86B, TYR337B

a Unit: Kcal/mol, b Control.

2.2.2. In Vitro Assay for AChE-Inhibitory Activity

On the basis of the results from the in silico docking simulation for AChE-inhibitory
activity, 1–4 were tested in vitro screening system at total concentrations of 2, 10, and
50 µM and berberine was used as a positive control (Figure 4 and Table S1). The half-
maximal inhibitory concentrations (IC50) of 1–4 were 32.78, 41.70, 39.25, and 31.13 µM,
respectively, as shown in Figure 4. These results can be considered as moderate AChE-
inhibitory activity compared to the positive control, berberine (IC50 0.19 µM). Isolates 1–4
showed consistent activity between in silico and in vitro experiments. Therefore, we can
utilize this in silico docking simulation system to find any possible AChE inhibitors before
we perform the in vitro or in vivo experiments to save our time and expenses. This is
the first report on the AChE-inhibitory activities of compounds 1, 2, and 4. Compound 2,
tsaokoin, was reported to have weak antifungal activity in previous studies, but its AChE-
inhibitory activity has not been reported [10]. Previous in vitro and in vivo reports indicate
that compound 3 has AChE-inhibitory activities [12–14]. In this study, in silico docking
experiments on AChE for vanillin (3) were performed for the first time as well as for
compounds 1, 2, and 4. This study is considered a good example of in silico research that
aligns with in vitro results. Their AChE-inhibitory activity indicates that compounds 1–4
have some possibilities to treat mild Alzheimer’s disease, by increasing the level of ACh.
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3. Materials and Methods
3.1. General Experimental Procedures

Optical rotation data were obtained on a JASCO P-2000 polarimeter (Tokyo, Japan).
UV spectra were measured on a Hitachi U-3000 UV/Vis spectrophotometer (Tokyo, Japan).
IR spectra were recorded on a Thermo Fisher Nicolet iS 10 FT-IR spectrometer (Waltham,
MA, USA). NMR spectra were acquired on an Agilent DD2 400 MHz FT-NMR instrument
(Agilent Technologies, Santa Clara, CA, USA) using tetramethylsilane as an internal stan-
dard and analyzed with MestreNova 9.0.0 software (Mestrelab Research S.L., Santiago de
Compostela, Spain). HRESIMS was performed on an Agilent 6230 TOF LC/MS instrument
(Agilent Technologies, Santa Clara, CA, USA) equipped at Ewha Drug Development Re-
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search Core Center. Adsorption column chromatography was conducted using silica gel
(63–200 µm, Merck, Darmstadt, Germany). MPLC was run on a CombiFlash Rf-200 instru-
ment (Teledyne Isco, Lincoln, NE, USA) and RediSep® Silver Silica Gel Disposable Flash
Columns 330.0 g and 24.0 g (Teledyne Isco, Lincoln, NE, USA) were used for separations.
The Acme 9000 system (Young Lin, Anyang-si, Gyeonggi-do, Republic of Korea) with
UV detection was used for analytic HPLC, equipped with an Agilent Prep-C18 Scalar
column (4.6 × 250 mm, 5 µm, Santa Clara, CA, USA). Preparative HPLC was carried out
on a YMC-Pack Pro C 18 column (20 × 250 mm, 5 µm, Asan-si, Chungcheongnam-do,
Republic of Korea) using a Waters system equipped with a Waters 600 pump and a Waters
996 photodiode array detector (Waters, MA, USA). Thin-layer chromatography (TLC) was
conducted using Kieselgel 60 F254 aluminum sheets (Merck, Darmstadt, Germany) and
RP-18 F254s aluminum sheets (Merck, Darmstadt, Germany). TLC plates were visualized
under UV (254 and 365 nm) after being dipped in a 10% (v/v) sulfuric acid solution and
heated at 300 ◦C for 1 min. The solvents used for HPLC experiments were HPLC-grade
(Daejung Chemicals & Metals, Siheung-si, Gyeonggi-do, Republic of Korea). Solvents
for NMR experiments were purchased from Cambridge Isotope Laboratories (Tewksbury,
MA, USA).

3.2. Plant Material

The dried fruits of Amomum tsaoko Crevost et Lemaire (Zingiberaceae) were purchased
from Nonglim Saengyak Company (Agricultural and Forestry Herb Market) in Seoul, South
Korea in June 2020. A voucher specimen (no. EA389) was deposited at the Natural Product
Chemistry Laboratory, College of Pharmacy, Ewha Womans University.

3.3. Extraction and Isolation

The dried fruits of A. tsaoko (10.0 kg) were extracted three times with 32 L of MeOH
at room temperature over a period of one week each time. The extract was dried under
reduced pressure to obtain 606.0 g of a MeOH concentrate. After dissolving the concentrate
in distilled water (1 L), the mixture was sequentially fractionated with n-hexane (10 × 1 L),
EtOAc (12 × 1 L), and n-BuOH (10 × 1 L) to afford n-hexane-soluble (112.0 g), EtOAc-
soluble (144.0 g), n-BuOH-soluble concentrate (132.0 g), and aqueous residue (216.0 g),
respectively. The EtOAc fraction (144.0 g) was applied to a silica gel column chromatogra-
phy using a gradient solvent system of CH2Cl2-MeOH (100:0 to 0:100, v/v) to obtain nine
fractions (F01–F09). Fraction F02 (2.3 g) was subjected to MPLC with a gradient mixture of n-
hexane-EtOAc (100:0 to 0:100, v/v) successively to provide 2 (26 mg) with eight subfractions
(F02.15.01–F02.15.08). Fraction F03 (8.1 g) was subjected to MPLC with a gradient solvent
system (n-hexane-EtOAc, 90:10 to 0:100, v/v) to yield 14 subfractions (F03.01–F03.14). Frac-
tion F03.07 (744 mg) was loaded on successive MPLC separations, and then subfraction
F03.07.03.02 was purified using preparative HPLC with MeOH-H2O (60:40, 2 mL/min) to
obtain 3 (3 mg; tR 26 min). Fraction F03.08 (1.5 g) was separated by MPLC using n-hexane-
acetone (100:0 to 0:100, v/v) to give six subfractions (F03.08.01–F.03.08.06) and fraction
F03.08.02 (1.0 g) was separated using n-hexane-acetone (100:0 to 70:30, v/v) to obtain six
subfractions (F03.08.02.01–F.03.08.02.06). Fraction F03.08.02.05 (89 mg) was further purified
by preparative HPLC eluting with an isocratic mixture of MeOH-H2O (60:40, 2 mL/min)
to isolate 1 (30 mg; tR 15 min). Fraction F03.10 (143 mg) was fractionated by MPLC with
n-hexane-acetone (100:0 to 70:30 v/v) to afford four subfractions (F03.10.01–F03.10.04). Frac-
tion F03.10.02 (20 mg) was loaded on the HPLC using MeOH-H2O (60:40, 2 mL/min) to
purify 4 (5 mg; tR 20 min).

Tsaokoic acid (1): White needles; [α]22
D −1.65 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 240

(2.72) nm; IR (KBr) νmax 2954, 2868, 1685, 1638, 1249, 1054 cm−1; 1H NMR (CD3OD, 400 MHz)
and 13C NMR (CD3OD, 100 MHz) data, see Table 1; HRESIMS m/z 181.0868 [M − H]− (calcd
for C10H14O3, 181.0870).

Tsaokoin (2): Colorless oil; [α]20
D −0.96 (c 0.1, CH2Cl2); UV (CH2Cl2) λmax (log ε) 230

(2.40) nm; IR (KBr) νmax 3418, 2955, 2869, 2722, 1681, 1635, 1451, 1430, 1378, 1309, 1167, 1115,
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1061, 1025, 968, 926, 902, 827, 739, 585 cm−1; 1H NMR (CDCl3, 400 MHz) and 13C NMR
(CDCl3, 100 MHz) data, see Table 1; HRESIMS m/z 167.1072 [M + H]+ (calcd for C10H14O2,
167.1067).

Vanillin (3): White powder; 1H NMR and 13C NMR data were comparable to the
reference data [15].

Tsaokoarylone (4): Yellowish amorphous solid; 1H NMR and 13C NMR data were
comparable to the reference data [16].

3.4. In Silico AChE-Inhibitory Activity

For the docking studies, the crystal structure of AChE was obtained from the RCSC
PDB website (PDB ID: 5HFA) (https://www.rcsb.org/, accessed on 20 September 2022). The
3D structures of tsaokoic acid, tsaokoin, and tsaokoarylone were built by ACD/ChemSketch
freeware (ACD/Labs, Toronto, ON, Canada) (https://www.acdlabs.com/resources/free-
chemistry-software-apps/chemsketch-freeware/, accessed on 20 September 2022), while
the 3D structure of vanillin was obtained from the Pubchem website (https://pubchem.
ncbi.nlm.nih.gov/, accessed on 20 September 2022). Three programs were used for dock-
ing simulation: Autodock Vina 1.1.2 (Scripps Research, San Diego, CA, USA) (https:
//vina.scripps.edu/, accessed on 20 September 2022), Autodock4.2.6 (Scripps Research,
San Diego, CA, USA) (https://autodock.scripps.edu/, accessed on 20 September 2022),
and LeDock (LEPHAR, http://www.lephar.com/software.htm, accessed on 20 September
2022). Docking preparation of four compounds was conducted by UCSF Chimera program
(University of California, San Francisco, CA, USA) (https://www.rbvi.ucsf.edu/chimera/,
accessed on September 2022). A pharmacophore analysis between AChE and the com-
pounds was conducted by LigandScout 4.0 (inte:ligand, Maria Enzersdorf, Niedaestareich,
Austria) (http://www.inteligand.com/ligandscout/, accessed on 20 September 2022).

3.5. In Vitro AChE-Inhibitory Assay

The inhibitory activities of the compounds on AChE were measured using the spec-
trophotometric method developed by Ellman et al. 1961 [17]. The reaction mixtures
contained 140 µL of sodium phosphate buffer (pH 8.0), 20 µL of tested sample solution,
and 20 µL of AChE solution, which were mixed and incubated for 15 min at room tempera-
ture. All tested compounds and positive control (berberine) were dissolved in 10% DMSO
Reactions were initiated with the addition of 10 µL of dithiobisnitrobenzoic acid (DTNB)
and 10 µL of ACh. The hydrolysis of ACh was monitored by tracking the formation of
5-thio-2-nitrobenzoate anion at 412 nm for 15 min, resulting from the reaction of DTNB with
the thiocholine released by the enzyme. Each reaction was performed in triplicate and the
results were measured in 96-well microplates using a microplate spectrophotometer (Tecan,
Sunrise, Austria). Percent inhibition was calculated using the formula (1 − S/E) × 100,
where E and S are enzyme activities with and without the test sample, respectively. The
inhibitory activity of each compound against AChE was expressed as an IC50 (the µM
concentration required to inhibit substrate hydrolysis by 50%), as calculated using log-dose
inhibition curves.

4. Conclusions

In this study, tsaokoic acid (1), tsaokoin (2), vanillin (3), and tsaokoarylone (4) were
isolated from the EtOAc fraction of the A. tsao-ko fruits. Compound 1 was elucidated as
a new compound, tsaokoic acid, using various spectroscopic data including 1D and 2D
NMR techniques such as COSY, NOESY, HSQC, and HMBC NMR experiments. Relative
configurations for 1 and 2 were determined according to their NOESY data as described
in the results. Compounds 1–4 exhibited moderate AChE-inhibitory activities at IC50
values of 32.78, 41.70, 39.25, and 31.13 µM, respectively, which are consistent with the
results of in silico docking simulations. From these results, we can conclude that in silico
docking simulation system for AChE-inhibitory activiy could be a guide for in vitro system.

https://www.rcsb.org/
https://www.acdlabs.com/resources/free-chemistry-software-apps/chemsketch-freeware/
https://www.acdlabs.com/resources/free-chemistry-software-apps/chemsketch-freeware/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://vina.scripps.edu/
https://vina.scripps.edu/
https://autodock.scripps.edu/
http://www.lephar.com/software.htm
https://www.rbvi.ucsf.edu/chimera/
http://www.inteligand.com/ligandscout/


Molecules 2023, 28, 2602 8 of 9

Compounds 1–4 isolated from the fruits of A. tsao-ko, have some possibilities to enhance
cognition in humans, treating mild Alzheimer’s disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28062602/s1. Figures S1–S7 with 1D/2D NMR spectro-
scopic data of compound 1; Figures S8–S10 with UV, IR, HRESIMS data of compound 1; Figures S11–S17
with 1D/2D NMR spectroscopic data of compound 2; Figures S18–S20 with UV, IR, HRESIMS data
of compound 2; Figures S21–S24 with 1H-NMR data of MTPA esters of 1 and 2; Table S1 with
AChE-inhibitory activity of the isolates 1–4.
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