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Abstract: Photoluminescent liquid-crystalline (PLLC) molecules, which can easily tune the PL behav-
ior through the crystal (Cry)–LC phase transition, have attracted significant attention. Previously, we
have demonstrated that the incorporation of a semifluoroalkoxy chain into π-conjugated mesogen
is a promising approach for developing PLLC molecules with PL and SmA LC characteristics. We
focused on the LC and PL characteristics of the molecules induced by the semifluoroalkoxy chain and
fluorinated tolanes in the condensed phase. In this study, we developed cyano- or ethoxycarbonyl-
terminated donor-π-acceptor-type fluorinated tolanes containing a semifluoroalkoxy flexible chain.
The cyano-terminated fluorinated tolanes exhibited intense light-blue photoluminescence in the
crystalline phase and did not exhibit any LC phase. In contrast, blue photoluminescence in the
ethoxycarbonyl-terminated analogs was slightly weak; however, they exhibited Cry–SmA phase tran-
sition during the heating and cooling processes. The PL intensity of the ethoxycarbonyl-terminated
fluorinated tolanes significantly decreased in the SmA phase; however, their PL colors changed
during the Cry–SmA phase transition. This indicates that the developed tolanes are promising
temperature-dependent PL materials, such as PL thermosensors or PL thermometers.

Keywords: fluorinated tolane; photoluminescence; π-conjugated mesogen; donor-π-acceptor; semi-
fluoroalkoxy flexible chain; smectic liquid crystals; phase transition; condensed phase

1. Introduction

Precise control of molecular arrangements in the condensed phase is of great impor-
tance for the development of functional molecules because their physical properties, such as
luminescence, electrical conductivity, and magnetic properties, vary significantly with the
molecular arrangement [1–4]. Crystal–crystal (Cry–Cry) phase transition using polymorphs
is one of the approaches to control the aggregated structures. It has been reported that
luminescent molecules significantly switch through phase transitions of polymorphs [5,6].
As an alternative approach, Cry–liquid crystal (LC) or LC–LC phase transition is effective
in reversibly ordering molecular arrangements because the LC phase is a mesophase be-
tween the Cry and isotropic (Iso) phases and can form different molecular arrangements
depending on the LC phase [7,8]. Accordingly, molecules with both fluorescence and LC
characteristics are promising candidates for developing functional materials such as fluores-
cence sensors and fluorescence thermometers, which can reversibly alter their fluorescence
behavior through a temperature- and concentration-dependent control of their aggregated
structures [9,10].

In 2008, Kato et al. reported that the color of photoluminescence of pyrene derivatives
I with dendritic flexible moieties changes from yellow to blue-green owing to their phase
transition from the cubic phase to the shear-induced columnar phase [11]. Since then,
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various photoluminescent (PL) LC molecules, such as II and III, have been developed and
investigated in detail by Tang et al. [12] and Tsutsumi et al. [13], respectively (Figure 1a).
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Figure 1. Chemical structures of (a) PLLC molecules I–III obtained from the literature [11–13] and
(b) fluorinated bistolane-type PLLCs IV–VI [14,15] and (c) fluorinated tolane-type PLLCs VII and
VIII developed by our group [16,17].

Our research group has successfully developed a family of donor-π-acceptor (D-π-
A)-type fluorinated bistolane derivatives IV to VI; however, their synthetic procedures
were tedious and inefficient (Figure 1b) [14,15]. Furthermore, our group has also developed
PLLC molecules VII and VIII (Figure 1c) using fluorinated tolanes as mesogens, which are
easy to synthesize [16,17]. These molecules exhibit a nematic (N) phase with the LC phase
as the only orientational order, and their Cry–N phase transition significantly reduces the
fluorescence quantum yields (ΦPL). Therefore, the combination of higher-order LC phases,
such as smectic (Sm) phases, with the PL properties of the condensed phase can produce
high photoluminescence even in the LC phase.

It has been shown that incorporating a semifluoroalkyl flexible chain unit into a
mesogenic core is an effective molecular design approach to effectively express the Sm LC
phase [18,19]. In fact, our recent study has reported that incorporating a semifluoroalkoxy
fragment into D-π-A-type nonfluorinated tolane exhibits a smectic A (SmA) phase as well
as weak photoluminescence (Figure 2a) [20]. Based on the knowledge of fluorinated PL
molecules in our group, we conceived that a D-π-A-type fluorinated diphenylacetylene
tolane containing a semifluoroalkoxy chain provides efficient PLLC molecules that exhibit
efficient PL in the condensed phase (Figure 2b). In this study, we investigate the photo-
physical and phase transition behavior of two semifluoroalkoxy-containing D-π-A-type
fluorinated tolanes, (1) 1 with a 2,3,5,6-tetrafluorobenzonitrile moiety and (2) 2 with a
2,3,5,6-tetrafluorobenzoate partial structure.
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Figure 2. (a) Chemical structures and representative properties of molecules reported in our previous
study and (b) chemical structures of semifluoroalkoxy-containing D-π-A-type fluorinated tolanes 1
and 2 developed in the present work.

2. Results and Discussion
2.1. Synthesis

Syntheses of semifluoroalkoxy-containing D-π-A type fluorinated tolanes 1 and 2 were
investigated according to the scheme shown in Scheme 1.
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Scheme 1. Synthesis scheme of semifluoroalkoxy-containing D-π-A-type fluorinated dipheny-
lacetylenes 1 and 2.

Syntheses of CN-terminated 1 and CO2Et-terminated 2 were performed using the com-
mon synthetic intermediate 4, which was prepared by a Pd(0)-catalyzed Sonogashira cross-
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coupling reaction according to our previous report [16,20]. The CN-terminated molecules 1a
and 1b were synthesized in 26% and 66% yield, respectively, via an addition–elimination re-
action between pentafluorobenzonitrile and 4-semifluoroalkoxy-substituted phenylethynyl-
lithium, which was readily prepared from 4. The CO2Et-terminated molecules 2a, 2c, and
2d were obtained in 56–67% yield through a Pd(0)-catalyzed Sonogashira cross-coupling
reaction between 4 and ethyl 2,3,5,6-tetrafluoro-4-iodobenzoate. The resulting fluorinated
tolanes were purified by silica gel column chromatography followed by recrystallization.
Nuclear magnetic resonance (NMR) spectroscopic measurements showed that the puri-
ties of the resulting tolanes were suitable for evaluating their photophysical and phase
transition behavior.

2.2. Photophysical Behavior

With the semifluoroalkoxy-containing D-π-A-type fluorinated tolanes 1 and 2 in hand,
we initially evaluated the solution-phase photophysical behavior of the semifluoroalkoxy-
containing D-π-A-type fluorinated tolanes 1 and 2. The solution sample was prepared by
dissolving the crystalline sample with dichloromethane, and its concentration was adjusted
to 1.0 × 10−5 mol L−1 for ultraviolet–visible (UV–vis) light absorption measurements and
1.0 × 10−6 mol L−1 for photoluminescence measurements. Figure 3 shows the UV–vis
absorption and PL spectra of 1 and 2 in a CH2Cl2 solution and the Commission Interna-
tionale de l’Eclailage (CIE) plot to quantitatively assess their PL colors. Photophysical data
obtained are summarized in Table 1.
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Figure 3. (a) UV–vis absorption (concentration: 1.0× 10−5 mol L−1) and (b) PL spectra (concentration:
1.0 × 10−6 mol L−1) of semifluoroalkoxy-containing D-π-A-type fluorinated tolanes 1 and 2. Inset:
Commission Internationale de l’Eclailage plot of their PL colors.

Table 1. Photophysical data of semifluoroalkoxy-containing D-π-A-type fluorinated tolanes 1 and 2
in CH2Cl2 solutions and crystalline states.

CH2Cl2 Solution Crystal

Molecule λabs [nm] 1

(ε [103, L mol–1 cm–1])
λPL [nm] 2

(ΦPL) 3
CIE Coordinate

(x, y)
λPL [nm]
(ΦPL) 3

CIE Coordinate
(x, y)

1a 260 (25.0), 272 (20.0), 341 (36.0) 437 (0.20) (0.155, 0.090) 490 (0.61) 4 (0.193, 0.349)
1b 261 (19.0), 274 (15.9), 351 (34.1) 435 (0.18) (0.155, 0.089) 467 (0.71) 4 (0.163, 0.200)
2a 259 (9.94), 269 (10.8), 324 (30.8) 428 (0.42) (0.164, 0.115) 453 (0.48) 4 (0.160, 0.147)
2c 258 (11.6), 268 (12.0), 325 (31.1) 429 (0.42) (0.163, 0.114) 394, 409 (0.13) 5 (0.169, 0.102)
2d 259 (8.68), 269 (9.61), 325 (28.7) 430 (0.39) (0.164, 0.116) 392, 408sh (0.14) 5 (0.169, 0.076)

1 Concentration: 1.0 × 10−5 mol L−1. 2 Concentration: 1.0 × 10−6 mol L−1. 3 Measured using an integrated
sphere. 4 Excitation wavelength: 310 nm. 5 Excitation wavelength: 350 nm.

Both CN-terminated D-π-A-type fluorinated tolanes (1a and 1b) and CO2Et-terminated
analogues (2a, 2c, and 2d) exhibited two main absorption bands, that is, short- and
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long-wavelength bands below and above 300 nm of the maximum absorption wave-
length (λabs), respectively. The absorption bands in the short wavelength region were
almost the same, regardless of the terminal substituents to which the fluorinated aromatic
rings were attached. In contrast, the λabs of 1a and 1b with a CN group shifted to the
longer wavelength region compared to those of 2a, 2c, and 2d with a CO2Et group ow-
ing to the changes in the energy gaps between the highest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) of 1 with a CN group
and 2 with a CO2Et group (Figures S22–S25). To understand vertical electronic transi-
tions in 1 and 2, theoretical evaluation of 1a and 2a was conducted using time-dependent
density functional theory (TD-DFT) calculations with the M06-2X/6-31+G(d,p) level of
theory. As shown in Figures S22 and S24, the two following allowed transitions were cal-
culated: HOMO–2→ LUMO and HOMO→ LUMO in 1a, and HOMO–1→ LUMO and
HOMO→ LUMO in 2a. HOMO–2 in 1a and HOMO–1 in 2a are the molecular orbitals
localized on the fluorinated aromatic rings, while HOMO and LUMO are the orbitals
covering the entire π-conjugated core. Considering the molecular orbital distributions of 1a
and 2a, the short- and long-wavelength absorption bands originate from the ππ* transitions
involving local excitation and intermolecular charge transfer, respectively.

Next, when a 1.0 × 10−6 mol L−1 CH2Cl2 solution of 1a was irradiated with long-
wavelength light out of the λabs, a single PL band around the PL maximum wavelength
(λPL) of 437 nm was observed emitting blue fluorescence at (x, y) = (0.155, 0.090) CIE
coordinates. The λPL of 1b with a CN group was nearly identical to that of 1a, while 2a
with the CO2Et group exhibited a slight blue-shift (428 nm) of the λPL, in which the CIE
coordinates were (x, y) = (0.164, 0.115). The blue-shift of the λPL is also attributed to the
widening of the HOMO–LUMO energy gap with change from the CN group to the CO2Et
group. It was found that the photophysical behavior of the D-π-A-type fluorinated tolanes
significantly affects only the electron-density distribution on the π-conjugated framework
and not that on the semifluoroalkoxy flexible unit. The ΦPL of the CN-terminated molecules
1a and 1b was observed to be up to 0.20, which was due to quick internal conversion from
the linearly shaped radiative ππ* excited state to the trans-bend-shaped non-radiative πσ*
excited state [21,22]. On the other hand, a slightly better ΦPL (up to 0.42) was observed
for the CO2Et-terminated analogues compared to that of the CN-terminated counterparts,
with suppressed fluorescence self-quenching due to the overlap of absorption and PL
spectra [23].

Moreover, CN-terminated 1 and CO2Et-terminated 2 exhibited PL even in the crys-
talline (Cry) phase. The PL spectra and CIE plot are shown in Figure 4, and the obtained
photophysical data are summarized in Table 1.
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Figure 4. (a) PL spectra of semifluoroalkoxy-containing D-π-A-type fluorinated tolanes 1 and 2 in
the crystalline phase (λex = 300 nm). Inset: Photographs of PL by the tolanes under UV irradiation
(λex = 365 nm). (b) CIE plot of the tolanes calculated from their PL spectra.

Thus, 1a had a single PL band with a λPL around 490 nm and a light-blue PL at
(x, y) = (0.193, 0.349) CIE coordinates with a high PL efficiency (ΦPL = 0.61). Altering
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flexible unit from a nonafluorodecyloxy of 1a to a tridecafluorodecyloxy chain of 1b formed
loose aggregates due to higher fluorine contents, leading to blue PL at (x, y) = (0.163,
0.200) CIE coordinates with a blue-shifted λPL band around 467 nm and a high ΦPL of 0.71.
Considering similar PL spectra in solution, the change in λPL between 1a and 1b seems
to be caused by differences in aggregated structure in the crystalline lattice, supported by
PXRD measurements at 25 ◦C (Figure S21). The ΦPLs of the CN-terminated molecules 1a
and 1b in Cry phase were significantly higher than those of the dilute solution of 1a and 1b
because of the significantly suppressed non-radiative deactivation due to the formation of
intermolecular H···F hydrogen bonds. The CO2Et-terminated molecule 2a exhibited blue
PL at (x, y) = (0.160, 0.147) CIE coordinates with a single PL band around 453 nm of λPL with
a relatively high ΦPL (0.48). On the other hand, 2c and 2d exhibited two PL bands around
392–394 nm and 408–409 nm of λPL to show deep blue PL at (x, y) = (0.169, 0.102) and
(x, y) = (0.169, 0.076) CIE coordinates, respectively, with low PL efficiency. According to the
results of PXRD measurements at 25 ◦C in 2a, 2c, and 2d (Figure S21), the three molecules
showed different diffraction peaks, which suggests that they formed different aggregated
structures in the crystalline phase through a variety of intermolecular interactions. It is
considered that 2a, 2c, and 2d showed different PL behavior due to different aggregate
structures resulting from their various intermolecular interactions. Fluorinated tolanes,
such as 2a, 2c, and 2d, have a sterically bulky CO2Et group compared to the CN units
of 1a and 1b, leading to a significant decrease in their ΦPL due to the formation of loose
aggregates that facilitate non-radioactive deactivation through molecular motion.

2.3. Phase Transition Behavior

We also focused on the phase transition behavior of the semifluoroalkoxy-containing
D-π-A-type fluorinated tolanes 1 and 2 with condensed-phase PL characteristics. Phase
transition behavior of 1 and 2 was evaluated with differential scanning calorimetry (DSC)
and polarized optical microscopy (POM). The phase transition sequences and temperatures
of 1a, 1b, 2a, 2c, and 2d are summarized in Table 2.

Table 2. Phase transition sequences and temperatures during the second heating and cooling pro-
cesses 1.

Molecule Phase Transition Sequence and Temperature [◦C] (Enthalpy [kJ mol−1])

1a Heating Cry 109 (28.6) Iso
Cooling Cry 96 (−28.1) Iso

1b Heating Cry 113 (21.6) Iso
Cooling Cry 106 (−20.7) Iso

2a Heating Cry1 77 (19.3) Cry2 80 (22.4) SmA 94 (6.7) Iso
Cooling Cry1 63 (−21.4) SmA 94 (−6.7) Iso

2c Heating Cry 89 (29.8) SmA 117 (8.2) Iso
Cooling Cry 67 (−27.7) SmA 117 (−8.3) Iso

2d Heating Cry1 45 (5.3) Cry2 101 (38.0) SmA 135 (10.1) Iso
Cooling Cry1 39 (−5.4) Cry2 84 (−35.1) SmA 134 (−10.1) Iso 1

1 Determined by DSC under nitrogen atmosphere (scan rate: 5 ◦C min−1).

Although semifluoroalkoxy-containing D-π-A-type nonfluorinated tolanes were re-
ported to exhibit an SmA LC phase [20], the LC phase disappeared in the case of fluorinated
tolane scaffolds. The phase transition enthalpies between the Cry and isotropic (Iso) phases
of 1a and 1b were very large, which is attributed to the remarkable stabilization of the
Cry phase by the introduction of fluorine atoms on the tolane backbone. In contrast to
CN-terminated 1a and 1b, the CO2Et-terminated 2 exhibited a mesophase between the Cry
and Iso phases (Figure 5).

During the second heating process, 2a with a nonafluorodecyloxy chain (F content
in the flexible chain: 54%) transitioned from Cry to mesophase at 80 ◦C and to Iso phase
at 94 ◦C. The POM measurements revealed that the focal conic fan texture was in the
mesophase; therefore, the observed mesophase was determined to be the SmA phase.
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Furthermore, 2c with a tridecafluorododecyloxy chain (F content in the flexible chain:
59%) also exhibited an SmA phase with a focal conic fan texture at a temperature range
of 89–117 ◦C during the second heating process. Increasing the fluorine atom contents
within the flexible chain structure broadened the LC temperature range. During the heating
and cooling processes, 2d with a heptadecafluorotetradecyloxy chain (F content in the
flexible chain: 62%) also exhibited an SmA phase, and the LC phase was observed to
be in a range of 101–135 ◦C, which was wider than the others. To reliably identify the
SmA phases observed in 2a, 2c, and 2d, temperature-variable powder X-ray diffraction
(VT-PXRD) measurements were performed at the mesophase temperature. In 2a, which
has a short fluoroalkyl moiety, no diffraction peak corresponding to the (001) plane index
was observed (Figure S18a). It is considered that the fluorine atoms in the flexible chain
formed an interdigitate structures, which formed many defects in the layer structure and
reduced the domain size [24,25]. In contrast, 2b and 2c, which has an elongated fluoroalkyl
structure, exhibited diffraction peaks corresponding to the (001) plane at 2θ = 2.46◦ and
2.22◦, respectively (Figure 5d and Figure S18e). Using Bragg’s equation, the interlayer
distances (d-spacing) in 2c and 2d were calculated as 3.59 nm and 3.97 nm, respectively.
Considering the molecular lengths of 2c (3.02 nm) and 2d (3.28 nm) estimated by quantum
chemical calculation (Figures 5e and S26), it is anticipated that the structure in which the
fluoroalkyl moieties are interdigitated and the π-conjugated mesogen is intercalated is the
aggregated structure in the SmA phase (Figure 5e).
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2.4. PL Behavior in the SmA Phase

We evaluated the photophysical behavior of 2a, 2c, and 2d, which have both crystalline-
state PL and LC properties, in the SmA phase (Figure 6, Table 3). Using a fluorescence
spectrophotometer equipped with a hand-made heating unit containing a ceramic heater
and a temperature control device, PL spectra of 2a, 2c, 2d were measured under ther-
mal conditions.
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Figure 6. PL spectra of (a) 2a, (b) 2c, and (c) 2d in Cry and SmA phases. Excitation wavelength:
380 nm for 2a, 362 nm for 2c, and 392 nm for 2d.

Table 3. PL behavior difference between Cry and SmA phases in 2a, 2c, and 2d.

Molecule Phase λPL [nm] IsmA/Icry

2a Cry (25 ◦C) 448
0.22SmA (90 ◦C) 429

2c Cry (25 ◦C) 393
0.32SmA (100 ◦C) 444

2d Cry (25 ◦C) 390
0.20SmA (120 ◦C) 433

Focusing on the λPL in the SmA phase under thermal conditions, as shown in Figure 6
and Table 3, a blue shift of approximately 20 nm was observed for 2a. In contrast, the λPL
bands of 2c and 2d red-shifted by up to 51 nm during the Cry–SmA phase transition, which
is due to the formation of π–π stacking induced by interdigitation of fluoroalkoxy moieties.
Furthermore, the fluorescence intensity of the SmA phase under heating was significantly
decreased compared to that of the Cry phase at 25 ◦C. The ratio of PL intensities in the
SmA and Cry phases, ISmA/ICry, was 0.22 for 2a, 0.32 for 2c, and 0.20 for 2d. This is due
to acceleration of non-radiative deactivation caused by the micro-Brownian motion in the
appearance of the SmA phase.

3. Materials and Methods
3.1. General

Semifluoroalkoxy-substituted fluorinated tolanes, 1 and 2, were synthesized according
to the scheme shown in Figure 3. The reaction progress was confirmed using thin-layer
chromatography (TLC), which was performed on silica gel TLC plates (silica gel 60254,
Merck, Rahway, NJ, USA). The tolanes were purified by column chromatography using
Wakogel® 60N (38–100 mm). Melting and clearing temperatures of the molecules 1 and 2
were determined using DSC. 1H and 13C-NMR spectra for 1 and 2 were recorded using a
Bruker AVANCE III 400 NMR spectrometer (1H: 400 MHz and 13C: 100 MHz) in chloroform-
d (CDCl3), and the chemical shifts were reported in parts per million (ppm) using the
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residual proton in the NMR solvent. 19F-NMR (376 MHz) spectra were obtained using a
Bruker AVANCE III 400 NMR spectrometer in CDCl3, and trichlorofluoromethane (CFCl3,
dF = 0 ppm) or hexafluorobenzene (C6F6, dF = −163 ppm) was used as an internal standard.
Infrared (IR) spectra were recorded using the KBr method with a JASCO FT/IR-4100 type
A spectrometer, and all spectra were reported in wavenumber (cm−1). High-resolution
mass spectrometry (HRMS) was performed on a JEOL JMS-700MS spectrometer using the
fast atom bombardment (FAB) method.

3.2. Synthesis Procedure of 2,3,5,6-Tetrafluoro-4-[2-{4-(7,7,8,8,9,9,10,10,10-
nonafluorodecyloxy)phenyl}ethyn-1-yl]benzonitrile (1a)

In a two-necked round bottomed flask equipped with a Teflon®-coated stirring bar,
4-(7,7,8,8,9,9,10,10,10-nonafluorodecyloxy)phenylacetylene 4a (0.824 g, 2.0 mmol) and
tetrahydrofuran (THF, 20 mL) were mixed. n-BuLi was added dropwise to the solution at
−78 ◦C, and the mixture was continuously stirred at −78 ◦C for 20 min. Then, 2,3,4,5,6-
pentafluorobenzonitrile (0.454 g, 2.4 mmol) was added to the solution, and the reaction
temperature was increased to room temperature (25 ◦C). After this, the solution was stirred
at room temperature for 20 h. After stirring for 20 h, the precipitate was separated by atmo-
spheric filtration, and the filtrate was poured into an aqueous NH4Cl solution (10 mL). The
crude product was extracted using EtOAc (10 mL, three times), and the combined organic
layer was washed with brine (once). Furthermore, the collected organic layer was dried
over anhydrous Na2SO4, which was separated by filtration. The filtrate was evaporated in
vacuo and subjected to silicagel column chromatography (eluent: hexane/EtOAc = 30/1),
followed by recrystallization using CHCl3/hexane (v/v = 2/1), to obtain 1a in 26% yield
(0.320 g, 0.5 mmol) as a white solid.

3.2.1. 2,3,5,6-Tetrafluoro-4-[2-{4-(7,7,8,8,9,9,10,10,10-nonafluorodecyloxy)phenyl}ethyn-1-
yl]benzonitrile (1a)

Yield: 26% (white solid), m.p. = 110 ◦C determined by DSC; 1H-NMR (CDCl3): δ
1.44–1.60 (m, 4H), 1.66 (quin, J = 7.2 Hz, 2H), 1.83 (quin, J = 7.6 Hz, 2H), 2.01–2.16 (m, 2H),
4.01 (t, J = 6.4 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 7.54 (d, J = 8.8 Hz, 2H); 13C-NMR (CDCl3): δ
20.1, 25.7, 28.81, 28.85, 30.7 (t, J = 22.0 Hz), 67.9, 72.9, 92.9 (d, J = 19.8 Hz), 107.5 (dd, J = 6.6,
3.7 Hz), 107.7 (t, J = 3.7 Hz), 109–112 (m, 1C for quaternary carbon of fluorinated benzene),
105–120 (m, 4C for C4F9 moiety), 112.5, 114.8, 134.0, 146.3 (dd, J = 255.9, 16.8 Hz), 147.0
(dd, J = 256.0, 14.6 Hz), 160.9; 19F-NMR (CDCl3, CFCl3): δ −82.33 (t, J = 9.8 Hz, 3F), −115.0
to −115.28 (m, 2F), −124.92 to −125.13 (m, 2F), −126.48 to −126.56 (m, 2F), −133.63 to
−133.79 (m, 2F), −134.57 to −134.73 (m, 2F); IR (KBr) ν 2952, 2861, 2262, 2216, 1646, 1519,
1471, 1332, 1294, 1259, 1201, 1075, 835 cm−1; HRMS (FAB) Calcd for (M+) C25H16F13NO:
593.1024, observed: 593.1024.

3.2.2. 2,3,5,6-Tetrafluoro-4-[2-{4-(5,5,6,6,7,7,8,8,9,9,10,10,10-
tridecafluorodecyloxy)phenyl}ethyn-1-yl]benzonitrile (1b)

Yield: 56% (white solid), m.p. = 71 ◦C determined by DSC; 1H-NMR (CDCl3): δ
1.79–1.97 (m, 4H), 2.09–2.26 (m, 2H), 4.05 (t, J = 6.0 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 7.55 (d,
J = 8.8 Hz, 2H); 13C-NMR (CDCl3): δ 17.3, 28.6, 30.7 (t, J = 22.7 Hz), 67.4, 73.0 (t, J = 4.4 Hz),
93.0 (d, J = 17.6 Hz), 107.5 (d, J = 3.7 Hz, two carbons are overlapped), 109–112 (m, 1C for
quaternary carbon of fluorinated benzene), 105–120 (m, 6C for C6F13 moiety), 112.8, 114.8,
134.1, 146.3 (dd, J = 254.5, 11.8 Hz), 147.0 (dd, J = 260.4, 15.4 Hz), 160.6; 19F-NMR (CDCl3,
C6F6): δ −82.03 (t, J = 9.8 Hz, 3F), −115.66 (quin, J = 17.7 Hz, 2F), −123.0 to −123.3 (m, 2F),
−124.0 to −124.3 (m, 2F), −124.6 to −124.9 (m, 2F), −127.2 to −127.5 (m, 2F), −134.32 to
−134.45 (m, 2F), −135.28 to −135.42 (m, 2F); IR (KBr) ν 2965, 2888, 2217, 1646, 1562, 1519,
1463, 1365, 1332, 1293, 1123, 1076, 985 cm−1; HRMS (FAB) Calcd for (M+) C25H12F17NO:
665.0647, observed: 665.0655.
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3.3. Synthesis Procedure of Ethyl 2,3,5,6-Tetrafluoro-4-[2-{4-(7,7,8,8,9,9,10,10,10-
nonafluorodecyloxy)phenyl}Ethyn-1-yl]benzoate (2a)

In a two-necked round-bottomed flask equipped with a Teflon®-coated stirring bar, 4-
(7,7,8,8,9,9,10,10,10-nonafluorodecyloxy)phenylacetylene 4a (1.050 g, 2.5 mmol), Cl2(PPh3)2Pd(II)
(0.087 g, 0.12 mmol), ethyl 2,3,5,6-tetrafluoro-4-iodobenzoate (1.130 g, 3.3 mmol), and PPh3
(0.033 g, 0.12 mmol) in Et3N (20 mL) were placed. Then, CuI(I) (0.048 g, 0.25 mmol)
was added to the suspended solution. The mixture was heated at 80 ◦C and stirred for
21 h. Then, the precipitate was separated through atmospheric filtration, and the filtrate
was poured into an aqueous NH4Cl solution (10 mL). The crude product was extracted
with EtOAc (10 mL, three times), and the combined organic layer was washed with brine
(once). After this, the collected organic layer was dried over anhydrous Na2SO4, which
was separated by filtration. The filtrate was evaporated in vacuo and subjected to silica-gel
column chromatography (eluent: hexane/EtOAc = 30/1), followed by recrystallization from
CHCl3/MeOH (v/v = 2/1) to obtain the title product 2a in 56% yield (0.900 g, 1.4 mmol) as
a white solid.

3.3.1. Ethyl 2,3,5,6-Tetrafluoro-4-[2-{4-(7,7,8,8,9,9,10,10,10-
nonafluorodecyloxy)phenyl}ethyn-1-yl]benzoate (2a)

Yield: 56% (white solid), m.p. = 71 ◦C determined by DSC; 1H-NMR (CDCl3): δ 1.41
(t, J = 6.8 Hz, 3H), 1.46–1.53 (m, 4H), 1.66 (quin, J = 7.6 Hz, 2H), 1.83 (quin, J = 7.6 Hz,
2H), 2.00–2.16 (m, 2H), 4.00 (t, J = 6.4 Hz, 2H), 4.45 (q, J = 7.2 Hz, 2H), 6.90 (d, J = 8.8 Hz,
2H), 7.53 (d, J = 8.8 Hz, 2H); 13C-NMR (CDCl3): δ 13.9, 20.0 (t, J = 2.9 Hz), 25.7, 28.8, 28.9,
30.7 (t, J = 22.7 Hz), 62.7, 67.8, 72.9 (t, J = 3.7 Hz), 104.4 (t, J = 3.6 Hz), 105–120 (m, 4C for
C4F9 moiety), 107.9 (t, J = 17.6 Hz), 112.0 (t, J = 16.1 Hz), 113.1, 114.6, 133.7, 144.5 (ddt,
J = 255.2, 14.7, 5.1 Hz), 146.5 (ddt, J = 253.8, 13.9, 3.7 Hz), 159.3, 160.5; 19F-NMR (CDCl3,
C6F6): δ −82.3 (t, J = 9.9 Hz, 3F), −115.82 to −116.03 (m, 2F), −125.70 to −125.88 (m, 2F),
−127.28 to −127.46 (m, 2F), −137.44 to −137.59 (m, 2F), −141.45 to −141.62 (m, 2F); IR
(KBr) ν 2948, 2223, 1730, 1476, 1334, 1205, 1132, 984, 837 cm−1; HRMS (FAB) Calcd for (M+)
C27H21F13O3: 640.1283, observed: 640.1275.

3.3.2. Ethyl 2,3,5,6-Tetrafluoro-4-[2-{4-(7,7,8,8,9,9,10,10,11,11,12,12,12-
trideccafluorododecyloxy)phenyl}ethyn-1-yl]benzoate (2c)

Yield: 64% (white solid), m.p. = 89 ◦C determined by DSC; 1H-NMR (CDCl3): δ 1.41 (t,
J = 6.8 Hz, 3H), 1.44–1.57 (m, 4H), 1.65 (quin, J = 7.6 Hz, 2H), 1.82 (quin, J = 7.6 Hz, 2H),
1.99–2.16 (m, 2H), 3.98 (t, J = 6.4 Hz, 2H), 4.45 (q, J = 6.8 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H),
7.51 (d, J = 8.8 Hz, 2H); 13C-NMR (CDCl3): δ 13.9, 20.1 (t, J = 3.6 Hz), 25.7, 28.8, 28.9, 30.8
(t, J = 22.0 Hz), 62.7, 67.8, 73.0 (t, J = 4.4 Hz), 104.4 (t, J = 3.7 Hz), 105–120 (m, 6C for C6F13
moiety), 108.0 (t, J = 17.6 Hz), 112.1 (t, J = 16.2 Hz), 113.2, 114.7, 133.7, 144.6 (ddt, J = 255.9,
14.0, 5.1 Hz), 146.5 (ddt, J = 253.8, 14.6, 3.0 Hz), 159.5, 160.4; 19F-NMR (CDCl3,C6F6): δ
−81.90 (t, J = 9.9 Hz, 3F), −115.32 to −115.58 (m, 2F), −122.78 to −123.07 (m, 2F), −123.74
to −124.03 (m, 2F), −124.44 to −124.67 (m, 2F), −127.08 to −127.26 (m, 2F), −137.28 to
−137.44 (m, 2F), −141.22 to −141.39 (m, 2F); IR (KBr) ν 2947, 2216, 1738, 1475, 1331, 1201,
1141, 987 cm−1; HRMS (FAB) Calcd for (M+) C29H21F17O3: 740.1219, observed: 740.1223.

3.3.3. Ethyl 2,3,5,6-Tetrafluoro-4-[2-{4-(7,7,8,8,9,9,10,10,11,11,12,12,13,13,14,14,14-
heptadeccafluorotetradecyloxy)phenyl}ethyn-1-yl]benzoate (2d)

Yield: 67% (white solid), m.p. = 108 ◦C determined by DSC; 1H-NMR (CDCl3): δ 1.41
(t, J = 6.8 Hz, 3H), 1.44–1.58 (m, 4H), 1.65 (quin, J = 7.6 Hz, 2H), 1.82 (quin, J = 7.6 Hz, 2H),
1.98–2.15 (m, 2H), 3.98 (t, J = 6.4 Hz, 2H), 4.45 (q, J = 7.2 Hz, 2H), 6.88 (d, J = 8.8 Hz, 2H),
7.52 (d, J = 8.8 Hz, 2H); 13C-NMR (CDCl3): δ 14.0, 20.1 (t, J = 2.9 Hz), 25.7, 28.8, 28.9, 30.8
(t, J = 22.0 Hz), 62.7, 67.8, 73.0 (t, J = 3.7 Hz), 104.4 (t, J = 3.7 Hz), 105–120 (m, 8C for C8F17
moiety), 108.0 (t, J = 17.6 Hz), 112.1 (t, J = 16.2 Hz), 113.2, 114.6, 133.7, 144.5 (ddt, J = 256.8,
14.7, 5.1 Hz), 146.5 (ddt, J = 253.8, 14.7, 4.4 Hz), 159.5, 160.4; 19F-NMR (CDCl3, CFCl3): δ
−81.05 (t, J = 9.4 Hz, 3F), −114.42 to −114.76 (m, 2F), −121.9 (brs, 2F), −122.1 (brs, 2F),
−123.7 (brs, 2F), −126.3 (brs, 2F), −136.35 to −136.58 (m, 2F), −140.34 to −140.54 (m, 2F);
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IR (KBr) ν 2947, 2216, 1738, 1475, 1331, 1202, 1147, 833 cm−1; HRMS (FAB) Calcd for (M+)
C31H21F21O3: 840.1155, observed: 840.1162.

3.4. Theoretical Assessment

All DFT calculations were performed using the Gaussian 16 program set [26] with the
M06-2X hybrid functional [27] and 6-31+G(d,p) (for all atoms) basis set. A conductor-like
polarizable continuum model (CPCM) [28] was used for CH2Cl2. Theoretical vertical
transitions were also calculated by TD-DFT at the same theory level using the same solva-
tion model.

3.5. Photophysical Behavior

UV–vis absorption spectra were recorded using a JASCO V-750 absorption spectrome-
ter (JASCO, Tokyo, Japan). The PL spectra of the solutions were measured using an FP-6600
fluorescence spectrometer (JASCO, Tokyo, Japan). The PL quantum yields were measured
using a Quantaurus-QY C11347-01 instrument (Hamamatsu Photonics, Hamamatsu, Japan).
The PL lifetime was measured using a Quantaurus-Tau fluorescence lifetime spectrometer
(C11367-34, Hamamatsu Photonics, Japan).

3.6. Phase Transition Behavior

The phase transition behaviors were observed by POM using an Olympus BX53
mi-croscope (Tokyo, Japan) equipped with a cooling and heating stage (10002L, Linkam
Sci-entific Instruments, Surrey, UK). Thermodynamic characterization was performed using
DSC (DSC-60 Plus, Shimadzu, Kyoto, Japan) at heating and cooling rates of 5.0 ◦C min−1

under an N2 atmosphere. Liquid crystalline structures were evaluated by an FR-E X-ray
diffractometer attached with an R-axis IV two-dimensional (2D) detector (Rigaku, Tokyo,
Japan). 0.3 mm collimated CuKa radiation (λ = 1.54187 Å) was used as an X-ray beam, and
the camera length was set at 300 mm. The powder sample was loaded into a thin wall glass
capillary tube for XRD analysis (ϕ 1.0–2.5 mm, Hilgenberg GmbH), and the annealed up
to isotropic temperature under vacuum. The glass capillary was set onto a ceramic heater
attached to the FR-E sample holder. Exposure time of the X-ray beam was 5 min.

4. Conclusions

We designed PLLCs, which exhibited both aggregation-state PL and SmA-type LC
properties, and developed two types of semifluoroalkoxy-containing D-π-A-type fluori-
nated tolanes 1 with a tetrafluorobenzonitrile and 2 with a tetrafluorobenzoate moiety.
CN-terminated 1 exhibited blue photoluminescence with a low PL quantum yield (ΦPL; up
to 0.20) in a dilute solution phase; however, replacing the CN substituent with an CO2Et
group increased the ΦPL to up to 0.42. In contrast, CN-terminated 1 exhibited intense light-
blue PL with a high ΦPL of up to 0.71 in the crystalline phase, whereas CO2Et-terminated 2
exhibited blue PL with lower PL efficiency (ΦPL = up to 0.48). In the phase transition char-
acteristics, CN-terminated 1 did not exhibit any LC behavior upon the heating and cooling
processes owing to the formation of tight molecular aggregates through H···F hydrogen
bonds. Therefore, CO2Et-terminated 2 exhibited an enantiotropic SmA LC phase. Among
2a, 2c, and 2d, the LC temperature range increased with increasing fluorine atom contents
in the flexible chain. Using 2a, 2c, and 2d, which have both SmA LC and aggregation
state-PL characteristics, we investigated the PL behavior in the SmA phase. As a result,
during the Cry–SmA phase transition, a significant decrease in fluorescence intensity was
observed, whereas the PL color was altered during the phase transition. The molecular de-
sign and PLLC molecules discussed in this study provide novel temperature-dependent PL
materials, which would become highly efficient thermal-stimulus responsive luminescent
materials in the future.
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