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Abstract: In the present work, direct incorporation of bioactive compounds onto the surface and
interlayer of nanoclays before their incorporation into the final polymeric film was conducted, based
on a green methodology developed by our group that is compatible with food packaging. This
will lead to the higher thermal stability and the significant reduction of the loss of activity of the
active ingredients during packaging configuration. On this basis, the essential oil (EO) components
carvacrol (C), thymol (T) as well as olive leaf extract (OLE), which is used for the first time, were
incorporated onto organo-modified montmorillonite (O) or inorganic bentonite (B) through the
evaporation/adsorption method. The prepared bioactive nanocarriers were further mixed with
low-density polyethylene (LDPE), via melt compounding, in order to prepare films for potential
use as fresh fruit and vegetable packaging material. Characterization of the bioactive nanocarriers
and films were performed through XRD, TGA, tensile, antimicrobial and antioxidant tests. Films
with organically modified montmorillonite loaded with carvacrol (OC), thymol (OT) and olive leaf
extract (OOLE) at 5% wt. showed better results in terms of mechanical properties. The films with
polyethylene and organically modified montmorillonite loaded with carvacrol or thymol at 20% wt.
(PE_OC20 and PE_OT20), as well as with olive leaf extract at 5 or 10 %wt., clay:bioactive substance
ratio 1:0.5 and 10% compatibilizer (PE_OOLE5_MA10 and PE_OOLE10_MA10) exhibited the highest
antioxidant activity. The resulting films displayed outstanding antimicrobial properties against
Gram-negative Escherichia coli (E. coli) with the best results appearing in the films with 10% OC
and OT.

Keywords: bioactive compounds; carvacrol; thymol; olive leaf extract; clay; low-density polyethylene;
antioxidant activity; antimicrobial activity

1. Introduction

The food industry is a very dynamic sector that is consistently changing, as motivated
by consumers’ preferences and health anxieties. Packaging is vital, since it ensures safe
transportation and storage of food and protects it from contamination, spills and atmo-
spheric conditions [1,2]. The increasing world population and globalization have led to
increasing demands in today’s society for novel food packaging solutions which may inter-
act with the food product providing enhanced sensory and/or safety properties [3]. Active
packaging, intelligent packaging and bioactive packaging constitute the major innovations
in the field of packaging technology, and their action concerns food product shelf life
extension, quality enhancement and freshness regulation [4].

Bioactive compounds and their composites are widely applied in food packaging [5,6].
Their incorporation into the packaging wall can impart antioxidant and antimicrobial
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properties leading to so-called bioactive food packaging, the main characteristic of which
is the controlled release of the bioactive compounds during food storage prior to its con-
sumption [7,8]. The bioactive packaging technology is applied through (i) the employment
of biodegradable packaging materials for functional or bioactive components’ release (inte-
gration and controlled release) [9–11], (ii) the bioactive ingredients’ encapsulation into the
food products or packaging materials (micro- and nanoencapsulation) [12–14] and (iii) the
introduction of packaging materials with the ability to transform some food components
through enzyme activity (enzymatic packaging) [15,16].

During recent years, food packaging research has been focused on an innovative
trend related to the combination of natural bioactive compounds with nanoparticles. The
most common bioactive compounds used are essential oils (EO). Carvacrol (5-isopropyl-
2-methylphenol), together with its isomer thymol (2-isopropyl-5-methylphenol), are nat-
ural phenolic compounds and major components of oregano and thyme essential oils,
responsible for their biological activity. They have antibacterial, antifungal and antiseptic
activities [17,18] and are used as food preservatives. A wide range of EOs have been
used as additives directly in food or edible/biodegradable food packaging due to their
high antibacterial and antioxidant effects. This may lead to the enhancement of shelf life
and quality characteristics of food, as well as the protection of consumers from oxidative
and bacterial deterioration effects. For the incorporation of additives, such as EOs in a
polymer matrix, the melt mixing technique in screw extruders is usually applied in industry.
However, their volatile nature is an inhibitory factor for their use in such processes because
this would lead to their rapid loss via evaporation [19,20].

On this basis, nanoencapsulation of bioactive compounds has been proposed as a
promising technique in order to improve stability and to solve the drawbacks of their
direct embedding in polymers [21]. Therefore, the adsorption of EOs onto an inorganic
porous material could provide the required controlled release and protection in the polymer
process [22,23]. Novel bio-nanocomposites, such as nanoclay supporting active molecules
may be integrated into the packaging materials, providing an emerging technique to
produce new packaging with various functionalities. Polymer–clay nanocomposites are
an alternative to conventional polymers due to their nanoscale dispersion with enhanced
mechanical, thermal and barrier properties of the polymer films [24,25]. The mixtures
of natural compounds with antimicrobial and antioxidant properties with polymers to
improve functional properties and extend food shelf life show an increasing interest by
the food sector [26–28]. Clay minerals have been extensively used as carriers of bioactive
compounds for a variety of applications, including food packaging and in agricultural
fields. Montmorillonite (Mt) is the type of clay most extensively investigated for such
applications. It is a hydrated alumina-silicate multilayer clay, which comprises a sandwich
structure of an octahedral aluminum hydroxide layer shared between two tetrahedral
silica layers. The exchangeable Na+ and Ca++ cations [29] balance the surface negative
charges. Mt can be easily organo-modified with the cation exchange of various surfactants.
The high aspect ratio of Mt platelets, however, generates a significant enhancement in
polymer nanocomposite properties at low loadings when they are highly dispersed. For the
improvement of the dispersion of Mt particles into the polymer matrices, a compatibilizer
is often required [30]. Moreover, as most of the polymers are organophilic, organically
modified layered silicates are employed to obtain a better affinity between the filler and
the matrix.

Significant research has been conducted towards the incorporation of essential oil
constituents thymol and carvacrol, loaded in nanocomposites, into polymers to enhance
antimicrobial and antioxidant functionality [31–33]. In the literature, the incorporation
of EO on inorganic nanomaterials is reported with the use of encapsulation [34,35], im-
pregnation [23,36] or adsorption with the use of organic solvents, such as acetone [37] or
heptane [38], which may lead to possible residues of solvents in the final products that
are present throughout the packaging material. In our lab, a green methodology was
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recently developed for the direct incorporation of EO components onto clays through the
evaporation/adsorption method, without the use of organic solvents.

The aim of this work is the use of the unmodified montmorillonite (bentonite) as
well as the organo-modified montmorillonite (O) as carriers of active volatile compounds,
carvacrol (C) and thymol (T), as well as olive leaf extract (OLE), to produce active clay
nanoparticles through a green methodology. Specifically, the incorporation of carvacrol and
thymol into the phyllosilicate clays was performed through the adsorption method, without
the use of any solvent, whereas for the incorporation of the olive leaf extract, which is used
for the first time, the solution method was applied. The bioactive compounds loaded into
nanoclay were subsequently incorporated into LDPE, leading to the production of films
with controlled antimicrobial and antioxidant performance, in terms of food quality. The
prepared bioactive nanocarriers and the bioactive nanocomposite films were characterized
via XRD, TGA, tensile, antioxidant and antimicrobial tests.

To the best of our knowledge, little research has directly addressed to the incorpo-
ration of organo-modified montmorillonite or inorganic bentonite loaded with thymol
and carvacrol in LDPE-based films for the preparation of active nanocomposites with
antimicrobial and antioxidant properties [25,39–41], whereas olive leaf extract is reported
for the first time. The present work could provide substantial knowledge and fill a gap in
the preparation of novel nanocomposite films with antibacterial and antioxidant properties
which would be potentially used as active food packaging materials.

2. Results
2.1. Characterization of the Prepared Bioactive Nanocarriers

As it was mentioned in the Introduction, the main aim of this study is the development
of flexible films with antioxidant and antimicrobial properties for food packaging appli-
cation. On this basis, the adsorption of bioactive compounds to the interlayer/surface of
the clays was initially conducted to maximize the incorporation degree and the controlled
release of bioactive compounds. Thus, the first step was the adsorption of C, T and OLE
onto O and B. The clay:bioactive compound ratios (r) examined in the present work were
1:0.01, 1:0.1, 1:0.5, 1:0.7, 1:0.8, 1:0.9 and 1:1, as shown in Table 1. The ratio r varied depending
on the clay used and the bioactive compound loaded in each clay.

Table 1. XRD results and thermal properties of neat clay and bioactive nanocarriers.

Material’s Code
Name

Clay:Bioactive
Substance Ratio

(r)
2θ (o) d001 (Å)

TGA Results

T20 (◦C)
Bioactive
Substance

Content (% wt.) 2

O 3.54 25 362 -
O/C hybrids -

OC1 1:0.01 3.44 25.7 - -
OC10 1:0.1 2.58 34.2 - -
OC50 1:0.5 2.40 36.8 297 14
OC70 1:0.7 2.40 36.8 - -
OC80 1:0.8 2.48 35.6 280 24
OC90 1:0.9 2.40 36.8 244 27
OC100 1:1 2.37 37.3 240 29

O/T hybrids
OT1 1:0.01 3.43 25.8 - -
OT10 1:0.1 2.65 33.3 - -
OT50 1:0.5 2.40 36.8 238 19
OT70 1:0.7 2.43 36.4 - -
OT80 1:0.8 2.52 35.1 288 23
OT90 1:0.9 2.40 36.8 203 25
OT100 1:1 2.41 36.7 202 26
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Table 1. Cont.

Material’s Code
Name

Clay:Bioactive
Substance Ratio

(r)
2θ (o) d001 (Å)

TGA Results

T20 (◦C)
Bioactive
Substance

Content (% wt.) 2

O/OLE hybrids
OOLE10 1:0.1 3.35 26.4 349 4
OOLE50 1:0.5 n.d. n.d. 297 9
B 6.80 13 n.d.1 -

B/C hybrids
BC50 1:0.5 7.20 12.3 223 15
BC70 1:0.7 7.28 12.1 - -
BC90 1:0.9 7.34 12 198 17

B/T hybrids
BT50 1:0.5 7.10 12.5 331 13
BT70 1:0.7 7.20 12.3 - -
BT90 1:0.9 7.25 12.2 153 20

B/OLE hybrids
BOLE10 1:0.1 6.40 13.8 n.d.1 3
BOLE50 1:0.5 n.d. n.d. 346 18

1 n.d.: not detected; 2 calculated from TGA.

2.1.1. XRD Results

Figure 1 shows the XRD patterns of all the prepared samples, the organically modified
montmorillonite loaded with carvacrol (OC) (Figure 1a), thymol (OT) (Figure 1b) and OLE
(OOLE) (Figure 1d) and bentonite loaded with carvacrol (BC), thymol (BT) (Figure 1c) and
OLE (BOLE) (Figure 1d). The plots of the neat nanoclays are also reported for comparison
reasons. The d001 values for all bioactive nanocarriers were calculated and are presented
in Table 1. The XRD pattern of the organo-modified montmorillonite (O) indicated a
diffraction peak at 2θ of about 3.54◦, corresponding to d001 of 25.0 Å, characteristic of
montmorillonite clay modified with a dialkyl group [42]. As shown from the XRD patterns
of Figure 1a, the peak of the organically modified clay (O) at 3.54◦ shifted to lower 2θ values,
between 2.37 and 2.65◦, after the incorporation of the bioactive compounds, carvacrol (C)
or thymol (T) from r = 1:0.1 to 1:1. The 001 reflections (Figure 1) and the calculated d001
values (Table 1) of the OC and OT nanocomposites showed an obvious increase in the basal
spacing after C or T addition in comparison with the neat O sample. More specifically,
the d001 spacing was 25 Å for the neat O sample, whereas when carvacrol was added the
basal spacing, it was found to range from 25.7 Å for r = 1:0.01 of carvacrol, to 37.3 Å for
r = 1:1 of carvacrol. In the case of OT nanocomposites, the addition of thymol also led to an
increase in the basal spacing from 25.8 Å for r = 1:0.01, to 36.7 Å for r = 1:1. In general, it
was observed that as the percentage of the bioactive compound in the nanocarrier increases,
the distance d between the clay sheets widens. The shift of the peak to the left and at
lower 2θ degrees confirms the incorporation of the bioactive compounds in the nanocarrier.
The increase in the distance d between the clay sheets indicates the encapsulation of the
bioactive compound molecules between the clay lamellae.

Furthermore, from the results of Table 1, it is obvious that there was no considerable
change in the interplanar d-spacing of the bioactive nanocarriers from r = 1:0.5 to r = 1:1 for
both carvacrol and thymol, indicating a probable bioactive compound saturation between
clay lamellae at these contents.
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Figure 1. XRD patterns of bioactive nanocarriers: (a) carvacrol-loaded organically modified mont-
morillonite (OC), (b) thymol-loaded organically modified montmorillonite (OT), (c) carvacrol- and
thymol-loaded bentonite (BC, BT) and (d) olive leaf extract-loaded organically modified montmoril-
lonite (OOLE) and bentonite (BOLE).

In the case of bentonite, the characteristic reflection 001 occurs at 2θ = 6.82◦. However,
with the adsorption of the bioactive compounds, as well as the increase in their content in
the different samples, there is a shift of the peak to higher 2θ values (7.10–7.34◦) while its
intensity weakens, due to the loss of adsorbed water. The above result is an indication that
the bioactive compounds do not enter the interlayer region of the bentonite sheets but are
mainly retained on the outer surface of the clay particles. The 001 reflections (Figure 1) and
the calculated d001 values (Table 1) of the BC and BT nanocomposites showed a decrease
in the basal spacing after C or T addition in comparison with the neat bentonite sample.
Specifically, the d001 spacing was 13 Å for neat bentonite, whereas the addition of carvacrol
led to values from 12.3 to 12.0 Å for r = 1:0.5 to r = 1:0.9, and the addition of thymol gave
values from 12.5 to 12.2 for r = 1:0.5 to r = 1:0.9. Therefore, bioactive compounds’ adsorption
onto the bentonite substrate did not increase the basal spacing, indicating the adsorption of
C and T on the surface and not in the interlayer of the clay nanocarrier.

Concerning the nanocarriers where olive leaf extract was embedded, regardless of the
type of carrier (organically modified or inorganic), in a small proportion the peak position
corresponded to a small increase in the distance d001. With the increase in the ratio, the 001
reflection of the nanocarriers did not occur, as shown in Figure 1d. This result is indicative
of exfoliated clay structure.

Consequently, the bioactive compounds’ adsorption in the bentonite nanocarrier did
not increase the basal spacing of bentonite layers, indicating that the adsorption of C, T and
OLE took place at different surface sites. On the other hand, the adsorption of bioactive
compounds onto the O carrier led to a homogenous opening of the clay layers and the
adsorption of C, T and OLE in the interlayer space.

Moreover, the BET specific surface area of inorganic bentonite is 59 m2/g, whereas
of the organo-modified montmorillonite it is 194 m2/g [43]. The higher surface area of
organically modified montmorillonite compared to bentonite is an indicative factor for the
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lower adsorption of bioactive compounds onto the inorganic bentonite in comparison to
the organo-modified montmorillonite.

2.1.2. TGA Results

Additionally, the clays loaded with the bioactive compounds prepared in the present
work were further analyzed through thermogravimetric analysis (TGA). The study of
thermal analysis of bioactive nanocarriers is very important as it will provide insights into
how they behave as heat flows. The data from thermal stability analysis are presented in
Table 1, while TGA profiles are graphically presented in Figure 2.
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bentonite (BC) (e) thymol-loaded bentonite (BT) and (f) olive leaf extract-loaded bentonite (BOLE).

Among the nanocarriers with incorporated C and T, those with r = 1:0.5 and above
were chosen to be studied, whereas the ratios r = 1:0.1 and 1:0.5 were studied in the case
of OLE. The decomposition temperatures (T20) reported in Table 1 include the 20% mass
loss temperature. The bioactive substance content (% wt.) on the nanocarrier has been
calculated from TGA graphs. Regarding the thermal stability of the nanocarriers, TGA
measurements confirm the protective effect of the adsorption of the bioactive substance
within the clay. The studied C and T nanocarriers with O indicate a two-step decomposition
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temperature. The first decomposition temperature, above 100 ◦C, corresponds to the release
of C or T molecules adsorbed in the O interlayer space, and the second decomposition
temperature to the decomposition of the organic modifier of the O carrier. The adsorption of
the bioactive substance, (C) or (T), on the organically modified clay (O) results in an increase
in its complete loss temperature by 37–50 ◦C compared to the pure bioactive substance. In
the case of carvacrol and thymol nanocarriers with bentonite, one decomposition step was
observed at ~150 ◦C, which corresponds to the decomposition of the bioactive compounds.
The total bioactive substance content in the clays as determined by TGA showed that the
bioactive substances’ concentration varied at 14–29% wt. for C, 19–26% wt. for T and
4–9% wt. in the case of OLE when organically modified montmorillonite was used as
nanocarrier. In the case of B, the percentages were lower in most cases, except for BOLE50,
which showed 18% incorporation of OLE into the B. It is evident from the results that
encapsulation in O is beneficial for T or C while encapsulation in B is beneficial for OLE.
This behavior is owed to the fact that the adsorption process of thymol and carvacrol
molecules takes place on the external surface of bentonite by hydrogen bonds between
thymol or carvacrol OH groups and OH groups of bentonite that exist on the surface.
However, in the case of organo-modified Mt, the adsorption takes place not only on the
external surface but mainly in the interlayer space due to the organophilic environment
generated by the presence of surfactant compounds. The opposite behavior of olive leaf
extract (higher adsorption on inorganic bentonite) is due to the hydrophilic nature of OLE.

The contents indicated that >50% of the initial bioactive substance content has been
incorporated into the clays. The incorporation of carvacrol and thymol into nanoclays
showed a significant enhancement in thermal stability. The results are in accordance with
the results reported by Krepker et al. [44] showing an increase at the onset temperature
by ~40 ◦C and the maximal weight loss rate by 55 ◦C, which indicates that HNTs entrap
and protect the volatile EOs. Krepker et al. [41,44] also showed that the entrapment of
carvacrol within HNTs was crucial to achieve increased EO content in LDPE films and high
antimicrobial activity. The BET surface area of HNTs, which is 117 m2/g, is higher than the
BET surface area of bentonite, 59 m2/g, and lower than that of O at 194 m2/g. HNTs have
a hollow structure with hollow cylinders of different diameters and lengths, which renders
them a good option to be used as carriers of various chemical substances or additives such
as EO components. The clay surface of HNTs consists of silanols and aluminum groups
that may interact with other polar groups. Moreover, the large lumen galleries of HNT
occupied by air can be loaded with additives. On the other hand, O is characterized by a
laminar morphology, with platelets around 1 nm in thickness. The main reactive sites of O
are the hydroxyl groups which may promote interactions among the surface of O and other
molecules, leading to the intercalation with bioactive molecules in the interlayer space [45].

The results derived from the TGA are in accordance with XRD results where increased
d-spacing was observed indicating that the C or T molecules were released from the
interlayer space of O. Moreover, in the case of B bioactive nanocarriers, lower d-spacing
was obtained, enhancing the conclusion that C and T molecules were adsorbed on the
external surface of B particles and were released at high temperatures above 220 ◦C.

2.1.3. Antioxidant Activity (AOA)

For the antioxidant activity, among the produced nanocarriers with adsorbed carvacrol
(C) and thymol (T), those with r = 1:0.5 and above were chosen to be studied. The results of
the antioxidant activity of the nanocarriers are presented in Figure 3. The nanocarriers with
the highest adsorption percentages show higher antioxidant activity as they have the lowest
IC50 value. Among the nanocarriers with olive leaf extract (OLE), those with the ratios
r = 1:0.1 and 1:0.5 were studied. With the incorporation of C and T in the nanocarriers, their
antioxidant activity increased significantly, especially with the increase in the adsorption
percentage of the bioactive compounds, compared to that of the nanocarrier without the
bioactive compound. Analytically, the organically modified clay (O) with T showed slightly
better results compared to the samples with C. This behavior may be attributed to the
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higher steric hindrance of the phenolic group in thymol, due to the different position of
the hydroxyl group on the phenol ring than in carvacrol, which has a significant effect
on the antioxidant activity of phenolic compounds [46]. Moreover, when the olive leaf
extract was used at a ratio of r = 1:0.5 and in combination with the organically modified
clay (OOLE50), a slightly higher antioxidant activity was obtained compared to the OC100
sample with r = 1:1, and activity was slightly lower compared to the sample OT100 at
r = 1:1. In bentonite (B) the behavior of the two compounds is reversed. This may be owed
to the few hydrogen bonds present due to the lower number of hydroxyl groups that were
available only on the surface of bentonite and not in the interlayer space, as described
earlier. Moreover, BOLE10 showed a very small increase in antioxidant activity compared
to the activity of pure bentonite (B).
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2.1.4. Antimicrobial Activity

The antimicrobial activity of bioactive nanocarriers against Gram-negative E.coli was
investigated. Among the nanocarriers prepared, those with the highest ratio in carvacrol
and thymol were selected to be tested for their antimicrobial activity. Consequently, organi-
cally modified clay nanocarriers loaded with carvacrol and thymol at the ratios r = 1:0.8,
1:0.9 and 1:1 and bentonite nanocarriers loaded with carvacrol or thymol at a ratio of
r = 1:0.9 were tested.

From the bacterial growth curves of Figure 4, we may observe the lag phase, during
which no cell growth occurs, and the exponential growth phase where cells start to divide
regularly by binary fission and grow by geometric progression. All nanocarriers of organi-
cally modified clay with theoretical percentages of carvacrol and thymol at ratios r = 1:0.8,
1:0.9 and 1:1 showed complete inhibition of E. coli bacterial growth, as shown in the results
of Figure 4a,b. In the case of the bentonite nanocarrier, the growth of E. coli was inhibited
by carvacrol and thymol at a ratio of r = 1:0.9 (Figure 4c,d). The bioactive nanocarriers
with OLE (Figure 4e) delayed the lag phase and lowered the growth rate and final cell
concentration of the microorganism.

The novel materials consisting of adsorbed bioactive compounds onto clay minerals
that are presented in this work may control microbial contamination through the reduction
of cells’ growth rates and maximum population. Moreover, they lead to the extension of
the lag period of the target microorganism, aiming to prolong the product shelf life and
maintain its safety [47,48].
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Figure 4. Antimicrobial activity of bioactive nanocarriers: (a) carvacrol-loaded organically modified
montmorillonite (OC), (b) thymol-loaded organically modified montmorillonite (OT), (c) carvacrol-
loaded bentonite (BC), (d) thymol-loaded bentonite (BT) and (e) olive leaf extract-loaded organically
modified montmorillonite (OOLE) and bentonite (BOLE).

2.2. Characterization of LDPE Films Loaded with Bioactive Nanocarriers

The bioactive nanocarriers prepared in the present work were dispersed into the LDPE
matrix using a mini twin screw extruder to produce masterbatches formed subsequently
in films, as described in Section 3. The bioactive nanocarriers chosen to be used were
organically modified clay or bentonite with the highest theoretical amount of bioactive
substances, carvacrol and thymol (100% theoretical adsorption of bioactive substances on
the clay for 96 h). Table 2 presents all the blends’ compositions used for film preparation of
LDPE with O or B loaded with the bioactive compounds C, T and OLE. Comparison was
made by mixing 5%, 10% and 20% wt. bioactive-O as well as 5% and 10% wt. bioactive-B in
LDPE. Films with the use of OLE as bioactive component were obtained by mixing 5% and
10% wt. of bioactive nanocarriers in LDPE. Furthermore, film with assigned name PE_T10
was prepared via direct mixing of thymol (without nanoencapsulation) with LDPE using
the mini twin extruder. This sample was used as a control for comparison reasons with the
film PE_OT10, which contains an equal amount of thymol encapsulated in the nanocarriers.
In the case of films with bentonite and/or OLE, PE-g-MA was used as compatibilizer
during blend formation to obtain homogenous films.
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Table 2. Composition of blends for LDPE film preparation.

Film’s Code Name Blends
Clay:Bioactive

Substance Ratio
(r)

Composition
(% wt.)

PE_O5 LDPE/O - 95/5
PE_O10 LDPE/O - 90/10
PE_O20 LDPE/O - 80/20
PE_OC5 LDPE/OC 1:1 95/5
PE_OC10 LDPE/OC 1:1 90/10
PE_OC20 LDPE/OC 1:1 80/20
PE_OT5 LDPE/OT 1:1 95/5

PE_OT10 LDPE/OT 1:1 90/10
PE_T10 LDPE/T - 90/10

PE_OT20 LDPE/OT 1:1 80/20
PE_OOLE5_MA5 LDPE/OOLE/PE-g-MA 1:0.1 90/5/5
PE_OOLE5_MA10 LDPE/OOLE/PE-g-MA 1:0.5 85/5/10
PE_OOLE10_MA5 LDPE/OOLE/PE-g-MA 1:0.1 85/10/5

PE_OOLE10_MA10 LDPE/OOLE/PE-g-MA 1:0.5 80/10/10
PE_BC5_MA10 LDPE/BC/PE-g-MA 1:0.9 85/5/10

PE_BC10_MA10 LDPE/BC/PE-g-MA 1:0.9 80/10/10
PE_BT5_MA10 LDPE/BT/PE-g-MA 1:0.9 85/5/10
PE_BT10_MA10 LDPE/BT/PE-g-MA 1:0.9 80/10/10
PE_BOLE5_MA5 LDPE/BOLE/PE-g-MA 1:0.1 90/5/5

PE_BOLE10_MA5 LDPE/BOLE/PE-g-MA 1:0.1 85/10/5

2.2.1. XRD Results

The XRD results of all the prepared films are presented in Figure S1. It may be seen
that the XRD pattern of LDPE with O indicated a diffraction peak at 2θ of about 2.65◦,
which shifted to lower 2θ values, between 2.36 and 2.48◦, after the incorporation of the
bioactive compounds C and T, and to 2.57–2.73◦ after the incorporation of OLE.

In the case of B, the characteristic reflection 001 occurs at 2θ = 6.82◦, as shown from the
graphs of LDPE/BOLE films of Figure S1d, and the intensity is weakened. The results agree
with the XRD graphs of Figure 2, showing that in the case of films with O, the incorporation
of the bioactive compounds takes place between the clay lamellae, whereas in the case of
films with B and OLE the bioactive compounds do not enter the interlayer region of the B
sheets but are mainly retained on the outer surface of the clay particles.

2.2.2. TGA Results

LDPE films with incorporated bioactive nanocarriers were characterized by TGA
measurements. Diagrams and results are presented in Figure S2 and Table S1, respectively.
Bioactive substance content in the films after the thermoforming procedure was calculated
comparing the TGA curves of the films with and without bioactive substances.

TGA analysis revealed that 0.2–0.3% wt. of carvacrol and thymol remained in the films
with 5% OC or OT, while an increase in carvacrol or thymol content was observed at the
films incorporated with 10% OC or OT (0.7% wt. carvacrol and 1.2% wt. thymol). Films
incorporated with 20% OC or OT presented higher amounts of bioactive substances, 1.6%
wt. and 2.3% wt., respectively, after thermoprocessing. Thus, the increase in the bioactive
nanocarriers leads to an increase in the final amount of carvacrol or thymol in the films.
Films incorporated with 10% wt. OOLE at a ratio of r = 1:0.5 presented equal final OLE
content after thermoprocessing (1.1% wt.). According to the TGA measurements, 0.9% wt.
OLE remained in the films with bentonite initially loaded with 10% wt. BOLE (r = 1:0.1).

To provide evidence that the nanoencapsulation process was beneficial for the pro-
tection of the bioactive substances during the thermoforming procedure, films with an
equal initial amount of thymol as the sample PE_OT10 (i.e., 10% wt.) were also produced
via the direct mixing of thymol with LDPE and clay (without nanoencapsulation sample
PE_T10). TGA measurements revealed that thymol content in the produced film was 0.1%
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wt. compared to the respective 1.2% wt. that was found in the films after encapsulation.
Similar results were reported by Shemesh et al. [40], who found that less than half of
the initial carvacrol content remained in the film after the thermoforming procedure. It
is evident from the results, that although loss of bioactive substances occurs during the
thermoforming process, the nanoencapsulation procedure is beneficial for the protection of
the heat-sensitive bioactive substances.

2.2.3. Mechanical Properties of Films

Mechanical properties provide indispensable information of films’ stiffness, strength
and elongation for practical applications [49]. The results of Young’s Modulus (E), ulti-
mate strength (σuts) and elongation at break (εb) obtained for all films are presented in
Figure 5a–c, respectively. As shown in Figure 5a, an increase of Young’s modulus values is
observed when neat O (5 and 10% wt.) was added to LDPE, compared with unreinforced
LDPE films. However, the incorporation of neat O at higher loadings (20% wt.) did not
result in any stiffening of neat LDPE films. The tensile strength of the prepared films is
only increased after the addition of 10% wt. neat O (Figure 5b), while the strain at break
of LDPE films with O generally decreases with increasing amounts of clay (Figure 5c).
Maximum reinforcement was achieved after the addition of neat 10% wt. clays, and this
behavior can be attributed to the stiffening/strengthening effect of the clay. The results
obtained after the addition of 10 and 20% wt. clay in terms of elongation at break are in
accordance with other studies published in the literature where lower εb values were de-
tected after the incorporation of clays such as HNT and MT into polymer matrices [50–52].
The obtained results can be attributed to the restriction in the chain mobility of LDPE in
the presence of clays at low concentrations, which results in higher stiffness and strength
and a respective drop in the elongation at break. However, the extensive decrease in the
elongation at break without any stiffening/strengthening observed at higher clay loadings,
suggests inadequate dispersion and formation of higher number of agglomerates, which
act as stress concentration points and result in premature failure. Slightly different trends
were observed after the incorporation of clay–bioactive compounds in the neat LDPE films,
where the best stiffening/strengthening was achieved after the addition of O loaded with
5% wt. carvacrol or thymol. Stiffness (Figure 5a) and strength values were higher when
thymol/carvacrol-based compounds were added in the LDPE films at 5% wt., while the
addition of clays loaded with OLE did not result in any reinforcement of LDPE. Films with
10% wt. clay–carvacrol/thymol compounds show lower reinforcing effects compared to
their counter parts with 5% wt. loadings, as well as respective films with plain 10% wt.
clay. However, the performance of films with 20% wt. clays–bioactive was close to that of
respective films with plain 20% wt. clays. Interestingly, the addition of carvacrol and thy-
mol led to a substantial increase in the elongation at break (Figure 5c), with values 12 times
higher in the case of PE_OC10 and 10 times higher in PE_OT10, compared to the PE_O10
film. It can be postulated that the interaction of the bioactive compounds with O resulted in
lower polarity of the clay–bioactive compound compared to the neat clay, leading to higher
compatibility of the compound with the nonpolar LDPE. This facilitated the distribution of
the clay–bioactive compound along the LDPE chain leading to higher interfacial interaction
between the matrix and the reinforcing element. This beneficial behavior was observed
for loading up to 10% wt., while agglomeration prevailed after the addition of excessive
amount of clay–bioactive compound (20% wt.). For films of LDPE with O loaded with OLE,
the mechanical properties were overall inferior compared to those with 5% wt. C or T, even
after the addition of MA at different concentrations. The obtained stiffness and strength
were close to those after the addition of 10 and 20% wt. C or T; however, the strain at break
was quite low. This suggests that the addition of the MA was not sufficient to overcome the
compatibility issues of OLE with LDPE, thus, the agglomerates prevail. Considering the
overall performance of the produced films, it may be concluded that the improvement in
mechanical properties should be attributed not only to the nanoclay used but also to the
interfacial interaction/dispersion of the clay–bioactive compounds in the nanocomposite
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LDPE films. This means that concentrations of the bioactive compounds higher than 5%
wt. did not cause additional development in mechanical properties likely due to the poor
dispersion and high surface energy of the clays [53,54].
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2.2.4. Antioxidant Activity (AOA)

In order to determine the ability of bioactive nanocomposite films to control oxidation
in foods, their DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activities were
determined. From the results of Figure 6, it may be seen that the films showed significant
AOA with the levels ranging from 7.5 to 16.0 mg/mL for PEOC films, and from 9 to
21 mg/mL for PEOT films with the higher AOA appearing in the films with 20% wt. content
of organically modified montmorillonite loaded with carvacrol or thymol (PE_OC20 or
PE_OT20). Films with OLE presented high AOA in the case of PE_OOLE10_MA5 (1:0.5)
and PE_OOLE10_MA10 (1:0.5), whereas the film PE_OOLE10_MA5 (1:0.1) showed low
antioxidant activity.
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(O) and bentonite (B) with carvacrol (C), thymol (T) and olive leaf extract (OLE).

The high antioxidant activity of PE films containing clay with bioactive compounds
may be attributed to the phenolic compounds of C, T and OLE which exhibit excellent
antioxidant properties. It has been stated in the literature that polyphenols function through
mechanisms such as free radical scavenging, single-electron transfer, hydrogen atom trans-
fer and metal chelation [55,56]. Their incorporation into films/coatings is considered as
a technique for new approaches to fruit and vegetable preservation since they may lead
to moisture loss inhibition, fat, protein, and color oxidation reduction, as well as shelf life
extension and food quality improvement [57].

2.2.5. Antimicrobial Activity

As it may be seen from Figure 7, films of LDPE with 5, 10 and 20% wt. content of
O loaded with carvacrol and thymol showed an increase in the antimicrobial efficiency
compared to films of neat LDPE and LDPE/O. It must be noted that the film with 10% wt.
OC and OT presented the highest antimicrobial activity in both cases. The lag time and
growth rate of E. coli were not affected in this case by the active compounds in films.
However, the final cell concentration was reduced compared to the control film. The films
presented in this work may control microbial contamination by reducing the maximum
growth population, which will result in safer products with a longer shelf life.



Molecules 2023, 28, 2945 14 of 20Molecules 2023, 28, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 7. Antimicrobial properties of LDPE films with incorporated organically modified clay 
nanocarriers (O) with (a) carvacrol (C) and (b) thymol (T). 

3. Materials and Methods 
3.1. Materials 

Carvacrol (5-isopropyl-2-methylphenol) 98%, thymol (2-isopropyl-5-methylphenol) 
≥ 98.5%, polyethylene-graft-maleic anhydride (PE-g-MA) and DPPH (2,2-diphenyl-1-pic-
rylhydrazyl) were purchased from Sigma-Aldrich (Aldrich, Steinheim, Germany) and 
used as received. The olive leaf extract (OLE) was prepared according to the method de-
scribed by Chatzikonstantinou et al. [58]. The organically modified montmorillonite (O) 
Nanomer® I.44P, a surface-modified montmorillonite clay with 40 % wt. dimethyl dialkyl 
(C14–C18) amine, was produced by Nanocor Inc. (Hoffman Estates, IL, USA), supplied by 
Sigma-Aldrich (St. Louis, MO, USA) and used without further treatment. Nanoclay, hy-
drophilic bentonite was provided from Sigma-Aldrich (Aldrich, Steinheim, Germany). 
The solvent absolute ethanol was purchased from Merck (Merck KGaA, Darmstadt, Ger-
many). Low-density polyethylene (DOW™ LDPE 352E) was kindly provided from 
Achaika Plastics S.A. (Aigio, Greece). 

3.2. Preparation of Bioactive Nanocarriers 
For the incorporation of carvacrol (C) and thymol (T) into the organically modified 

montmorillonite (O) and bentonite (B), the adsorption method was applied. The O and B 
were dried at 120 °C for 24 h prior to use, to remove the adsorbed moisture. For each 
experiment, the appropriate quantity of the bioactive compound was placed on a glass 
plate and inserted at the bottom of a closed and heated chamber. Then, the corresponding 
quantity of clay, 3 g, was added on a glass plate and placed in a position higher than the 
bioactive compound. The chamber was sealed and left for 96 h at 120 °C, where intra-layer 
and surface adsorption of the bioactive compounds on O and B took place. The schematic 
representation of the system used for the adsorption of C and T into the O or B is presented 
in Figure 8. The incorporation of olive leaf extract (OLE) into O and B was applied through 
the solution method, in which an aqueous suspension was prepared in the presence of the 
clay and the extract and stirred for 24 h at ambient temperature. The suspension was then 
placed in an oven at 50 °C until the water evaporated and the final product was collected. 

Figure 7. Antimicrobial properties of LDPE films with incorporated organically modified clay
nanocarriers (O) with (a) carvacrol (C) and (b) thymol (T).

3. Materials and Methods
3.1. Materials

Carvacrol (5-isopropyl-2-methylphenol) 98%, thymol (2-isopropyl-5-methylphenol) ≥ 98.5%,
polyethylene-graft-maleic anhydride (PE-g-MA) and DPPH (2,2-diphenyl-1-picrylhydrazyl)
were purchased from Sigma-Aldrich (Aldrich, Steinheim, Germany) and used as received.
The olive leaf extract (OLE) was prepared according to the method described by Chatzikon-
stantinou et al. [58]. The organically modified montmorillonite (O) Nanomer® I.44P, a
surface-modified montmorillonite clay with 40 % wt. dimethyl dialkyl (C14–C18) amine,
was produced by Nanocor Inc. (Hoffman Estates, IL, USA), supplied by Sigma-Aldrich
(St. Louis, MO, USA) and used without further treatment. Nanoclay, hydrophilic ben-
tonite was provided from Sigma-Aldrich (Aldrich, Steinheim, Germany). The solvent
absolute ethanol was purchased from Merck (Merck KGaA, Darmstadt, Germany). Low-
density polyethylene (DOW™ LDPE 352E) was kindly provided from Achaika Plastics S.A.
(Aigio, Greece).

3.2. Preparation of Bioactive Nanocarriers

For the incorporation of carvacrol (C) and thymol (T) into the organically modified
montmorillonite (O) and bentonite (B), the adsorption method was applied. The O and
B were dried at 120 ◦C for 24 h prior to use, to remove the adsorbed moisture. For each
experiment, the appropriate quantity of the bioactive compound was placed on a glass
plate and inserted at the bottom of a closed and heated chamber. Then, the corresponding
quantity of clay, 3 g, was added on a glass plate and placed in a position higher than the
bioactive compound. The chamber was sealed and left for 96 h at 120 ◦C, where intra-layer
and surface adsorption of the bioactive compounds on O and B took place. The schematic
representation of the system used for the adsorption of C and T into the O or B is presented
in Figure 8. The incorporation of olive leaf extract (OLE) into O and B was applied through
the solution method, in which an aqueous suspension was prepared in the presence of the
clay and the extract and stirred for 24 h at ambient temperature. The suspension was then
placed in an oven at 50 ◦C until the water evaporated and the final product was collected.
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3.3. LDPE/Clay Bioactive Nanocomposite Film Preparation

LDPE and bioactive nanocarriers (O or B loaded with the bioactive compounds)
were melt-compounded, using a minilab twin co-rotating extruder (Haake Mini Lab II,
ThermoScientific, ANTISEL S.A., Athens, Greece). The operating temperature was 160 ◦C,
the screw speed was 100 rpm and the total processing time was 10 min. The obtained
masterbatch was pressed with a Manual Hydraulic Press with heated platens (Specac,
ANTISEL S.A., Athens, Greece) between two Teflon sheets at 120 ◦C and 70 bar pressure
for 2 min and rapidly quenched in an ice-water bath for film formation.

3.4. Characterization Techniques
3.4.1. Structural Characterization Using X-ray Diffraction (XRD)

The characterization of the obtained films using XRD, in which the incorporation
of the bioactive compounds into the interlayer space of nanocarrier was confirmed, was
performed on an advanced Brüker D8 diffractometer (Bruker, Analytical Instruments, S.A.,
Athens, Greece) with CuKa radiation (λ = 1.541874 Å). The diffractometer was operated at
constant temperature (20 ◦C) and the monochromatic beam was under constant voltage
and current, 40 kV and 40 mA, respectively. The distance d between the nanocarrier sheets
was calculated from the 001 reflectance. The scanning parameters were set as follows: 2θ
range 2–20◦, increment 0.03◦, PSD 0.764 and slit width 0.6 mm. Each sample was carefully
placed on glass sample holders so that its surface was at the same level as the reference
plane of the instrument.

3.4.2. Thermogravimetric Analysis (TGA)

TGA was carried out in Pt-Rh crucibles in a Pyris 1 TGA Netzsch STA 449 C Jupiter
(Netzsch, Selb, Germany) thermal analyzer under nitrogen and at a heating rate of 20 ◦C/min.
The temperature accuracy of the instrument was < 1 ◦C.

3.4.3. Mechanical Analysis

Tensile tests were performed using a universal testing machine, the Simantzu AX-G
equipped with a 5KN load cell (Simantzu, Asteriadis, S.A., Athens, Greece) according to the
American Society for Testing and Materials (ASTM) D638. Three to five dog-bone type V
specimens of each film were tested at a deformation rate of 30 mm/min. Young’s modulus,
tensile strength and elongation at break were calculated. Statistical calculations (mean
values and standard deviation) were performed on the results of three to five specimens.
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3.5. Determination of Antioxidant Activity Based on the Free Radical Binding Capacity of DPPH

The DPPH (2,2-diphenyl-1-picrylhydrazyl) free-radical scavenging method was used
for the determination of the antioxidant activity of the samples [59–61], in which the
bleaching rate of a stable free radical, DPPH•, is monitored at a characteristic wavelength
in the presence of the sample. First, an ethanolic sample solution (1 mg/mL) and an
ethanolic solution of DPPH (1 mM) were prepared. Appropriate volumes of ethanol and
ethanolic sample solution as well as 400 µL of EtOH-DPPH solution were added up to a final
volume of 4 mL. The samples were kept at room temperature (RT) for 30 min in the dark.
The control solution consisted of ethanol and DPPH, and its absorbance was measured at
517 nm. All measurements were carried out in duplicate, and the results are presented as
the mean. The antioxidant activity (AOA) is expressed as percentage of inhibition according
to the following equation: AOA% = 100 − [((A_sample − A_blank)·100)/A_control], where
A_blank is the EtOH-sample adsorption at 517 nm and A_control is the EtOH-DPPH
adsorption at 517 nm.

3.6. Determination of Antimicrobial Activity
3.6.1. Bacterial Culture Preparation

The Gram-negative Escherichia coli (E. coli) BL21DE3 microorganism was used to
test the antimicrobial activity of the films. The strains used were from our lab collection
and the Health Protection Agency, Porton Down, Salisbury, UK. From the stock bacterial
population of E. coli BL21DE3 strain, 100 µL of the bacterial population was initially
inoculated into 5 mL of fresh Lysogeny Broth (LB) and incubated overnight (O/N) at 37 ◦C
under continuous stirring at 180 rpm.

3.6.2. Bacterial Reduction Assay

The next day, the 600 nm absorbance of the pre-culture was measured and diluted with
the appropriate amount of fresh LB so that the optical absorbance of the new culture was
0.08. This new culture was then re-incubated at 37 ◦C with continuous stirring at 180 rpm
until the bacterial population reached an optical absorbance of 0.2–0.5. The culture was
then centrifuged at 4000 rpm for 5 min, the supernatant was removed and the precipitate
was redissolved in serum (0.9 % w/v NaCl) of equal volume. After three successive
washes, samples of a bacterial population of 107 CFU/mL were prepared by dilution. Then,
0.5 mg of each sample was placed in an Eppendorf tube containing 100 µL of the bacterial
population. The control consisted of 100 µL of bacteria in the absence of sample. The
Eppendorf tubes were placed in a cold chamber for 12 h in the case of nanocarriers and for
36 h in the case of LDPE films loaded with bioactive nanocarriers. The difference in the
time interval is due to the extended release time of the bioactive substances from the films.
After the above-mentioned time interval, 25 µL of the bacterial population interacting with
the sample was inoculated into 225 µL of fresh LB in an ELISA microplate. The microplate
was placed in a chamber for incubation at 37 ◦C under continuous stirring. Every hour for
a total of 8 h the optical absorbance of the microplate at 600 nm was measured.

4. Conclusions

The novelty of the work consists of the successful incorporation of active volatile com-
pounds into unmodified and organo-modified montmorillonite through a green methodol-
ogy and their further incorporation in LDPE, providing films with controlled antioxidant
and antimicrobial activity that are promising candidates for active packaging films for
fresh fruits and vegetables. Moreover, the incorporation of olive leaf extract into clays and
subsequently in LDPE is reported for the first time.

This study showed that the direct incorporation of carvacrol and thymol onto the
surface and interlayer of nanoclays and their subsequent mixing with LDPE resulted in
films with high thermal stability and improved mechanical properties. Moreover, the ad-
vantages of the prior encapsulation of bioactive compounds onto clays was the pronounced
antioxidant activity of the films, which may be owed to the prevention of volatilization of
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thymol, carvacrol and olive leaf extract. This is very important for the application of these
films during food formulations with improved oxidative stability. The produced films may
control microbial contamination by reducing the maximum growth population which will
result in safe products with a long shelf life.

The present study demonstrates the contribution of bioactive compounds to the
properties of the produced bioactive nanocarriers, depending on the incorporation rate and
the characteristics of the nanostructures. On this basis, LDPE films containing clay-bioactive
nanocarriers at levels of 5–20% wt. could be excellent candidates for use as a desirable
antioxidant/antimicrobial packaging material with enhanced thermal and mechanical
properties. The characterization results showed that the incorporation of carvacrol and
thymol into the interlayer region of the organically modified clay was achieved, in contrast
to inorganic bentonite where bioactive compounds were mainly retained on the outer
surface of clay particles. For the nanocarriers with incorporated olive leaf extract, the
results were indicative of achieving an exfoliated structure of the clay. Regarding the
thermal stability of the bioactive nanocarriers, the results demonstrated a protective effect
of the clay against the thermal loss of the bioactive compounds. The antioxidant activity
of the nanocarriers after incorporation of the bioactive compounds increased significantly,
especially with increasing incorporation rate. Additionally, the nanocarriers of organically
modified clay and bentonite with the highest incorporation rates of carvacrol and thymol
showed complete inhibition of E. coli bacterial growth.

The antioxidant activity of the LDPE films with loaded bioactive nanocarriers indicated
increased antioxidant activity with 20% wt. of organically modified montmorillonite with
carvacrol (OC) or thymol (OT) at the clay:bioactive substance ratio 1:1, and 10% wt. of
organically modified montmorillonite with olive leaf extract (OOLE) at a ratio of 1:0.5.
Films with 10% OC and OT presented the highest antimicrobial activity in both cases.

The future aim of this novel film formation is to be used as the interlayer of a scaled-
up three-layered membrane that will act as a “reservoir” of bioactive substances with
controlled release and long-term durability.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/molecules28072945/s1, Figure S1. XRD patterns of LDPE films with
organically modified montmorillonite loaded with (a) carvacrol (OC), (b) thymol (OT) and (c) olive
leave extract (OOLE) and (d) bentonite loaded with olive leave extract (BOLE); Figure S2. TGA
profiles of films incorporated with bioactive nanocarriers with (a) carvacrol, (b) thymol and (c) OLE;
Table S1. Composition of selected films based on TGA analysis.
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