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Abstract: Immobilized angiotensin-converting enzyme (ACE) is a promising material for the rapid
screening of antihypertensive drugs, but the nonspecific adsorption is a serious problem in sep-
aration processes involving complex biological products. In this study, triblock copolymers with
dopamine (DA) block as anchors and PEG block as the main body (DA-PEGx-DA) were attached
to an immobilized ACE (ACE@mZIF-8/PDA, AmZP) surface via the “grafting to” strategy which
endowed them with anti-nonspecific adsorption. The influence of DA-PEGx-DA chain length on
nonspecific adsorption was confirmed. The excellent specificity and reusability of the obtained
ACE@mZIF-8/PDA/DA-PEG5000-DA (AmZPP5000) was validated by screening two known ACE
inhibitory peptides Val-Pro-Pro (VPP, competitive inhibitory peptides of ACE) and Gly-Met-Lys-
Cys-Ala-Phe (GF-6, noncompetitive inhibitory peptides of ACE) from a mixture containing active
and inactive compounds. These results demonstrate that anchored polymer loops are effective for
high-recognition selectivity and AmZPP5000 is a promising compound for the efficient separation of
ACE inhibitors in biological samples.

Keywords: polymer loops; angiotensin converting enzyme; immobilization of enzyme; mesoporous
ZIF-8; recognition selectivity

1. Introduction

Recognized as a potential target for hypertension treatment, the angiotensin-converting
enzyme (ACE) is the key enzyme for blood pressure regulation and is mainly localized on
the membranes of lungs, heart, kidney, and intestinal cells [1–3]. The functional balance of
ACE is crucial to blood pressure regulation. High ACE activity promotes angiotensin II
production and bradykinin hydrolysis, leading to vasoconstriction and increased blood
pressure [4,5]. Several chemical synthetic ACE inhibitors, such as captopril, enalaprilat,
temocapril and lisinopril, have been used in hypertension treatment, but most of them
produce side effects [6–8]. Thus, novel ACE inhibitors for developing anti-hypertension
drugs are needed.

In recent years, numerous naturally-derived ACE inhibitory peptides have been re-
ported to possess a strong inhibitory effect on ACE and have no negative side effects [9–11].
However, the screening of ACE inhibitory peptides from complex mixtures of natural
products through traditional separation technologies is tedious and time-consuming. Thus,
rapid screening methods for discovering ACE inhibitory peptides for novel hypertension
therapeutics are in high demand.
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Immobilized enzymes have been developed as affinity separation media for selec-
tively enriching bioactive compounds from complex mixtures [12–15]. In recent decades, a
number of materials, including magnetic beads [16–18], microspheres [19–21], capillary elec-
trophoresis [22], and MOFs [23], have been used to immobilize ACE on surfaces and screen
ACE inhibitory peptides from protein hydrolysate. However, these immobilized enzymes
have a drawback: the natural conformation of an enzyme cannot be maintained during the
separation process [24–26]. Recent studies on enzyme immobilization have demonstrated
that enzymes can be encapsulated in situ in MOFs and retain the stability of their conforma-
tions [27–29]. However, MOFs-encapsulated enzymes have strong nonspecific adsorption
for MOFs and thus show false selectivity [30,31]. Thus, anti-nonspecific protein adsorption
is one of the main challenges in designing novel affinity separation media.

A common and promising method for solving this problem is surface modification
with inert hydrophilic polymers [32–34]. Polymer constituents and morphology are im-
portant in this method. Polyethylene glycol (PEG) is one of the popular and most suitable
polymer materials surface modification and considered the “gold standard” antifouling
and biocompatible polymer by the FDA [35–37]. The highly-hydrated PEG chains on the
surfaces of solids can effectively reduce nonspecific protein absorption. Most polymer
chains are tethered through one end group to a surface. Loop-type polymers can be ob-
tained by anchoring the chain ends of linear polymers to surfaces. Compared with linear
polymers, loop-type polymers can better resist nonspecific protein adsorption [38–40]. In
addition, introducing dopamine (DA) to the ends of polymers facilitates polymer surface
grafting due to universal attachment and the ease of use of catechol groups [41].

In this work, ACE was encapsulated in situ in mesoporous ZIF-8 for the preparation
of AmZP. A novel immobilized ACE AmZPPx (x = molecular weight of PEG) was obtained
by anchoring an ABA triblock copolymer DA-PEGx-DA with block A as a catechol anchor
attracted to surfaces and block B in which PEG is a functional block on AmZP surfaces. The
developed materials were systematically characterized. Two main inhibitory types of ACE
inhibitory peptides are known: competitive and noncompetitive inhibition. The casein-
derived peptide Val-Pro-Pro (VPP) is one of the ACE inhibitory peptides with competitive
inhibition [42,43] and has been added to milk as a food additive. In our previous research,
Gly-Met-Lys-Cys-Ala-Phe (GF-6) was isolated from Saurida elongata and acted as a non-
competitive inhibitor to ACE [44,45]. Thus, VPP and GF-6 were applied to investigate
the adsorption performance, selectivity, separation ability, and reusability of AmZPPx.
This work is the first to apply loop-polymer-modified immobilized enzymes to bioactive
compounds screening.

2. Results and Discussion
2.1. Synthesis of AmZPPx

Highly selective materials for ACE inhibitory peptide screening were prepared using
a polymer DA-assisted surface-modified ACE–MOF composite. The synthesis process is
shown in Figure 1. First, ACE was encapsulated in situ in mZIF-8, approximately 90%
of the enzyme was incorporated and the loading of protein was 0.11 mg/mg compos-
ites. Second, ACE@mZIF-8 was added to a DA solution water to form a PDA coating
layer. This special structure of the AmZP afforded the materials low enzyme leakage [46].
Then, AmZP was added to a polymer solution for surface modification and reduction of
nonspecific adsorption.

In this work, Bovine Serum Albumin (BSA) was used as a nonspecific protein model
because it can easily attack many materials through nonspecific interactions [47]. Figure 2a
shows the effect of the length of the PEG midblock on anti-nonspecific adsorption. The
adsorption capacity of AmZPPx on BSA was significantly lower than of AmZP because
of the repulsive force caused by the steric hindrance of loop-polymer-coated surfaces [40].
In addition, the BSA adsorption decreased with the increasing molecular weight of PEG
because of the weak antiprotein effect when the polymer chain length was short. However,
when the molecular weight of the PEG midblock increased to 5000, the effect on the
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adsorption of BSA was quite small. This result was consistent with that of a previous
report [41]. Therefore, AmZPP5000 was employed in subsequent studies. The effects of the
dosages of DA-PEG5000-DA and modification time on anti-nonspecific adsorption were
surveyed (Figure 2b,c). BSA adsorption capacity decreased with increasing DA-PEG5000-DA
concentration and modification time possibly because of the increase in DA-PEG5000-DA
loading, and the strength of the steric hindrance effect increased. However, when the DA-
PEG5000-DA loading reached a certain value, anti-nonspecific performance did not change.
Thus, the optimal synthesis conditions of AmZPPx were as follows: molecular weight of
PEG midblock, 5000; DA-PEG5000-DA concentration, 0.2 mM; and contact time, 30 min.
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Figure 1. The synthesis procedure of AmZPPx.
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Figure 2. The BSA adsorption performance of AmZPPx with the different polymer length (a),
concentration of DA-PEG5000-DA (b) and contact time (c).

2.2. Characterization

The morphology of the synthesized materials was characterized by transmission elec-
tron microscopy (TEM) and scanning electron microscopy (SEM). As shown in Figure 3,
AmZP and AmZPP5000 had rough surfaces with diameters ranging from 100 nm to 200 nm,
indicating that the polymer modification process did not significantly change the particle
size. The TEM images indicated a distinct core–shell structure. Energy-dispersive spec-
troscopy (EDS) characterization of AmZP and AmZPP5000 revealed the presence of ZIF-8
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(Zn and N elements) and protein (S element), as shown in Figure 3e,f. The proportion of C
element in AmZPP5000 increased relative to that in AmZP, whereas the proportion of other
elements decreased, illustrating successful modification by DA-PEG5000-DA.
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The Fourier-transform infrared (FT-IR) spectra of AmZP and AmZPP5000 are shown in
Figure 3. The wave numbers between 1600–1700 cm−1 and 1500–1580 cm−1 were attributed
to amide I and amid II bands, respectively, and indicated the existence of enzymes [48]. The
peak at ~1200 cm−1 represented the –OH vibration of phenol compounds, and indicated
the presentation of PDA [46]. Moreover, a new absorption peak was detected at 841 cm−1

due to the bending vibration of –C–O–C–. This result indicated the successful combination
of DA-PEG5000-PEG.

The X-ray diffraction (XRD) patterns for AmZP and AmZPP5000 are shown in Figure 4.
Both materials presented the same characteristic peaks as ZIF-8 [48], but the peaks were
diffused, indicating that the amorphous structures in the materials with short-range order
and long-range disorder stacking. Mesopores in amorphous MOFs can make encapsulated
enzymes have a higher activity than crystalline MOFs [49].
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Figure 4. FT-IR (a) and XRD (b) spectra of AmZP and AmZPP5000.

The specific surface areas and pore structures of AmZP and AmZPP5000 were char-
acterized by N2 adsorption–desorption experiments. The Brunauer–Emmett–Teller (BET)
curves displayed in Figure 5a exhibited a type IV adsorption isotherm with an H3 loop and
indicated that both materials were mesoporous [50]. In addition, AmZP and AmZPP5000
did not reach adsorption equilibrium when the relative pressure was close to the saturation
pressure, indicating that the measured materials consisted of mesoporous slits. Based on
the Barrett–Joyner–Halenda model (Figure 5b), the distribution diagram pore sizes of the
two samples revealed an increase in 4–8 nm pores after DA-PEG5000–PEG modification
on AmZP, whereas the pore sizes were still mostly distributed in the 2–4 nm range. The
specific surface area of AmZPP5000 increased slightly from 51.16 m2/g to 60.37 m2/g com-
pared with that of AmZP. These results suggested that DA-PEG5000–PEG attached to AmZP
surface via the “grafting to” strategy had no effect on the main structure of the material.
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2.3. Specific Adsorption of AmZPP5000

The specific adsorption analysis (Figure 6a) revealed that the adsorption capabilities
of VPP and GF-6 first increased with peptide concentration and then remained unchanged
after the maximum adsorption capability was reached. The mass transfer rate can be
improved by increasing the concentration. Adsorption capacity is affected by the amount of
encapsulated enzyme, cannot be increased indefinitely, and will not change after adsorption
saturation is reached. Moreover, the adsorption capacity of GF-6 is higher than that of VPP
because GF-6 is a noncompetitive inhibitor with multiple binding sites on ACE [45] and
VPP is a competitive inhibitor that mainly binds to active sites of enzymes [43].
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Figure 6. Effects of peptides concentration (a), time (b), pH (c) and temperature (d) on the adsorption
of AmZPP5000 on VPP and GF-6.

At initial VPP and GF-6 concentrations of 2 mg/mL, the relationship between the
adsorption capacity of AmZPP5000 and time was measured (Figure 6b). At 0–30 min, the ad-
sorption capacity gradually increased with time because the peptides did not immediately
reach the adsorption sites. At 30–60 min, the adsorption capacity remained unchanged,
indicating that the binding sites of AmZPP5000 reached saturation.

Figure 6c,d show the effects of pH and temperature on the adsorption of AmZPP5000
on VPP and GF-6. The adsorption amount varied with pH and temperature because the
adsorption of the two peptides was based on the specific interaction with ACE. The mass
transfer rate and structure of the peptides change under experimental pH and temperature
conditions, and thus change the adsorption behavior.

2.4. Adsorption Kinetics of AmZPP5000 for VPP and GF-6

The pseudo-first order (PFO) and pseudo-second order (PSO) and intraparticle dif-
fusion (IPD) models [51,52] were employed to fit the adsorption kinetic data obtained
under the following conditions: temperature, 25 ◦C; pH, 8.3 (for GF-6) or 8.8 (for VPP);
AmZPP5000, 10 mg; peptides concentration, 2 mg/mL.

The fitting equation of the PFO model is expressed as follows:

Qt = Qe

(
1− e−k1t

)
(1)

The fitting equation of the PSO model is expressed as follows:

Qt =
k2Qe

2t
1 + k2Qet

(2)

The fitting equation of the IPD model is expressed as follows:

Qt = kidt
1
2 + C (3)

where Qt (mg/g) and Qe (mg/g) are the adsorption capacities of peptides at a given time
(t) and at equilibrium, respectively; k1 and k2 are the rate constants of the PFO and PSO
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kinetic models for adsorption, respectively; kid is the intraparticle diffusion constants; and
C is the effect of external boundary diffusion layer on adsorption process.

The fitting results are shown in Figure 7, and the adsorption parameters are displayed
in Table 1. As expected, adsorption increased with contact time, and VPP and GF-6
achieved adsorption equilibrium after 30 min. The Qe,cal value obtained from the PFO
model was closer to the experimental Qe,exp than the Qe,cal from the PSO model, and the R2

in PFO was better than that in PSO. The adsorption rate constant of AmZPP5000 for VPP
(k1 = 0.0774) was lower than that for GF-6 (k1 = 0.2319), indicating a slower rate by the
former than the latter. Above results suggested that the PFO model is more suitable for
describing the adsorption processes of VPP and GF-6 on AmZPP5000, which is related to
physical adsorption.

The adsorption-rate-determining steps were investigated using the IPD model
(Figure 7c,d and Table 2). The IPD fitting results indicated that the data points had three lin-
ear parts, suggesting the adsorption of VPP or GF-6 for AmZPP5000 was associated with
three continuous processes. The first step is related to surface diffusion; the second step
is the diffusion process within a particle; and the third step is the dynamic equilibrium
process of adsorption and desorption. Moreover, the plotted lines did not penetrate the
origin (C 6= 0) and kid in the second step was lower than that in the first step, indicating
intraparticle diffusion was the main process but not the only control process.
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Figure 7. Adsorption kinetics of AmZPP5000 for VPP (a,c) and GF-6 (b,d) fitting by PFO, PSO and
IPD models.

Table 1. Kinetic parameters for VPP and GF-6 adsorption on AmZPP5000.

PFO Model PSO Model

Qe,exp
(mg/g)

Qe,cal
(mg/g) k1 R2 Qe,cal

(mg/g) k2 R2

VPP 40.88 42.68 0.0774 0.9757 51.61 0.00163 0.9472
GF-6 230.37 229.98 0.2319 0.9992 245.29 0.00182 0.9926
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Table 2. IPD kinetic parameters for VPP and GF-6 adsorption on AmZPP5000.

First Step Second Step
Third StepKid

(mg/(g·min1/2) C R2 Kid
(mg/(g·min1/2) C R2

VPP 12.26 −17.84 0.9924 3.134 22.91 0.8777 Balance stage
GF-6 38.49 76.70 0.9326 6.511 196.45 0.7069

2.5. Adsorption Isotherm of AmZPP5000 for VPP and GF-6

Experimental adsorption isotherm data were obtained under the following conditions:
temperature, 25 ◦C; pH, 8.3 (for GF-6) or 8.8 (for VPP); AmZPP5000, 10 mg; contact time,
30 min. The Langmuir, Freundlich and D–R (Dubinin–Radushkevich) isotherm models [53]
were used to describe the adsorption processes of VPP and GF-6.

The Langmuir model is represented by the following equation:

Qe =
QmkLCe

1 + kLCe
(4)

The Freundlich model is represented by the following equation:

Qe = kFC
1
n
e (5)

The D–R adsorption model is represented by the following equation:

ln Qe = lnQm − BDRε2
DR (6)

εDR = RTln
(

1 +
1

Ce

)
(7)

E =
1√

2BDR
(8)

where Qe (mg/g) and Qm (mg/g) are the equilibrium and theoretical maximum adsorption
capacities of peptides, respectively; kL represents the Langmuir constants; kF and n represent
the Freundlich constants; Ce is equilibrium peptide concentration; BDR is the activity
coefficient related to adsorption energy (mol2/J2); εDR is Polanyi potential energy; R is
gas constant (8.314 J/mol/K) and T is absolute temperature (K); E is mean Gibbs free
adsorption energy.

The results are shown in Figure 8 and Table 3. The adsorption of VPP and GF-6
on AmZPP5000 was more consistent with the Langmuir model than with the Freundlich
model, suggesting the adsorption was a monolayer process. Moreover, the maximum
adsorption capacity Qmax of Langmuir fitting for VPP and GF-6 were 53.44 and 308.78 mg/g,
respectively, indicating that AmZPP5000 is a promising material for enrichment of ACE
inhibitory peptides with excellent adsorption capacity.

The D–R model has no assumption of single-layer, homogeneous adsorption and
could be used to distinguish physical adsorption from chemical adsorption. As seen from
Figure 8c,d and Table 3, the D–R model fits the experiment data quite well. The E values of
VPP and GF-6 were 0.552 and 0.561 kJ/mol, respectively. Usually, when E < 8.0 kJ/mol,
physical adsorption can be considered as the main adsorption process, while chemical
adsorption is the main adsorption process when E > 8.0 kJ/mol.
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Figure 8. Adsorption isotherm of AmZPP5000 for VPP (a,c) and GF-6 (b,d) fitting by Langmuir,
Freundlich and D–R models.

Table 3. Adsorption isotherm parameters of AmZPP5000 for VPP and GF-6.

Langmuir Model Freundlich Model D–R Model

kL
(mL/mg)

Qm
(mg/g) R2 kF n R2 Qm

(mg/g)
E

(KJ/mol) R2

VPP 1.4211 53.44 0.9501 30.53 2.816 0.9107 54.86 0.552 0.9556
GF-6 2.0131 308.78 0.9589 198.02 2.544 0.8860 357.70 0.561 0.9441

Above results indicated the adsorption process of VPP and GF-6 with AmZPP5000
was physical monolayer adsorption with a limited number of isolated adsorption sites,
which was consistent with previous reports that VPP and GF-6 bonded to ACE primarily
via hydrogen bonding and hydrophobic interactions [43,45].

2.6. Desorption and Reusability of AmZPP5000

Desorption and reusability are important indexes for materials’ practical applications.
The adsorption of ACE inhibitory peptides and ACE belongs to affinity adsorption, which
usually requires a high concentration of NaCl for desorption [23]. As shown in Figure 9a,b,
the desorption effect of 2 mol/L NaCl on VPP and GF-6 was significantly higher than 1.5,
1.0 and 0.5 mol/L and reached almost 80% at 1 h desorption time. This result suggested
that 2 mol/L NaCl can be used as the desorption agent for the desorption of ACE inhibitory
peptides from AmZPP5000.
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Figure 9. Desorption (a,b) and reusability (c) of AmZPP5000.

It has been reported that amino acids and protein could destroy the structure of ZIF-8
because of the complexation of amino acids with zinc ions [54]. NaCl could also affect the
structure of ZIF-8 [55]. As shown in Table 4, peptides NaCl and BSA could cause slight
enzyme release from ACE@mZIF-8. The PDA layer could protect mZIF-8 against agents,
making AmZP and AmZPP5000 more stable.

Table 4. Release of ACE from ACE@mZIF, AmZP and AmZPP5000 after treatment with different
agents for 1 h at 25 ◦C.

Protein release (%)
Agents ACE@mZIF-8 AmZP AmZPP5000

2 mg/mL VPP 7.32 1.37 1.24
2 mg/mL GF-6 6.21 1.08 1.13

Enzyme activity release (%)

2 mol/L NaCl 3.84 0.21 0.20
0.5 mg/mL BSA 1.52 0.00 0.00

The reusability of AmZPP5000 was determined by repeating adsorption–desorption
process. As shown in Figure 9c, AmZPP5000 had excellent recycling performance after
the fifth cycle, where the adsorption capacities of VPP and GF-6 were 22.39 mg/g and
170.58 mg/g, respectively. This decrease might have been caused by the incomplete
desorption and the mass loss of the AmZPP5000 after washing and during the repeated
adsorption–desorption processes.

2.7. Recognition Selectivity of AmZPP5000

A mixture containing VPP, GF-6, and BSA as the adsorption sample was used in
investigating the recognition selectivity of AmZP, AmZPP5000 and mZPP5000 (without
enzyme). The results are illustrated in Figure 10. Obviously, AmZPP5000 and AmZP
exhibited a higher adsorption capacity for VPP and GF-6 than mZPP5000 for the specific
interaction between peptides and ACE. All the materials displayed higher adsorption
capacities for peptides than BSA. The reason was that BSA mainly bound to the materials’
surfaces because of its diameter (~7 nm) [56], which was larger than the pore size of the
materials (2–4 nm). BSA was unable to access the pores. By contrast, the small molecular
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peptides were transported to the mesopores and thus showed higher adsorption capacities.
In the absence of anti-protein adsorption chain segments, the BSA adsorption capacities
of AmZPP5000 and mZPP5000 was lower than that of AmZP. The results showed that
the introduction of DA-PEG5000-DA polymer loops can indeed improve the recognition
selectivity of immobilized ACE.
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Figure 10. Adsorption data of AmZPP5000 in mixed system.

2.8. Application of AmZPP5000 in Hydrolysate

Based on the above results, AmZPP5000 displayed excellent adsorption performance
and reusability and provided a possibility for further application. The recognition selectivity
of AmZP was compared with that of AmZPP5000 by using a hydrolysate (obtained from
Leiognathus brevirostris) containing ACE inhibitory peptides. The concentrations of proteins
in the desorption solutions were determined using UV spectrophotometry. As shown
in Figure 11 and Table 5, both materials had screening functions, and the desorbate of
AmZPP5000 displayed simpler components than that of AmZP and achieved lower IC50
value, which indicated a higher ACE inhibitory activity. These results demonstrated that
the recognition selectivity of AmZP was successfully enhanced by anchoring polymer loops
on the surface, and the AmZPP5000 could be used to enriched ACE inhibitory peptides.
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Figure 11. HPLC chromatogram on a Zorbax SB C18 column of samples. Experiments were carried
out with a linear gradient of 5–50% acetonitrile in water (containing 0.1% TFA) over 15 min at a flow
rate of 1 mL/min.
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Table 5. Selective screening of ACE inhibitory peptides from hydrolysates by AmZP and AmZPP5000.

Sample IC50 (mg/mL)

Hydrolysates 0.623
Desorbate of AmZP 0.095

Desorbate of AmZPP5000 0.034

3. Materials and Methods
3.1. Materials

Crude ACE was isolated according to the reported literature [44]. Hippuryl-histidyl-
leucine (HHL; ≥99%) and ACE (from rabbit lung) were purchased from Sigma Chemical
Co. (St. Louis, MO, USA). 2-MeIM (≥99%), DA (≥99%) and HPLC-grade trifluoroacetic
acid were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd. (Shanghai,
China). DA-PEGx-DA (x = 2000, 5000 and 10,000) were purchased from Guangzhou Tansh-
tech Co., Ltd. (Guangzhou, China). VPP and GF-6 were obtained from GL Biochem
(Shanghai) Ltd. (Shanghai, China). HPLC-grade methanol and acetonitrile were purchased
from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). All the other reagents
were of analytical grade and purchased from XiLong Science (Guangdong, China).

3.2. Preparation of AmZP

For the synthesis of AmZP, a 100 mL beaker containing Zn (NO3)2·6 H2O (0.0297 g),
2-MeIM (0.0657 g), 5 mL of crude ACE solution (protein concentration of 4 mg/mL and
specific activity of 0.013 U/mg protein), and 30 mL of 0.1 M borate buffer solution (BBS,
pH 7.3) was incubated at 30 ◦C for 30 min. The prepared ACE@mZIF-8 was collected by
centrifugation at 8000 rpm for 10 min and washed with distilled water three times. Then,
ACE@mZIF-8 was dispersed in 10 mL of 50 mM Tris-HCl (pH = 8.5), and 10 mg of DA was
added. The mixture was gently agitated for 4 h at room temperature. The obtained AmZP
was washed several times with deionized water and then vacuum freeze-dried.

3.3. Surface Modification with DA-PEGx-DA

The prepared AmZP (100 mg) was dispersed in 20 mL of distilled water, and 20 mg
of DA-PEGx-DA (x = 2000, 5000, 10,000) was added. The mixture was mildly stirred for 1
h at room temperature. Then, the product AmZPPx was collected by centrifugation and
washed with distilled water three times.

3.4. Characterization

SEM images were recorded using TESCAN MIRA LMS (Brno, Czech Republic) at a
voltage of 3 kV. TEM images and EDS analysis results were obtained using JEOL JEM-F200
(Tokyo, Japan) at an operating voltage of 200 kV. FT-IR spectra were tested at a wavenumber
range of 400–4000 cm−1 with a Nicolet IS10 (Waltham, MA, USA). XRD analysis was carried
out using Mini Flex600 (Cu-Kα radiation), and the diffraction patterns were obtained from
5◦ to 70◦ with a scanning rate of 10◦/min at 45 kV and 15 mA. Specific surface areas were
measured at 77.35 K with the BET method in a relative pressure range (P/P0) of 0.05–1. The
amount of protein encapsulated in the material was determined by the Bradford method.

3.5. ACE Activity and Inhibitory Activity Assay

The digestion of HHL into hippuric acid (HA) and His-Leu (HL) using free or immobi-
lized ACE was performed, and the activity of the enzyme was evaluated. Free ACE solution
(protein concentration of 1 mg/mL) or immobilized ACE suspension (mass concentration
of 5 mg/mL) were prepared in 0.1M BBS (containing 0.3 M NaCl, pH 8.3). Approximately
60 µL of the sample and 100 µL of 0.1M BBS (containing 0.3 M NaCl, pH 8.3) were incubated
at 37 ◦C for 10 min. Then, 40 µL of 5 mM HHL (in BBS) was added and reacted for 15 min.
The reaction was stopped by adding 100 µL of 1 M HCl. The activities of the free and
immobilized ACE were measured by monitoring the released HA with the HPLC method.
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ACE inhibitory activity was evaluated according to the above description with some
modification. ACE solution (0.001 U/mL) was prepared using commercial ACE and the
sample was used instead of the BBS buffer. The ACE inhibitory activity was calculated by
the following equation [23]:

ACE inhibition rate =
A0 − A1

A0
× 100% (9)

where A0 and A1 are the peak areas of HA in the control group (without inhibitory pep-
tides) and the sample (containing inhibitory peptides), respectively. IC50 is defined as the
concentration of an inhibitor when half of the enzyme activity is suppressed.

3.6. Concentration of VPP and GF-6 Analysis

An RP-HPLC column (Zorbax SB-C18, 4.6 mm × 150 mm, Agilent, Palo Alto, CA,
USA) was applied to measure the concentration of VPP and GF-6 with the solvent system
consisting of 0.1% trifluoroacetic (in water, solvent A) and acetonitrile (containing 0.1%
trifluoroacetic, solvent B). For VPP, a gradient of 5–15% solvent B over 15 min at a flow rate
of 1 mL/min was used, while a gradient of 15–35% solvent B over 15 min at the same flow
rate for GF-6. During the analysis process, the detector wavelength was set as 220 nm.

3.7. Specific/Nonspecific Adsorption Tests

BSA was used as a protein model for nonspecific adsorption. In this work, two known
ACE inhibitory peptides, VPP (competitive inhibitory peptides of ACE) and GF-6 (noncom-
petitive inhibitory peptides of ACE), were selected for specific adsorption experiments.

The solutions of protein or peptides with different concentrations in 0.1 M BBS were
prepared. For adsorption, the adsorbent and peptide solutions were mixed and shaken
for a specified time. Then, the mixtures were centrifuged, and the concentrations of the
peptides were detected via HPLC.

The adsorption amount of the materials was calculated as follows:

Qt =
(C0 − Ct)×V

m
(10)

Qe =
(C0 − Ce)×V

m
(11)

where Qt and Qe are the adsorption amounts of peptides (mg/g) at time t and at equilib-
rium, respectively; C0, C, and Ce are the initial concentration, concentration at time t, and
equilibrium concentration of a peptide solution (mg/mL), respectively; V is the volume of
peptide solutions (mL); and m is the weight (g) of the immobilized enzyme.

3.8. Studies of Stability

The activity of ACE@mZIF-8, AmZP and AmZPP5000 was monitored after incubation
with 0.5 mg/mL BSA or 2 M NaCl at room temperature for 30 min. Because of the inhibitory
effect of peptides on ACE, the stability of the material cannot be determined by measuring
the activity after incubation with 2mg/mL VPP and GF-6. Therefore, the stability of the
material was determined by measuring the protein concentration of the supernatant via
the Bradford method.

3.9. Application of AmZPP5000 in Hydrolysate Samples

The hydrolysates were prepared as follows: The fish meal of Leiognathus brevirostris
(100 g) in 300 mL of 0.05 M PBS (pH 9.5) was heated in a boiling water bath for 10 min, and
cooled to 45 ◦C. Alcalase was added in an enzyme/protein molar ratio of 4000 U/g for
3 h at 45 ◦C. Then, 1 mol/L NaOH was used to maintain the pH at 9.5 during hydrolysis.
Enzymatic hydrolysis was terminated through inactivation in a boiling water bath for
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10 min. The hydrolysate was collected by centrifugation (8000 rpm, 15 min) and then stored
at −20 ◦C.

Approximately 10 mg of AmZPP5000 was added to the hydrolysate with a shaking rate
of 120 rpm for 30 min. After adsorption, the desorption experiment was performed in 2 M
NaCl solution for 30 min at room temperature. The inhibitory activity of the supernatant
was determined.

3.10. Statistical Analysis

All the experiments were carried out in triplicate, and the results are presented as
average ± standard deviations. Statistically significant differences of the collected data
were analyzed with one-way ANOVA. Statistical significance was established at p < 0.05.

4. Conclusions

In this work, the surface of immobilized ACE AmZP was successfully modified by
(DA-PEGx-DA) via a convenient “grafting to” strategy for the fabrication of a novel material
(AmZPPx) with high recognition selectivity for ACE inhibitory peptides. AmZPP5000 with
molecular weight of PEG midblock of 5000 showed the best anti-nonspecific adsorption
performance. The specific adsorption capacities of AmZPP5000 for VPP (competitive in-
hibitor for ACE) and GF-6 (noncompetitive inhibitor for ACE) were considerably higher
than nonspecific adsorption capacity. Adsorption kinetic and adsorption isotherm studies
showed that the adsorption of VPP and GF-6 belongs to physical monolayer adsorption
and the diffusion was mainly controlled by intraparticle diffusion. Regarding the contribu-
tion of DA-PEGx-DA polymer loops, AmZPP5000 presented excellent ability to specifically
recognize ACE inhibitory peptides in actual hydrolysates.

Immobilized enzymes are becoming rapid and efficient platforms for screening bioac-
tive components from complex products. We anticipate that capitalizing on the rational
design of polymer loops modified on immobilized enzyme surfaces will benefit applications
involving separation processes.
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