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Abstract: Some of the most important transformations in organic chemistry are rearrangement
reactions, which play a crucial role in increasing synthetic efficiency and molecular complexity.
The development of synthetic strategies involving rearrangement reactions, which can accom-
plish synthetic goals in a very efficient manner, has been an evergreen topic in the synthetic
chemistry community. Xanthenes, pyridin-2(1H)-ones, and 1,6-naphthyridines have a wide range
of biological activities. In this work, we propose the thermal rearrangement of 7,9-dihalogen-
substituted 5-(2-hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]pyridines in DMSO. Previously un-
known 5,7-dihalogenated 5-(2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,6-dihydropyridines and
10-(3,5-dihalogen-2-hydroxyphenyl)-5,6,7,8,9,10-hexahydrobenzo[b][1,6]naphthyridines were syn-
thesized with excellent yields (90–99%). The investigation of the transformation using 1H-NMR
monitoring made it possible to confirm the ANRORC mechanism. The structures of synthesized
compounds were confirmed by 2D-NMR spectroscopy.

Keywords: rearrangement; NMR study; chromeno[2,3-b]pyridine; dimethyl sulfoxide; 2,3,4,9-tetrahydro-
1H-xanthene; 5,6,7,8,9,10-hexahydrobenzo[b][1,6]naphthyridine

1. Introduction

Some of the most important transformations in organic chemistry are rearrangement
reactions, which play a crucial role in increasing synthetic efficiency and molecular di-
versity [1]. The concomitant cleavage and reconstruction of chemical bonds to form new
useful molecules is a process of remarkable complexity in synthetic organic chemistry.
Two significant scientific topics in synthetic chemistry are the highly effective formation
of carbon–carbon bonds and the building of corresponding molecular skeletons [2]. As
a result, the development of synthetic strategies involving rearrangement reactions that
can effectively accomplish these two synthetic goals in a very efficient manner is still an
evergreen topic in the synthetic chemistry community.

There is a plethora of rearrangement reactions that have been developed and ap-
plied in organic chemistry. They have different mechanisms and drastically different
reaction conditions. They include the Wagner–Meerwein, Tiffeneau–Demjanov, Beckman,
Baeyer–Villiger, Claisen, Wolf, and Pinacol reactions, amongst others [3–19].

ANRORC rearrangement occurs in the nucleophilic substitution of heterocyclic com-
pounds and represents a process of the subsequent Addition of the Nucleophile, Ring
Opening, and Ring Closure in the same molecule [20,21]. These rearrangements have
been studied extensively [22]. Many heterocyclic rearrangements are known: aminoimida-
zoles [23], oxadiazoles [24–26], triazole-carboxamides [27], and imidazo[1,4]thiazine [28].

Transformations of chromeno[2,3-b]pyridines are quite common in the literature. How-
ever, these are typically just modifications of functional groups [29,30]. The most interesting
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reactions are those that are caused by the formation of entirely new compounds. However,
publications about these are scarce. Among them are ones about rearrangement [31] and
cyclization [32].

Xanthenes (Figure 1) exhibit these types of pharmacological activities such as antipro-
liferative [33], antibacterial [34], and antioxidant [35] activities; additionally, they are able
to inhibit neuropeptide receptors, which have considerable therapeutic benefits for treating
obesity [36].

Figure 1. Pharmacophore fragments of biologically active compounds.

Pyridin-2(1H)-ones (Figure 1) exhibit antiproliferative properties [37], and they also
increase the body’s resistance to oxidative stress [38].

Derivatives of 1,6-Naphthyridine (Figure 1) act as anticancer [39], antiviral [40], anti-
asthmatic [41], anticonvulsant [42], and analgesic [43] agents.

The dimedone fragment (Figure 1) can be found in numerous compounds that are
effective in treating a variety of disorders, such as tropical infectious diseases [44]. Dime-
done and its derivatives have shown numerous biological properties, including antibacte-
rial [45,46], antifungal [46], and antioxidant [47] properties.

Finally, the straightforward and simple synthesis of novel complex compounds that are
valuable from the perspective of biological activity is a relevant goal in organic chemistry.

2. Results and Discussion

Previously, our scientific group synthesized a wide variety of chromeno[2,3-b]pyridines
with various structures [48–53]. In particular, 5-(2-hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-
b]pyridines 1 were synthesized by two methods (Scheme 1): using three- [54] and pseudo-
four-component reactions [55].

Scheme 1. Multicomponent synthesis of 5-(2-hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-
b]pyridines 1.

2.1. Thermal Rearrangement of 5-(2-Hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]pyridines

This rearrangement was discovered during the development of the approach to 5-(2-
hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]pyridines 1 (Scheme 1) [54,55]. It has been
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found that 5-(2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,6-dihydropyridine 2a appears in
the 1H-NMR spectrum after standing dichloro-substituted compound 1 in an NMR tube
with DMSO-d6 for one week.

Individual experiments revealed that depending on the temperature conditions, 7,9-dihalogen-
substituted chromeno[2,3-b]pyridines 1a–c are converted into the corresponding 5,7-dihalogenated
5-(2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,6-dihydropyridines 2a–c and 10-(3,5-dihalogen-2-
hydroxyphenyl)-5,6,7,8,9,10-hexahydrobenzo-[b][1,6]naphthyridines 3a–c (Scheme 2).

Scheme 2. Thermal rearrangement of 7,9-dihalogen-substituted 5-(2-hydroxy-6-oxocyclohexyl)-5H-
chromeno[2,3-b]pyridines 1.

Regarding the example of compound 1a, optimal rearrangement conditions were
found (Table 1). First of all, the reaction was studied in DMSO and DMF. After chromeno[2,3-
b]pyridine 1a was heated in DMSO at 100 ◦C for 1 h, 5-(2,3,4,9-tetrahydro-1H-xanthen-9-
yl)-6-oxo-1,6-dihydropyridine 2a was obtained, with 99% yield (Table 1, Entry 1).

Table 1. Optimization of thermal rearrangement conditions 1.

Entry Solvent, mL Temperature, ◦C Time, h Yield of 2a, % Yield of 3a, %
1 DMSO, 0.5 100 1 99 2 –
2 DMSO, 0.5 120 1 88 10
3 DMSO, 0.5 150 1 – 98 2

4 DMF, 0.5 100 1 95 2 –
5 DMF, 0.5 150 1 – 94 2

6 H2O, 2 100 1 6 5
7 MeCN, 0.5 82 1 8 –
8 n-PrOH, 0.5 97 1 25 –
9 Dioxane, 0.5 101 1 – –

10 DMSO, 0.5 100 0.5 82 2 –
11 DMSO, 0.5 150 0.5 – 80 2

1 We heated 5-(2-hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]pyridine 1a (0.5 mmol) in the corresponding
solvent. 2 Yields of isolated compounds 2a and 3a (in other cases according to NMR data).

Heating at 120 ◦C resulted in a mixture of compounds 2a and 3a in a ratio of 9:1
(Table 1, Entry 2). After heating chromeno[2,3-b]pyridine 1a at 150 ◦C in DMSO, 5,6,7,8,9,10-
Hexahydrobenzo[b][1,6]naphthyridine 3a was isolated, with a yield of 98% (Table 1, Entry 3).
Slightly lower yields of target compounds 2a and 3a were achieved in DMF (Table 1,
Entries 4 and 5).

Heating 5-(2-hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]pyridine 1a in water, ace-
tonitrile, n-propanol, and dioxane did not show good results (Table 1, Entries 6–9). In these
reactions, mixtures of starting compound 1a, the target 5-(2,3,4,9-tetrahydro-1H-xanthen-9-
yl)-6-oxo-1,6-dihydropyridine 2a, and 5,6,7,8,9,10-hexahydrobenzo[b][1,6]naphthyridine 3a
were mainly isolated. Reducing the reaction time in the best solvent, DMSO, resulted in a
decrease in the yields of the compounds 2a and 3a (Table 1, Entries 10 and 11).
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Under these found optimal conditions, the thermal rearrangement of 7,9-dihalogen-
substituted 5-(2-hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]pyridines 1a–c leads to 5,7-
dihalogenated 5-(2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,6-dihydropyridines 2a–c and
3a–c with 90–99% yields after 1 h (Table 2).

Table 2. Thermal rearrangement of 7,9-dihalogen-substituted 5-(2-hydroxy-6-oxocyclohexyl)-5H-
chromeno[2,3-b]pyridines 1 1.

1 Isolated yields. Procedure for compounds 2: a solution of 0.5 mmol 7,9-dihalogenated chromeno[2,3-b]pyridine-
3-carbonitrile 1 was stirred in 0.5 mL DMSO for 1 h at 100 ◦C. Procedure for compounds 3: a solution of 0.5 mmol
of 7,9-dihalogenated chromeno[2,3-b]pyridine-3-carbonitrile 1 was stirred in 0.5 mL of DMSO for 1 h at 150 ◦C.

By using 1H and 13C NMR data (see Supplementary Materials), IR spectroscopy, mass
spectrometry, and elemental analysis, the structures of the obtained compounds, 2a–c and
3a–c, were confirmed. Additionally, two-dimensional (2D) NMR spectroscopy methods
were used to carry out structure investigations for compounds 2a and 3a (see Section 2.3
and Supplementary Materials).

After the reaction in DMSO had completed, water was added to the reaction mixture,
and target compounds 2 or 3 crystallized in a pure form without the need for chromato-
graphic purification or additional recrystallization. Thermal rearrangement is easy to
perform and only requires the use of basic equipment.

Additionally, it was found that isolated 5,7-dihalogenated 5-(2,3,4,9-tetrahydro-1H-
xanthen-9-yl)-6-oxo-1,6-dihydropyridines, 2a–c, are able to be converted into 10-(3,5-
dihalogen-2-hydroxyphenyl)-5,6,7,8,9,10-hexahydrobenzo[b][1,6]naphthyridines, 3a–c, with
93–97% yields when they are heated up to 150 ◦C in DMSO for 1 h (Scheme 3).
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Scheme 3. Thermal rearrangement of 5,7-dihalogenated 5-(2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-
oxo-1,6-dihydropyridines 2.

Further, the generality of this thermal rearrangement was investigated (Figure 2,
Table 3). Upon heating unsubstituted chromeno[2,3-b]pyridine 1d, as well as 9-methoxy-
and 7-bromo-9-methoxy-substituted compounds 1e and 1h at 100 ◦C, the starting com-
pound was isolated (Table 3, Entries 1, 2, and 5). The heating of chromeno[2,3-b]pyridines
1d, 1e, and 1h at 150 ◦C for 1 h resulted in the decomposition of initial structure 1 (Table 3,
Entries 1, 2, and 5).

Figure 2. Other 5-(2-hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]pyridines 1 studied as objects of
thermal rearrangement.

Table 3. Verification of the generality of the thermal rearrangement of chromeno[2,3-b]pyridines 1
with other substituents 1,2.

Entry Chromeno[2,3-
b]pyridine 1

Heating in DMSO at 100 ◦C Heating in DMSO at 150 ◦C

Yield of 2, % Yield of 3, % Yield of 2, % Yield of 3, %

1 1d – – Decomposition
2 1e – – Decomposition
3 1f 7 – 3 7
4 1g 11 – 4 7
5 1h – – Decomposition
6 1j 80 – – 78
7 1k 82 – – 80

1 We heated 5-(2-hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]pyridine 1 (0.5 mmol) in DMSO (0.5 mL) at 100 ◦C
or 150 ◦C within 1 h. 2 Yields according to NMR data.
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Involving monohalogenated compounds 1f and 1g in the rearrangement showed
different results (Table 3, Entries 3 and 4). The rearrangement proceeded partly at 100 ◦C,
but at 150 ◦C, it resulted in the formation of compounds 2 and 3, as well as a partial
decomposition of starting chromeno[2,3-b]pyridines 1f and 1g.

The rearrangement of chromeno[2,3-b]pyridine 1i is also possible. It is supposed
that a strong acceptor in molecule 1, in this case, a nitro group in the seventh position,
makes the rearrangement more favorable. The rearrangement takes place even during the
synthesis of starting chromeno[2,3-b]pyridine 1i. According to the 1H NMR spectra, all
three compounds (1i, 2i, and 3i) were detected at once in a ratio of approximately 1:1:1 in
the reaction mixture after the synthesis of chromeno[2,3-b]pyridine 1i.

In the case of 1,3-cyclohexanedione derivatives 1j and 1k, the rearrangement also
take place with 78–82% yields (Table 3, Entries 6 and 7). At both temperatures, how-
ever, it is accompanied by the partial decomposition of the starting dihalogen-substituted
chromeno[2,3-b]pyridines, 1j and 1k. Compounds 2j,k and 3j,k could not be isolated in
pure forms, even after several recrystallizations.

Previously, the synthesis of benzo[b][1,6]naphthyridine derivatives in a basic medium
via the rearrangement of 6,7,8,9,10-tetrahydro-5H-chromeno[2,3-b]pyridines has been de-
scribed (Scheme 4) [22]. However, for our compounds, 1, these conditions were not suitable.
Chromeno[2,3-b]pyridines 1d, 1e, and 1g remained unchanged, and upon trying to intro-
duce chromeno [2,3-b]pyridines 1a–c,f,g,i–k into the reaction, only mixtures of compounds
2 and 3 formed in various ratios.

Scheme 4. ANRORC rearrangement of 6,7,8,9-tetrahydro-5H-chromeno[2,3-b]pyridines.

2.2. The 1H-NMR Monitoring of Thermal Rearrangement

The following ANRORC (Addition of the Nucleophile, Ring Opening, and Ring
Closure) mechanism of the thermal rearrangement of chromeno[2,3-b]pyridines 1 into
5,7-dihalogenated 5-(2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,6-dihydropyridines 2 and
10-(3,5-dihalogen-2-hydroxyphenyl)-5,6,7,8,9,10-hexahydrobenzo[b][1,6]naphthy-ridines 3
(Scheme 5) was proposed based on the literature data [21,31].

Scheme 5. Proposed mechanism of thermal rearrangement of 5-(2-hydroxy-6-oxocyclohexyl)-5H-
chromeno[2,3-b]pyridines 1.
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At the first stage, a nucleophilic attack of the DMSO molecule at the pyridine fragment
of chromeno[2,3-b]pyridine 1 takes place. This results in the opening of the pyran ring. The
intramolecular interaction of the oxygen anion of the dihalogen-substituted benzene frag-
ment with the electron-deficient carbon atom of cyclohexanedione leads to the formation of
another pyran ring (ring closure). Additionally, 5-(2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-
oxo-1,6-dihydropyridine 2 (Scheme 5) is formed with the expulsion of the DMSO molecule.
The first stage occurs regardless of whether the process is carried out at 100 ◦C or 150 ◦C.

Further, if the process is carried out at 150 ◦C, compound 2 is also attacked by the
DMSO molecule and undergoes pyran ring opening. Then, the amino group of pyridinone
participates in cyclization (ring closure) to form a dihydropyridine fragment of the final
structure. Further transformations form 5,6,7,8,9,10-hexahydrobenzo[b][1,6]naphthyridine
3 (Scheme 5).

This rearrangement process was investigated using 1H-NMR monitoring (Figures 3 and 4).
The experiments were carried out in NMR tubes with dilute solutions (15 mg of substance per
600 µL of DMSO-d6).

Figure 3. Monitoring of the rearrangement process at 100 ◦C by 1H-NMR (for compound 1b). Black
captions used for 1b; blue captions used for 2b.
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Figure 4. Monitoring of the rearrangement process at 150 ◦C by 1H-NMR (for compound 1b).

The first stage involves investigating the transformation of chromeno[2,3-b]pyridine
1b at 100 ◦C. Figure 3 shows the change in intensity of signals from the protons of methyl
groups and aromatic protons in the 1H-NMR spectra. The process proceeds rapidly; 2
min after the start of the heating phase, 5-(2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,6-
dihydropyridine 2b begins to prevail over starting compound 1b. chromeno[2,3-b]pyridine
1b almost completely converts to 2,3,4,9-tetrahydro-1H-xanthene 2b after 10 min.

At the next stage, we studied the transformation of chromeno[2,3-b]pyridine 1b at 150 ◦C.
Figure 4 shows the change in the intensity of signals from the protons of methyl groups in the
1H-NMR spectra. This rearrangement also proceeds rapidly. After 10 min, 2,3,4,9-tetrahydro-
1H-xanthene 2b is mostly converted to 5,6,7,8,9,10-hexahydrobenzo[b][1,6]naphthyridines 3b.

Therefore, the thermal rearrangement mechanism proposed above (Scheme 4) does
not contradict the monitoring data.

2.3. Confirmation of the Structure of the Synthesized 2,3,4,9-Tetrahydro-1H-xanthenes 2 and
5,6,7,8,9,10-Hexahydrobenzo[b][1,6]naphthyridines 3

The structures of compounds 2a and 3a were additionally confirmed by 1H, 13C, and
15N NMR spectroscopy, including two-dimensional (2D) methods (see Supplementary
Information). Key correlation interactions are shown by the arrows in Figures 5 and 6.
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Figure 5. The structure of 5-(2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,6-dihydropyridine 2a. Key
2D NMR correlations are shown by arrows.

Figure 6. The structure 10-(3,5-dichloro-2-hydroxyphenyl)-5,6,7,8,9,10-hexahydrobenzo[b][1,6]-
naphthyridines 3a. Key 2D NMR correlations are shown by arrows.

First, 5-(2,3,4,9-Tetrahydro-1H-xanthen-9-yl)-6-oxo-1,6-dihydropyridine 2a (Figure 5)
was considered. From the {1H-15N}-HSQC spectrum, it was revealed that the molecule
contains two NH2 groups and one NH group. From the {1H-1H}-NOESY spectrum, the
following NOE interactions were revealed: one between the methyl groups and an NH2
group at C4; one between a proton at C9′ and an NH2 group at C4; one between the protons
at C9′ and C8′. It should be especially noted that there are no correlations between the
cyclohexanedione and the condensed benzene fragment; therefore, they are in the same
plane and form a tricyclic system.

In addition, no interactions between the pyridinone ring and the xanthene system
were recorded in the {1H-13C} HMBC spectrum.

Based on the results obtained, as well as the data from IR spectroscopy and mass
spectrometry, it can be concluded that the proposed structure for compound 2a is correct.

Next, 10-(3,5-dichloro-2-hydroxyphenyl)-5,6,7,8,9,10-hexahydrobenzo[b][1,6]-naphthyridine
3a was considered (Figure 6). From the 15N- and {1H-15N}-HSQC spectra, it was revealed that
the molecule contains one NH2 group and one NH group. From the {1H-1H}-NOESY spectrum,
the following NOE interactions were revealed: one between the methyl groups and an aromatic
proton at C4; one between an aromatic proton at C6 and an NH2 group; one between a proton
at C10′ and hydroxy groups, as well as N(5′)H. It should be especially noted that there are no
correlations between the cyclohexanedione and pyridine fragments; therefore, they are in the
same plane and form a tricyclic system.

A tricyclic system was also confirmed by the {1H-13C} HMBC spectrum. Cross peaks
were found for aliphatic NH and CH2. In addition, no interactions between the dihalogen-
substituted benzene fragment and the naphthyridine system were detected.

Based on the results obtained, as well as the data from IR spectroscopy and mass
spectrometry, it can be concluded that the proposed structure for compound 3a is correct.

The 2D NMR spectra of the compounds 2a and 3a are presented in the Supplemen-
tary Materials.
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3. Materials and Methods
3.1. General Methods

Solvents were purchased from commercial suppliers and used as received, without
purification. The synthesis of 5-(2-Hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]pyridine-
3-carbonitriles 1 was performed in accordance with the following methods [54,55].

Using Gallenkamp melting-point apparatus (Gallenkamp & Co., Ltd., London, UK),
melting points were measured. At room temperature, 1H and 13C-NMR spectra were
obtained in DMSO-d6 with a Bruker AM300 spectrometer (Bruker Corporation, Billerica,
MA, USA). The values for chemical shift are given in relation to Me4Si. A Bruker AV500
spectrometer (Bruker Corporation, Billerica, MA, USA) was used to record two-dimensional
(2D) NMR spectra. A Bruker AV400 spectrometer (Bruker Corporation, Billerica, MA, USA)
was used to register the 1H-NMR monitoring spectra. IR spectra were determined with
a Bruker ALPHA-T FT-IR spectrometer (Bruker Corporation, Billerica, MA, USA) in KBr
pellets. With a Kratos MS-30 spectrometer (Kratos Analytical Ltd., Manchester, UK), mass
spectra (EI = 70 eV) were acquired. For elemental analysis, a 2400 Elemental Analyzer
(Perkin Elmer Inc., Waltham, MA, USA) was applied.

3.2. Thermal Rearrangement of 7,9-Dihalogenated
5-(2-Hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]pyridine-3-carbonitriles 1 at 100 ◦C

A solution of 7,9-dihalogenated 5-(2-hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]-
pyridine-3-carbonitrile 1 (0.5 mmol) was stirred in DMSO (0.5 mL) for 1 h at 100 ◦C. Upon
completion of the reaction, the reaction mixture was allowed to cool to room temperature,
water (5 mL) was added to the reaction mixture, and the resulting precipitate of pure 5,7-
dihalogenated 5-(1-oxo-2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,6-dihyd-ropyridine-3-
carbonitrile 2 was separated by filtration, washed with cold ethanol (2 × 3 mL), and dried.

2,4-Diamino-5-(5,7-dichloro-3,3-dimethyl-1-oxo-2,3,4,9-tetrahydro-1H-xanthen-9-yl)
-6-oxo-1,6-dihydropyridine-3-carbonitrile (2a): Yellowish solid; yield—99% (0.220 g); m.p. = 296–297 ◦C
(decomp.) (from DMSO-H2O); FTIR (KBr) cm−1: 3214, 2952, 2203, 1655, 1620, 1573, 1458,
1376, 1242, and 1034. 1H-NMR (300 MHz, DMSO-d6): δ 0.98 (s, 3H, CH3), 1.06 (s, 3H, CH3),
2.09 (d, 2J = 16.2 Hz, 1H, CH2), 2.27 (d, 2J = 16.2 Hz, 1H, CH2), 2.44 (d, 2J = 16.2 Hz, 1H,
CH2), 2.59 (d, 2J = 16.2 Hz, 1H, CH2), 4.89 (s, 1H, CH), 6.34 (br s, 2H, NH2), 6.54 (br s, 2H,
NH2), 6.92 (s, 1H, CH Ar), 7.43 (s, 1H, CH Ar), and 9.67 (br s, 1H, NH) ppm; 13C-NMR (75
MHz, DMSO-d6): δ 26.4, 27.5, 28.9, 31.8, 40.3, 50.3, 62.1, 98.2, 110.2, 116.8, 120.4, 126.8 (2C),
126.9, 129.4, 145.2, 153.0, 154.6, 159.8, 164.4, and 196.4 ppm; MS (m/z, relative intensity %):
448 (37Cl, 37Cl, [M]+, 1), 446 (37Cl, 35Cl, [M]+, 6), 444 (35Cl, 35Cl, [M]+, 9), 364 (37Cl, 37Cl,
3), 362 (37Cl, 35Cl, 18), 360 (35Cl, 35Cl, 24), 283 (11), 279 (7), 243 (37Cl, 37Cl, 1), 241 (37Cl,
35Cl, 5), 239 (35Cl, 35Cl, 8), 166 (11), 150 (17), 122 (27), 77 (39), and 43 (100); Anal. calcd. for
C21H18Cl2N4O3: C, 56.64; H, 4.07; N, 12.58%; found: C, 56.57; H, 4.12; N, 12.54%.

2,4-Diamino-5-(5,7-dibromo-3,3-dimethyl-1-oxo-2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,
6-dihydropyridine-3-carbonitrile (2b): Yellowish solid; yield—98% (0.262 g); m.p. = 294–295 ◦C (de-
comp.) (from DMSO-H2O); FTIR (KBr) cm−1: 3330, 3228, 2202, 1654, 1620, 1563, 1453, 1376,
1240, and 1031. 1H-NMR (300 MHz, DMSO-d6): δ 0.98 (s, 3H, CH3), 1.06 (s, 3H, CH3), 2.08
(d, 2J = 15.9 Hz, 1H, CH2), 2.26 (d, 2J = 15.9 Hz, 1H, CH2), 2.42 (d, 2J = 15.9 Hz, 1H, CH2),
2.58 (d, 2J = 15.9 Hz, 1H, CH2), 4.89 (s, 1H, CH), 6.35 (br s, 2H, NH2), 6.54 (br s, 2H, NH2),
7.07 (s, 1H, CH Ar), 7.63 (s, 1H, CH Ar), and 9.65 (br s, 1H, NH) ppm; 13C-NMR (75 MHz,
DMSO-d6): δ 26.3, 27.5, 28.9, 31.7, 40.3, 50.3, 62.0, 98.2, 109.9, 110.3, 114.9, 116.8, 129.7, 130.3,
132.1, 146.6, 153.0, 154.6, 159.7, 164.4, and 196.2 ppm; MS (m/z, relative intensity %): 536
(81Br, 81Br, [M]+, 6), 534 (81Br, 79Br, [M]+, 14), 532 (79Br, 79Br, [M]+, 8), 452 (81Br, 81Br, 12), 450
(81Br, 79Br, 27), 448 (79Br, 79Br, 13), 385 (2), 371 (81Br, 81Br, 4), 369 (81Br, 79Br, 8), 367 (79Br, 79Br,
4), 283 (7), 227 (2), 220 (5), 150 (18), 83 (21), and 41 (100); Anal. calcd. for C21H18Br2N4O3:
C, 47.22; H, 3.40; N, 10.49%; found: C, 47.16; H, 3.45; N, 10.44%.

2,4-Diamino-5-(5,7-diiodo-3,3-dimethyl-1-oxo-2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,
6-dihydropyridine-3-carbonitrile (2c): Yellowish solid; yield—98% (0.308 g); m.p. = 268–269 ◦C
(decomp.) (from DMSO-H2O); FTIR (KBr) cm−1: 3317, 3206, 2199, 1617, 1578, 1475, 1440,
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1374, 1243, and 1019. 1H-NMR (300 MHz, DMSO-d6): δ 0.98 (s, 3H, CH3), 1.06 (s, 3H,
CH3), 2.07 (d, 2J = 16.2 Hz, 1H, CH2), 2.25 (d, 2J = 16.2 Hz, 1H, CH2), 2.42 (d, 2J = 16.2 Hz,
1H, CH2), 2.57 (d, 2J = 16.2 Hz, 1H, CH2), 4.83 (s, 1H, CH), 6.32 (br s, 2H, NH2), 6.53
(br s, 2H, NH2), 7.21 (s, 1H, CH Ar), 7.87 (s, 1H, CH Ar), and 9.61 (br s, 1H, NH) ppm;
13C-NMR (75 MHz, DMSO-d6): δ 26.3, 27.4, 28.9, 31.7, 40.3, 50.3, 86.1, 88.0, 98.3, 110.6, 116.8,
129.1, 136.5, 136.9, 143.1, 149.6, 152.9, 154.6, 159.6, 164.7, and 196.1 ppm; MS (m/z, relative
intensity %): 628 ([M]+, 13), 544 (9), 463 (23), 336 (4), 283 (10), 209 (51), 150 (63), 127 (70),
41 (100), and 15 (25); Anal. calcd. for C21H18I2N4O3: C, 40.15; H, 2.89; N, 8.92%; found: C,
40.10; H, 2.96; N, 8.87%.

3.3. Thermal Rearrangement of 7,9-Dihalogenated
5-(2-Hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]pyridine-3-carbonitriles 1 at 150 ◦C

A solution of 7,9-dihalogenated 5-(2-hydroxy-6-oxocyclohexyl)-5H-chromeno[2,3-b]-
pyridine-3-carbonitrile 1 (0.5 mmol) was stirred in DMSO (0.5 mL) for 1 h at 150 ◦C. Upon
completion of the reaction, the reaction mixture was allowed to cool to room tempera-
ture, water (5 mL) was added to the reaction mixture, and the resulting precipitate of
pure 3,5-dihalogenated 10-(2-hydroxyphenyl)-1-hydroxy-7,7-dimethyl-9-oxo-5,6,7,8,9,10-
hexahydrobenzo[b][1,6]naphthyridine-4-carbonitrile 3 was separated by filtration, washed
with cold ethanol (2 × 3 mL), and dried.

3-Amino-10-(3,5-dichloro-2-hydroxyphenyl)-1-hydroxy-7,7-dimethyl-9-oxo-5,6,7,8,9,10-
hexahydrobenzo[b][1,6]naphthyridine-4-carbonitrile (3a): Yellowish solid; yield—98% (0.218 g);
m.p. = 274–275 ◦C (decomp.) (from DMSO-H2O); FTIR (KBr) cm−1: 3294, 3179, 2204, 1655, 1626,
1518, 1468, 1377, 1227, and 1010. 1H-NMR (300 MHz, DMSO-d6): δ 1.02 (s, 3H, CH3), 1.07 (s, 3H,
CH3), 2.10 (d, 2J = 16.1 Hz, 1H, CH2), 2.28 (d, 2J = 16.1 Hz, 1H, CH2), 2.60 (d, 2J = 16.1 Hz, 1H,
CH2), 2.79 (d, 2J = 16.1 Hz, 1H, CH2), 4.97 (s, 1H, CH), 6.72 (s, 1H, CH Ar), 7.03 (br s, 2H, NH2),
7.27 (s, 1H, CH Ar), 9.22 (br s, 1H, NH), and 11.25 (br s, 2H, 2 OH) ppm; 13C-NMR (75 MHz,
DMSO-d6): δ 27.0, 28.2, 29.7, 32.5, 40.2, 50.2, 63.4, 96.5, 110.2, 115.2, 123.5, 123.8, 126.6, 127.3, 138.3,
146.4, 149.7, 153.0, 155.1, 162.6, and 195.4 ppm; MS (m/z, relative intensity %): 446 (37Cl, 35Cl,
[M]+, 1), 444 (35Cl, 35Cl, [M]+, 1), 341 (1), 283 (37Cl, 37Cl, 1), 281 (37Cl, 35Cl, 3), 279 (35Cl, 35Cl, 4),
239 (1), 199 (1), 166 (37Cl, 37Cl, 2), 164(37Cl, 35Cl, 8), 162 (35Cl, 35Cl, 14), 113 (4), 78 (84), 63 (100),
and 15 (54); Anal. calcd. for C21H18Cl2N4O3: C, 56.64; H, 4.07; N, 12.58%; found: C, 56.55; H,
4.12; N, 12.55%.

3-Amino-10-(3,5-dibromo-2-hydroxyphenyl)-1-hydroxy-7,7-dimethyl-9-oxo-5,6,7,8,9,10-
hexahydrobenzo[b][1,6]naphthyridine-4-carbonitrile (3b): Yellowish solid; yield—98% (0.262 g);
m.p. = 267–268 ◦C (decomp.) (from DMSO-H2O); FTIR (KBr) cm−1: 3289, 3180, 2204, 1655,
1626, 1518, 1466, 1376, 1226, and 1010. 1H-NMR (300 MHz, DMSO-d6): δ 1.03 (s, 3H, CH3),
1.08 (s, 3H, CH3), 2.09 (d, 2J = 16.1 Hz, 1H, CH2), 2.29 (d, 2J = 16.1 Hz, 1H, CH2), 2.60 (d,
2J = 16.1 Hz, 1H, CH2), 2.79 (d, 2J = 16.1 Hz, 1H, CH2), 4.96 (s, 1H, CH), 6.88 (s, 1H, CH Ar),
7.04 (br s, 2H, NH2), 7.50 (s, 1H, CH Ar), 9.23 (s, 1H, NH), 11.25 (br s, 1H, OH), and 11.39 (s,
1H, OH) ppm; 13C-NMR (75 MHz, DMSO-d6): δ 26.4, 27.8, 29.3, 32.0, 39.7, 49.7, 63.0, 96.0, 109.8,
111.0, 113.2, 114.6, 129.6, 132.2, 137.9, 146.0, 150.5, 152.5, 154.5, 162.2, and 194.8 ppm; MS (m/z,
relative intensity %): 536 (81Br, 81Br, [M]+, 6), 534 (81Br, 79Br, [M]+, 11), 532 (79Br, 79Br, [M]+, 7),
437 (81Br, 81Br, 1), 435 (81Br, 79Br, 2), 433 (79Br, 79Br, 1), 384 (3), 371 (81Br, 81Br, 4), 369 (81Br, 79Br,
8), 367 (79Br, 79Br, 6), 283 (61), 254 (81Br, 81Br, 33), 252 (81Br, 79Br, 74), 250 (79Br, 79Br, 36), 172
(6), 143 (9), 78 (61), and 15 (100); Anal. calcd. for C21H18Br2N4O3: C, 47.22; H, 3.40; N, 10.49%;
found: C, 47.16; H, 3.49; N, 10.44%.

3-Amino-1-hydroxy-10-(2-hydroxy-3,5-diiodophenyl)-7,7-dimethyl-9-oxo-5,6,7,8,9,10-he
xahydrobenzo[b][1,6]naphthyridine-4-carbonitrile (3c): Yellowish solid; yield—90% (0.283 g);
m.p. = 258–259 ◦C (decomp.) (from DMSO-H2O); FTIR (KBr) cm−1: 3412, 3192, 2204, 1627,
1515, 1460, 1373, 1295, 1225, and 1013. 1H-NMR (300 MHz, DMSO-d6): δ 1.02 (s, 3H, CH3),
1.06 (s, 3H, CH3), 2.05 (d, 2J = 16.0 Hz, 1H, CH2), 2.28 (d, 2J = 16.0 Hz, 1H, CH2), 2.59 (d,
2J = 16.0 Hz, 1H, CH2), 2.76 (d, 2J = 16.0 Hz, 1H, CH2), 4.89 (s, 1H, CH), 6.97–7.09 (m, 3H,
NH2 + CH Ar), 7.73 (s, 1H, CH Ar), 9.20 (s, 1H, NH), 11.22 (br s, 1H, OH), and 11.48 (s, 1H,
OH) ppm; 13C-NMR (75 MHz, DMSO-d6): δ 26.7, 28.3, 30.0, 32.4, 50.1, 63.5, 83.5, 90.5, 96.7,
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110.4, 115.0, 136.9, 137.4, 141.5, 143.8, 146.4, 153.0, 153.9, 154.9, 162.8, and 195.6 ppm; MS
(m/z, relative intensity %): 628 ([M]+, 1), 592 (6), 467 (1), 346 (100), 283 (7), 220 (10), 191
(4), 127 (14), 92 (7), and 18 (12); Anal. calcd. for C21H18I2N4O3: C, 40.15; H, 2.89; N, 8.92%;
found: C, 40.10; H, 2.96; N, 8.88%.

3.4. Thermal Rearrangement of 5,7-Dihalogenated
5-(1-oxo-2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,6-dihydropyridine-3-carbonitriles 2 at 150 ◦C

A solution of 5,7-dihalogenated 5-(1-oxo-2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-
1,6-dihydropyridine-3-carbonitriles 2 (0.5 mmol) was stirred in DMSO (0.5 mL) for 1 h at
150 ◦C. Upon completion of the reaction, the reaction mixture was allowed to cool to room
temperature, water (5 mL) was added to the reaction mixture, and the resulting precipitate
of pure 3,5-dihalogenated 10-(2-hydroxyphenyl)-1-hydroxy-7,7-dimethyl-9-oxo-5,6,7,8,9,10-
hexahydrobenzo[b][1,6]naphthyridine-4-carbonitrile 3 was separated by filtration, washed
with cold ethanol (2 × 3 mL), and dried.

3-Amino-10-(3,5-dichloro-2-hydroxyphenyl)-1-hydroxy-7,7-dimethyl-9-oxo-5,6,7,8,9,10
-hexahydrobenzo[b][1,6]naphthyridine-4-carbonitrile (3a): Yellowish solid; yield—97% (0.216 g);
m.p. = 274–275 ◦C (decomp.) (from DMSO-H2O); 1H-NMR (300 MHz, DMSO-d6): δ 1.02 (s,
3H, CH3), 1.07 (s, 3H, CH3), 2.10 (d, 2J = 16.1 Hz, 1H, CH2), 2.28 (d, 2J = 16.1 Hz, 1H, CH2), 2.61
(d, 2J = 16.1 Hz, 1H, CH2), 2.79 (d, 2J = 16.1 Hz, 1H, CH2), 4.97 (s, 1H, CH), 6.72 (s, 1H, CH Ar),
7.04 (br s, 2H, NH2), 7.27 (s, 1H, CH Ar), 9.23 (br s, 1H, NH), and 11.24 (br s, 2H, 2 OH) ppm.

3-Amino-10-(3,5-dibromo-2-hydroxyphenyl)-1-hydroxy-7,7-dimethyl-9-oxo-5,6,7,8,9,10
-hexahydrobenzo[b][1,6]naphthyridine-4-carbonitrile (3b): Yellowish solid; yield—97% (0.259 g);
m.p. = 267–268 ◦C (decomp.) (from DMSO-H2O); 1H-NMR (300 MHz, DMSO-d6): δ 1.03 (s,
3H, CH3), 1.08 (s, 3H, CH3), 2.09 (d, 2J = 16.1 Hz, 1H, CH2), 2.29 (d, 2J = 16.1 Hz, 1H, CH2),
2.61 (d, 2J = 16.1 Hz, 1H, CH2), 2.79 (d, 2J = 16.1 Hz, 1H, CH2), 4.96 (s, 1H, CH), 6.88 (s, 1H,
CH Ar), 7.05 (br s, 2H, NH2), 7.50 (s, 1H, CH Ar), 9.23 (s, 1H, NH), 11.26 (br s, 1H, OH),
and 11.39 (s, 1H, OH) ppm.

3-Amino-1-hydroxy-10-(2-hydroxy-3,5-diiodophenyl)-7,7-dimethyl-9-oxo-5,6,7,8,9,10
-hexahydrobenzo[b][1,6]naphthyridine-4-carbonitrile (3c): Yellowish solid; yield—93% (0.292 g);
m.p. = 258–259 ◦C (decomp.) (from DMSO-H2O); 1H-NMR (300 MHz, DMSO-d6): δ 1.02
(s, 3H, CH3), 1.06 (s, 3H, CH3), 2.05 (d, 2J = 16.0 Hz, 1H, CH2), 2.27 (d, 2J = 16.0 Hz, 1H,
CH2), 2.59 (d, 2J = 16.0 Hz, 1H, CH2), 2.76 (d, 2J = 16.0 Hz, 1H, CH2), 4.89 (s, 1H, CH),
6.97–7.10 (m, 3H, NH2 + CH Ar), 7.73 (s, 1H, CH Ar), 9.21 (s, 1H, NH), 11.22 (br s, 1H, OH),
and 11.48 (s, 1H, OH) ppm.

4. Conclusions

In summary, the thermal rearrangement of 7,9-dihalogen-substituted 5-(2-hydroxy-6-
oxocyclohexyl)-5H-chromeno[2,3-b]pyridine-3-carbonitriles into previously unknown 5,7-
dihalogenated 5-(2,3,4,9-tetrahydro-1H-xanthen-9-yl)-6-oxo-1,6-di-hydropyridines and 10-
(3,5-dihalogen-2-hydroxyphenyl)-5,6,7,8,9,10-hexahydrobenzo-[b][1,6]naphthyridines was
observed. The developed approach is facile and easy for isolating pure final compounds
directly from the reaction mixture using the addition of water, and the yields of the final
compounds are 90–99%.

The proposed structures of synthesized 2,3,4,9-tetrahydro-1H-xanthenes and 5,6,7,8,9,10-
hexahydrobenzo[b][1,6]naphthyridines were clearly confirmed by 2D NMR spectroscopy.

During the investigation of the reaction mechanism using 1H-NMR monitoring at
temperatures of 100 ◦C and 150 ◦C, it was found that the reaction proceeded in polar
solvents. The reaction occurred via the ANRORC mechanism. It was found that the reaction
occurred rapidly. Heating at 100 ◦C resulted in 2,3,4,9-tetrahydro-1H-xanthene formation;
heating at 150 ◦C also lead to 2,3,4,9-tetrahydro-1H-xanthene, which then transformed into
5,6,7,8,9,10-hexahydrobenzo[b][1,6]naphthyridine.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28073139/s1, Figures S1–S6: The 1H and 13C spectra of
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synthesized compounds 2a–c; Figures S7–S12: The 1H and 13C spectra of synthesized compounds
3a–c; Figures S13–S16: The 15N- and 2D-NMR spectra of 2a; Figures S17–S20: The 15N- and 2D-NMR
spectra of 3a.
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