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Abstract: Disease-related biomarkers may serve as indicators of human disease. The clinical diagno-
sis of diseases may largely benefit from timely and accurate detection of biomarkers, which has been
the subject of extensive investigations. Due to the specificity of antibody and antigen recognition,
electrochemical immunosensors can accurately detect multiple disease biomarkers, including pro-
teins, antigens, and enzymes. This review deals with the fundamentals and types of electrochemical
immunosensors. The electrochemical immunosensors are developed using three different catalysts:
redox couples, typical biological enzymes, and nanomimetic enzymes. This review also focuses
on the applications of those immunosensors in the detection of cancer, Alzheimer’s disease, novel
coronavirus pneumonia and other diseases. Finally, the future trends in electrochemical immunosen-
sors are addressed in terms of achieving lower detection limits, improving electrode modification
capabilities and developing composite functional materials.
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1. Introduction

Biomarkers are significant biochemical indications of physiological abilities that are
used to predict the onset or progression of diseases [1]. It is possible to detect biomarkers
and predict how a disease will progress [2]. Particularly, early biomarkers are crucial
for the early diagnosis of diseases and are utilized for disease diagnosis and staging [3].
Low dosages, high sensitivity, quick reaction times, and the presence of fixed biochemical
reactions are characteristics of biomarkers, making them difficult to identify [4,5].

Traditionally, the clinical diagnosis of cancer relies on various medical imaging tech-
niques to detect cancerous tissue [6]. Actually, before a malignant mass forms, biomarkers
linked to the early stages of cancer appear in the blood first [7,8]. Therefore, various tumor
biomarkers were applied in clinical practice as a supplement to early cancer screening [9,10].
For example, squamous cell antigen is used to detect lung cancer, and prostate specific
antigen (PSA) is used to detect prostate cancer [11]. Alzheimer’s disease is a typical neuro-
logical disease of the elderly and is not curable [12]. The β protein and the P53 protein in
peripheral blood and cerebrospinal fluid are the biomarkers for the clinical beginning of
Alzheimer’s disease [13,14]. Additionally, procalcitonin is the marker for septicemia. The
parathyroid hormone (PTH) is the marker for thyroid function, and the receptor activator
nuclear factor-B biomarker is the marker for rheumatoid arthritis [15,16]. There has been
some research on biomarkers for the diagnosis of diseases [17].

The sensor is normally composed of a receptor, a transducer, and a detector [18].
Immunosensing techniques combine sensors with immunological responses, in which
antibodies and antigens are designed to conjugate with target analytes to produce specific
changes [19]. The transducer can convert and transmit physicochemical signals in response
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to biological changes, which are received by the detector [20]. Constructed immunosen-
sors in this fashion transform the concentration of the biomolecule into the quantifiable
signal [21,22]. Among all biosensing principles, the electrochemical technique, which is
generally sensitive, affordable and requires low power consumption, should be suitable
for applications [23]. The classic case is commercial blood glucose meters for glucose
determination [24]. Particularly, electrochemical immunosensors use antibodies or antigens
as biomolecular recognition element components placed on the electrode surface, the forma-
tion of stable immunological complexes to generate an electrical signal, and the acquisition
and output of electrochemical signals to complete the target detection (proteins, bacteria,
viruses, or small molecules) [25,26]. The constructed electrochemical immunosensor has
the advantages of both immunosensor and electrochemical techniques. Because it is quick,
sensitive, and selective, the electrical output signal of electrochemical immunosensors is
employed to analyze and detect disease biomarkers [27,28].

In this review, we supply a summary of the fundamentals and types of immunosensing.
The applications of electrochemical immunosensors in the detection of disease biomarkers
are reviewed and discussed in detail. In addition, the future prospects of electrochemical
immunosensors in clinical diagnostics are presented.

2. Types of Electrochemical Immunosensors

Electrochemical devices are effective tools used for delicate measurements in bio-
analysis and diagnostics [29]. The immunosensor using electrochemical devices is an ideal
platform in clinical diagnosis for quantitative immunoassays, combining the benefits of
electrochemical processes, immune recognition reactions and biosensor devices [30].

The high specificity and selectivity resulting from antigen–antibody immune recogni-
tion allow these immunosensors to be used in complex biological matrices such as blood,
plasma, or urine. The electrochemical Immunosensors have the advantages of rapid de-
tection, reusability, accountability, elevated throughput and the possibility of label-free
detection. However, disadvantages such as difficult electrode maintenance, costly protein
handling and short sensor lifetime cannot be ignored [31,32].

Typically, there are two categories of electrochemical immunosensors that are based
on the accurate identification of antigen and antibody: competitive immunosensors and
noncompetitive immunosensors [33].

2.1. Competitive Electrochemical Immunosensors

Competitive immunoassays are those in which the target analyte (such as antigen,
protein, and small molecule) competes recognition site on the surface of an antibody
with an antigen that has been labeled with a signal molecule, as shown in Figure 1a [31].
In general, the antibody is first immobilized on the surface of the electrode and then
incubated with a mixture of target analyte and quantitatively labeled antigen. Finally,
the concentration of the target analyte is obtained by reading the electrical signals [34,35].
The immunoreaction signal between the antigen and the antibody is amplified into an
electrical signal by the labeled signal molecule [36]. The labeled antigen competes with
the target antigen for binding to the antibody, and when the concentration of the antigen
in the sample is high, less of the labeled antigen will specifically bind to the antibody.
Therefore, for quantitative analysis, the amount of labeled antigen interacting with the
antibody is inversely proportional to the amount of antigen in the sample. The linear
calibration graph is shown as a line plot in Figure 1a. The superiority of competitive
immunoassays is in terms of sensitivity, selectivity, and reproducibility. However, the
drawbacks of the protein’s high cost and vulnerability to inactivation have hampered its
development [37,38]. A competitive electrochemical immunosensor was constructed using
a competitive immunoassay.
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Figure 1. A schematic representation of (a) competitive immunoassays and (b) noncompetitive
immunoassays [31]. Copyright (2016) Wiley.

2.2. Noncompetitive Electrochemical Immunosensors

Noncompetitive immunoassays involve the immunoconjugation of the chemical to
be examined with two antibodies, i.e., the primary antibody and the secondary antibody,
as shown in Figure 1b [33]. The primary and secondary antibodies labeled with signal
molecules, which are both wrapped around the target, are combined to form an immune
complex [39]. In this process, the primary antibody is immobilized on the surface of a
solid matrix, which traps the antigen at the electrode interface, hence the name capture
antibody. The secondary antibody binds to the antigen–antibody complex to produce a
detection signal. The signal is derived from the labeled signal molecules within the system.
Both the primary and secondary antibodies were overdosed, and unbound antibodies
were removed by washing after each step of the reaction [40]. However, the primary and
secondary antibodies can only form an immune complex in the presence of an antigen and
the two antibodies do not react with each other. Because the “primary antibody–antigen–
secondary antibody” structure is similarly sandwich-like shape, these immunosensors
are based on noncompetitive immunoassays occasionally referred to as “sandwich type”
immunosensors [41]. In this format, the labeled antibody binds specifically to the target
antigen in the sample, and the concentration of the labeled antibody that labels the signal is
proportional to the concentration of the antigen in the sample, a model shown in the linear
calibration plot in Figure 1b.

Since noncompetitive immunosensors require primary and secondary antibodies to col-
lectively recognize the target antigen, reducing the nonspecificity of the immune response,
this approach has elevated specificity and sensitivity. However, this method is mostly
suitable for the detection of biological macromolecules, since small-molecule antigens do
not have adequate binding sites to bind two antibodies simultaneously [42,43]. Meanwhile,
for the quantitative examination of the substance to be examined, the antibody-labeled
signal molecule produces an electrical signal [44]. Noncompetitive immunosensors are
impacted by a number of significant variables and challenges, including antibody surface
modifications, redox probes preparation, and the regulation of antibody diffusion [45]. For
these reasons, despite research demonstrating that noncompetitive immunosensors have
higher sensitivity and detection limitations than competitive immunosensors, researchers
heavily prefer both immunosensors [46]. There is also a kind of direct antigen–antibody
binding for noncompetitive immunosensors [47]. The antibody or antigen is immobilized
on the electrode and waits for the binding of the antigen or antibody to produce an electrical
signal, also known as the “one-step” method [48,49].

Electrochemical immunosensors can be classified into redox couples, typical biolog-
ical enzymes, and nanomimetic enzymes based on different catalytic substances. In the
following sections, the catalytic substances are carried out differently, and we will present
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the applications in immunosensing techniques for the detection of different human dis-
ease biomarkers according to the two main categories of competitive immunosensors and
noncompetitive immunosensors [50,51].

3. Competitive Immunosensors

Electrochemical immunoassays that have the advantages of high sensitivity, rapidity
and economy are currently being investigated for application in the detection of human
disease markers. Electrochemical analysis of proteins can be achieved by measuring the
electrical signal output from redox-active markers in the immune complex system [52].

3.1. Redox-Couple-Labeled Electrochemical Immunosensors

In the presence of an electric current, redox pairs with redox qualities go through a
redox reaction [53]. The redox marker is added to the electrochemical immunosensor, which
produces a change in current of redox for the measurement of the target substance [54],
such as ferrocene (Fc) [55], thionine [56] and Ru(bpy)3

2+ [57].
According to its redox properties and aromaticity, Fc can undergo the electrochemical

redox reaction Fc − e→ Fc+. As a signal probe, Fc is frequently used to improve electron
transport [55]. Alzheimer’s disease is typically only identified after the commencement
of the disease, so there is an urgent need to create diagnostic techniques for early disease
markers. Ding et al. produced an immunosensor for the detection of Aβ42 peptides
depending on the heme covalently bound to Aβ42 possessing peroxidase-like activity [13].
Fc was chosen as signal indicator, as seen in Figure 2. Glassy carbon electrode (GCE) was
selected and sequentially modified with polysulfane-methylene blue, gold nanoparticles
(AuNPs), and Aβ42 antibody on its surface. Aβ42 and heme-Aβ42 competitively bound
to the modified electrode. Heme-Aβ42 complex had electrocatalytic activity, activating
the redox process of H2O2 and ferrocenemethanol (FcOH). Enzymatic activity produced
Fc+OH, which diffused to the interface of the decorated ITO surface and converted to FcOH.
The competitive immunosensor has a test range of 0.056–13.7 nM and a detection limit of
25.2 pM. Using thionine as an electrical signal marker, Zhang et al. constructed a competing
electrochemical immunosensor to detect the biomarker mannose on the surface of tumor
cells [56]. Thionine, the nanomaterial multi-walled carbon nanotubes (MWNT), Au, and the
mannose recognition protein Con A were used to create the initial version of the nanoprobe
MWNT/Au/Con A. Afterwards, MWNT and thionine dimer were used to modify the GCE
surface. The resulting GCE/MWNT/AuNPs/thiomannosyl dimer sensor competes with
the tumor cell surface myosin for binding to the nanoribbon, and the electrical signal of
the thionine is negatively correlated with the cancer cell concentration. Results from this
sensor showed detection limits of 20 mL−1 and 35 mL−1 for two hepatocellular carcinoma
cells, QGY-7701 and QGY-7703.

3.2. Enzyme-Labeled Electrochemical Immunosensors

An enzyme is a protein or RNA with biocatalytic function. Biological enzymes are
widely used as markers in immunoassays due to their efficient catalytic activity, substrate
specificity, and selectivity for biological reactions. An essential technique in the creation
of immunosensors is the labeling of antibodies using natural biological enzymes [22]. En-
zymes are capable of catalyzing the redox reactions of substrates, in which electron transfer
occurs and an enhanced electrical signal is produced [58]. They have the advantage of
being quick and effective. However, the intrinsic instability and susceptibility of biological
enzymes to deactivation limit their catalytic effect.
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3.2.1. Horseradish Peroxidase

Horseradish peroxidase (HRP) is among the most frequently employed enzymes
in bioanalysis [59]. The use of HRP to identify low abundances of compounds to be
tested is possible due to its stability, high recovery rate, effectiveness in amplifying weak
signals, and stability. However, as it is challenging to use HRP to directly mark anti-
bodies, many researchers have labeled HRP on inorganic nanomaterials to be used [60].
In order to detect the depressive disorder marker HSP70, Sun synthesized conducting
polymer polyaniline-modified graphene quantum dots (PAGD), which were employed
as electrode modification materials along with target HSP70 to build a functionalized
HSP70/PAGD/GCE immunosensor [61]. The HSP70 in the test analyte and the HSP70
on the electrode surface compete with each other to bind the HRP-tagged antibody. The
linear range of HSP70 is 0.0976–100 ng mL−1, with detection limits as low as 0.05 ng mL−1.
Freire et al. also used HRP catalysis to create an innovative immunosensor for the detection
of SARS-CoV-2 nucleocapsid protein (N protein) of novel coronavirus pneumonia [62].
Graphene-SPEC capture the N protein via amide bond, followed by IgG-SARS-CoV-2 N
protein, anti-IgG-HRP sequentially binds to the immunosensor, and HRP is used to catalyze
the TMB substrate reaction to generate electrical signals. The constructed device has a
detection range of 1:1000–1:200 v/v for SARS-CoV-2.

3.2.2. Alkaline Phosphatase

The alkaline phosphatase (ALP) is a zinc-containing glycoprotein that hydrolyzes
a variety of natural and synthetic phosphate monoester substrates. In the field of im-
munosensing, ALP is usually labeled with antibody and then reacted with substrate to
generate electroactive products that can convert antibody–antigen-bound biological signals
into electrical signals. ALP has been used to construct immunosensors for the detection
of disease markers [63]. Gutierrez et al. developed an enzymatic immunosensor based
on gold nanostructured carbon coating SPEC for accurate detection of the Alzheimer’s
disease marker p53 protein (Figure 3) [14]. The modified immunosensor uses 3-indoxyl
phosphate and silver ions as the enzymatic substrate and ALP as the labeling enzyme.
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The electrochemical signal in the enzyme reduction system is produced by silver ions in
solution that reduce to metallic silver (Ag0). For blood samples, the immunosensor exhibits
the low detection limit of 0.05 nM.
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3.3. Nanomaterial-Based Electrochemical Immunosensors

Nanomaterials are frequently exploited in the field of electrochemical immunosensing
because of their exceptional physical and chemical characteristics [64]. More redox couples
or enzymes can be loaded onto nanomaterials with the considerable specific surface area
to increase the redox reaction within the sensor system as well as to bind more antigens
for analysis [65]. The catalytic activity of nanomaterials allows them to directly catalyze
substrate processes. Nanoenzymes were widely developed due to their advantages of
low cost, simplicity in production, and excellent stability, which may have the potential to
replace traditional enzymes [66]. The disadvantages of traditional enzymes, such as high
cost, poor stability and affected by the environment, also have greatly contributed to the
development of artificial enzymes [67].

3.3.1. Metal Nanomaterials

Nanoscale metal complexes containing nanosized grains made of one or more metals
are known as metal nanomaterials. Metal nanoparticles are great for designing electro-
chemical immunosensors because they have good electron transport capabilities [68].

Several studies have used nanomaterials for cancer biomarker detection. A biomarker
called E-selectin is strongly correlated with vascular lesions. A gold nanoparticle wrapped
around CuO nanorods (Au-CuO NCs) was created by Zhao et al. and used in the field of
E-selectin immunodetection [69]. The E-selectin antigen CD62E adsorbed on the Au-CuO
surface to forms CD62E-Au-CuO. CD62E-Au-CuO competes with E-selectin for binding to
the anti-CD62E-modified GCE. As the concentration of E-selectin increases, both the amount
of CD62E-Au-CuO and the value of the generated current decrease. The final detection limit
was 226 pg mL−1, and the detection range was 0.500–500 ng mL−1. Carbon nanofibers (CNF)
are ideally suited for use in biosensors payable to their large specific surface area. Eissa
et al. invented a new electrochemical method for the detection of SARS-CoV-2, utilizing the
stepwise alteration of CNF, nucleocapsid (N) protein, and N protein antibody to function-
alize SPEC electrodes [70]. Absorbent cotton padding is applied to modified electrodes as
a sample collection platform to allow direct collection of nasopharyngeal samples instead
of swabs. Well established detection limits (0.8 pg mL−1) and good sensitivity characterize
the electrochemical detection results. Mucin-1 (MUC-1) is a common biomarker for breast
cancer. To detect MUC-1, Rashid et al. first adapted the electrode surface using gelatin in
order to modify the MUC-1 antibody, and then used MWCNT as a substrate to covalently
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bind dopamine to the MUC-1 antibody to form a signal probe [71]. Finally, the modified
electrode, the signal probe, and the target MUC-1 form a competing immunosensor. Among
them, dopamine acts as an electron donor, effectively amplifying electrical signals. The
immunosensor achieves a highly sensitive detection of MUC-1, with a detection limit and
range of 0.05–940 U mL−1 and 0.1 U mL−1, respectively.

3.3.2. Magnetic Nanomaterials

Magnetic materials are substances that produce magnetism, including elements such
as iron, cobalt, nickel and their alloys, which are easily separated from the medium in a
magnetic field. Because of their high specific surface area and ease of surface modifica-
tion, magnetic materials are employed in immunosensing. However, the low electrical
conductivity of magnetic beads hinders charge transport. Therefore, when designing
im-munosensors, magnetic beads (MBs) may undergo significant surface alteration [72].

Kalyani et al. used chitosan as a substrate for wrapping MWCNT and magnetite
nanoparticles (CS-MWCNT-Fe3O4), which can be used as a signal amplification element
to load large amounts of antibodies [48]. As an immunosensor for capturing potential
endometriotic biomarker carbohydrate antigen 19-9, the CS-MWCNT-Fe3O4 nanocompos-
ite is deposited on GCE and immobilizes anti-carbohydrate antigen 19-9 antibody. The
detection limit is 0.163 pg mL−1, and the detection range is 1.0 pg mL−1–100 ng mL−1.

4. Noncompetitive Immunosensors

It is well known that noncompetitive immunoassays typically exhibit higher specificity,
lower cross-reactivity, and a wider working range than competitive immunoassays. In this
chapter, we present research advances in noncompetitive immunosensors in the field of
disease marker detection.

4.1. Redox-Couple-Labeled Electrochemical Immunosensors

Toluidine blue (TB) is a water-soluble zine redox dye that works well as electrical
mediator for immunosensors [73]. Using two signaling molecules, Fc and TB, a ratiometric-
electrochemical immunosensor for the procalcitonin septicemia (PCT) marker was created
by Miao et al. [74]. As shown in Figure 4, the AuNP covalently bound SiO2-Fc-COOH
nanocomposite was synthesized and selected as the matrix material for immobilizing
anti-PCT antibody on GCE because Fc possesses redox characteristics and gold enhances
conductivity. The TB-labeled metal–organic framework UiO-66 (UiO-66-TB) served as a
signal marker owing to the immune interaction between PCT and the secondary antibody.
An immunosensor of the sandwich type was constructed in the presence of target PCT.
A linear relationship exists between the ratio of the dual electrical signals and PCT con-
centration, with an increase in PCT concentration leading to an increase in peak oxidation
current of TB and a decrease in the peak oxidation signal of Fc. The linear detection range
of the sandwich-type immunosensor was 1 pg mL−1–100 ng mL−1, with a detection limit
of 0.3 pg mL−1.

4.2. Enzyme-Labeled Electrochemical Immunosensor

In a noncompetitive immunosensor, the enzyme-labeled antibody probe binds directly
to the antigen. The antigen is sandwiched between the two antibodies, the substrate is
enzymatically cleaved to produce the electroactive material, and the redox cycle of the
recorded product results in an enhanced electrochemical signal. The sensitivity of the
sensor is highly enhanced [75].
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4.2.1. Horseradish Peroxidase

There are several HRP-catalyzed immunosensors studied that are cancer-related
biomarkers for detection. Gold–silver hybrid nanomaterials and graphene were added to
the electrode by Nakhjavani et al. to modify it for binding with the primary antibody [76].
Sandwich immunological structures are made up of the primary antibody, carcinoembry-
onic antigen (CEA), and the secondary antibody that has been HRP-labeled. CEA is a
broad-spectrum tumor biomarker employed in the diagnosis of several types of cancer.
HQ catalyzed by HRP/H2O2 produces strong electrical impulses, which are related to the
CEA. Li et al. developed an immunosensor (AuNPs/Ab1/BSA/CA–125/glucoseoxidase
(GOx)/HRP@metal–organic framework (ZIF-90)-Ab2) for the detection of the ovarian can-
cer marker carbohydrate antigen 125 using GOx/HRP@ZIF-90 nanomaterials as signal
amplification components [77]. GOx and HRP cascade amplification in the system allow for
the sensitive detection of carbohydrate antigen 125 in the range of 0.1 pg mL−1–40 ng mL−1,
with a detection limit of 0.05 pg mL−1.

In addition to cancer, HRP is also used to construct other disease-related markers.
Feng et al. used a synthetic covalent organic backbone loaded with HRP as a signal probe
to construct an immunosensor that catalyzes the conversion of hydroquinone (HQ) to
benzoquinone (BQ) by the synergistic action of HRP and hydrogen peroxide to generate
an electrochemical signal [78]. The sensor had a detection limit of 1.7 pg mL−1 and was
capable of detecting cardiac troponin I (cTnI) over a linear range of 5 pg mL−1–10 ng mL−1.
In order to detect rheumarthritis marker receptor activator nuclear factor-B using an
electrochemical approach, Valverde et al. first developed an HRP-catalyzed sandwich
immunosensor (HQ) using the redox of 4-aminobenzoic acid (p-ABA) substrates catalyzed
by H2O2/hydroquinone [79]. The detection range is 10.4–1000 pg mL−1, and the detection
limit is 3.1 pg mL−1. As seen in Figure 5, the first MB-based immunosensor for the
detection of hypoxia-inducible factor-1 alpha (HIF–1α) was created by Martin et al., by
immunoconjugating MBs with HRP-modified antibodies and using HRP/H2O2 to catalyze
HQ to produce an electrochemical signal (with a detection limit as low as 76 pg mL−1) [80].

Eventually, HRP can also be applied to virus detection. Vasquez et al. created an
enzyme-amplified electrochemical immunosensor for the detection of SARS-CoV-2 spike
protein [81]. The immunosensing device retains the target spike protein in a sandwich be-
tween anti-spike antibody modified on MBs and a biotin-anti-ACE2 antibody, biotinylated
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antibody conjugated to HRP-labeled streptavidin. In the presence of H2O2, HRP catalyzes
the conversion of TMB substrates into an electrochemical signal. The immunosensor has a
detection range of 1–5 × 105 copies mL−1 and a detection limit of 22.5 ng mL−1.
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4.2.2. Alkaline Phosphatase

ALP has been used to detect a variety of disease markers, such as exosomes, proteins,
and antigens. Exosome biomarkers for diagnostic or prognostic reasons appear to be fast
translating into applications [82,83]. Moura et al. first used ALP-labeled magnetic beads, as
depicted in Figure 6 [28]. The difference between normal samples and samples from breast
cancer patients is determined by concurrently detecting two proteins on breast cancer
exosomes. The detection limit is 4.39 mU L−1, representing to 105 exosomes µL−1. Lee et al.
developed a sandwich immunosensor to measure extracellular vesicles (EV) [84]. The anti-
EGFR primary antibodies were immobilized onto magnetic bead-coated AuNP-modified
ITO electrodes. The anti-CD63 secondary antibodies were cross-linked with ALP, which can
catalyze the production of L-ascorbic acid (AA) from the substrate ascorbyl-2-phosphate
(AAP). Analytical indications that were quantitatively correlated to the concentration of EV
were the redox peak current of ALP. The biosensor platform has an EV detection limit of
108 particles mL−1 for glioblastoma multiforme.
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Kim et al. constructed an ALP-catalyzed electrochemical immunosensor to success-
fully detect IgG in human serum by catalyzing the redox of p-APP substrates [85]. The
detection limit and range are 1 IU mL−1 and 3–30 IU mL−1, respectively. Cao et al. de-
veloped ALP-IgG-labeled GNPs/Ab2-based electrochemical microfluidic devices for the
sensitive detection of human chorionic gonadotropin via the redox of para-nitrophenyl
phosphate (p-NPP) substrates hydrolyzed to p-nitrophenol (p-NP) [86]. The detection limit
is 0.36 mIU L−1, with a detection range of 1.0–100 mIU L−1.

4.2.3. Urease

Urease, the first enzyme to crystallize and be confirmed as a protein, catalyzes the
breakdown of the urea substrate, releasing large amounts of hydroxide ions. Huang
et al. utilized the catalytic action of urease to detect CEA as shown in Figure 7 [87]. The
electrochemical indicator chitosan-prussian blue (CS-PB) nanocomposite and primary
antibody are modified on the GCE. The urease and secondary antibody modified to silica
nanoparticle serve as immune nanoprobe. The modified GCE, urease-functionalized silica
nanoprobe, and CEA constitute a sandwich immunosensor. In this system, urease catalyzes
the conversion of dopamine into polydopamine (DPA), which releases hydroxyl radicals
and increases the inhibition of the PB electrochemical signal. The inhibition of electrical
signal comes mainly from urease-catalyzed PDA deposition and multi-enzyme signal
amplification of silica nanoprobe. The results indicate a detection limit of 0.042 pg mL−1 for
CEA, with a detection range from 0.1 pg mL−1 to 100 ng mL−1. In this work, two different
catalytic substances are used—the biological enzyme urease and nanomaterials—which
together increase their inhibitory effect on electrical signals and thus increase the sensitivity
of the immunosensors.
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4.3. Nanomaterial-Based Electrochemical Immunosensors

The advantages of low cost, high stability and the unique physicochemical properties
of nanomaterials have led to their reuse in electrochemical immunoassays [88].

4.3.1. Metal Nanomaterials

In order to create a metallic nanomaterial with good electron transport properties, Chen
et al. combined graphene, Au and metallic titanium dioxide (TiO2) [89]. An HRP-labeled
secondary antibody was coupled with the graphene metal nanocomposite nanocomplex to
create an immunocomplex that was catalytic, as shown in Figure 8. To identify CEA, metal-
and enzyme-modified graphene nanocomplexes were added to the primary antibody-
labeled electrode’s surface. This immunosensor had a 3.33 pg mL−1 detection limit for CEA.
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Silver@cerium oxide-gold (Ag@CeO2-Au) nanocomposites were made by Chen et al. [90].
Because the metal Ce has a good capacity for oxidation and reduction, this ability is
enhanced when Ce and Ag function simultaneously. Therefore, an immunosensor made of
Ag@CeO2-Au is sensitive enough to detect CEA.
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Alpha-fetoprotein (AFP) is among the earlier cancer biomarkers examined in hu-
mans and is a key biomarker for the early detection of hepatocellular carcinoma [91].
Alpha-fetoprotein detection aids in the early diagnosis and treatment of hepatocellular
cancer [92]. Regarding the goal of detecting AFP, Chen et al. created novel spherical
nucleic acid-linked silver nanocluster (AuNPs@DNA-AgNCs) nanocomplexes, as depicted
in Figure 9 [93]. Two distinct DNA were attached to AuNPs, one of which was connected
to an anti-AFP secondary antibody and the other of which acted as a template for the
electrical signaling molecule AgNCs. The surface of GCE was successively treated with
Au film and p-sulfonated calix [4] arene (pSC4) to increase the electrode interface’s elec-
trical conductivity and create an environment favorable for antibody attachment. The
electrochemical immunosensor was formed of AuNPs@DNA-AgNCs nanocomplexes, AFP,
and Ab1/pSC4/Au/GCE. The relationship between the electrical signal of Ag+ and AFP
concentration is linear. The AFP detection range is exceptionally broad (0.001–100 ng mL−1)
and has a knockdown detection limit (7.74 fg mL−1).
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When two or more metals are combined to generate metal nanostructures, there are
positive metal–metal synergistic effects. Li et al. synthesized the bimetallic compound
CuCo2S4 to construct a two-signal sandwich immunosensor for the detection of procalci-
tonin (PCT) [94]. As shown in Figure 10, the reduction reaction of Cu2+ and the catalytic
reaction of Co2+ produced the dual signal. The signal accuracy and sensitivity were en-
hanced by the dual signal bimetal, resulting in an excellent down to fg level detection limit
for PCT (82.6 fg mL−1).
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Medetalibeyoglu et al. used the MXene@AuNP signal-amplifying probe, AuNPs, and
the p-aminothiophenol-functionalized graphene oxide co-modified GCE immunosensor
platform to immunobind a sandwich electrochemical immunosensor for the detection
of PSA [95]. The immunosensor provided excellent detection of PSA, and its detection
limit was determined to be 3.0 fg mL−1 and the linearity range to be 0.01–1.0 pg mL−1,
respectively. Prasad et al. developed an immunoassay employing a single component of
GO paper-based electrode nanocomposites and AuNP-modified anti-PEAK1, in which
the synthesis of AuNP-modified anti-PEAK1 was utilized to electrocatalytically reduce
PEAK1 to deliver electrical pulses by redox reaction of potassium ferricyanide for sensitive
pancreatic cancer biomarker PEAK1 detection [96]. The final detection limit is 10 pg mL−1,
with a detection range of 10–106 pg mL−1.

Direct antigen–antibody binding for noncompetitive immunosensors has also been
achieved for the detection of biomarkers [97]. Fan et al. used a hydrothermal method to
create an innovative ZnMn2O4@reduced graphene oxide composite, in which the spinel
structure of ZnMn2O4 had a significant electrocatalytic impact on H2O2 reduction and
reduced graphene oxide might enhance conductivity, as depicted in Figure 11 [98]. Con-
struction of immunosensors was achieved by dropwise addition of the ZnMn2O4@reduced
graphene oxide composite to GCE. The striking variation in the electrocatalytic current of
ZnMn2O4@reduced graphene oxide to H2O2 demonstrates an immunoreaction between
CEA antibody and CEA. The linear range of the immunosensor is 0.01–50 ng mL−1, with
the detection limit of 1.93 pg mL−1.
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Liu et al. built a competitive electrochemical immunosensor for the detection of AFP
combining cellulose nanofibrils (CNF)/DPA/Cu-Ag nanocomposite as nanoenzymes, as
seen in Figure 12 [99]. By functionalizing CNF with Ag and Cu nanoparticles on DPA using
the electroless deposition method, a CNF/DPA/Cu-Ag nanocomposite was created. The
AFP ultrasensitive quantitative analysis was achieved by amplifying the electrical analysis
signal of the immunoreaction at the interface between the AFP and the anti-AFP antibody
using the produced nanocomposite. The created immunosensor has an expansive linear
range (0.01–100 ng mL−1) and a small detection limit (4.27 pg mL−1). In summary, there are
two major pathways for metal nanomaterial application in electrochemical immunosensors:
one is that nanomaterial modifications at the working electrodes facilitate electron transfer
between the electrodes and solution transfer, while allowing the adsorption of a large
number of trapped probes for stronger signals; the other is that the capture probe is first
immobilized on the electrode, and then metal nanomaterial-modified probes are added to
construct the sandwich structure. The signal strength is then amplified by exploiting the
catalytic of the probe and nanomaterial surfaces.
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4.3.2. Magnetic Nanomaterials

Magnetic nanomaterials have the advantages of temperature stability, low power
consumption and small size in the preparation of noncompetitive immunosensors, which
improve the sensitivity of detection. Song et al. exploited hollow silica nanospheres with a
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magnetic outer coating of nickel/carbon as the immunological platform and carboxymethy-
lated polystyrene@polyaniline@gold functionalized by boric acid as the electrical signal
probe to build an immunosensor to detect CEA, as seen in Figure 13 [100]. The detection
limit of CEA is 1.56 pg mL−1, and the detection range is 0.006 pg mL−1–12 ng mL−1.
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Bolukbasi et al. devised a Ab1/Fe3O4 NPs@ covalent organic framework (COF)/AuNPs
immobilized at the GCE immunosensor platform Ab2/MNPs@SiO2@TiO2 signal enhanc-
ing probes to fabricate a sandwich immunosensor to detect AFP [72]. The fabricated im-
munosensor has a linear range of 0.01–1.00 pg mL−1 and a limit of detection of 3.30 fg mL−1.
Several antibody-coated immunomagnetic beads (IBM) were employed by Moura et al. to
identify particular tetraspanin receptors on the surface of exosomes for the detection of
breast cancer exosomes [28]. The detection threshold of electrochemical sensor for exosomes
was 105 µL−1. The Alzheimer’s disease marker glial fibrillary acidic protein (GFAP) was
first discovered by Ozcelikay et al. using IMB and HRP (Figure 14) [101]. The IMB served as
a target enrichment, and the concentration of GFAP was proportional to the electrical signal
produced by the catalysis of H2O2 by HRP. The developed immunoplatform effectively de-
tects endogenous GFAP from the patient brain (detection limit is 67 pg mL−1). A sandwich
immunocomplex was created by Fabiani when the anti-IgG-coated IMB interacted with
the SARS-CoV-2 surface nucleocapsid protein, the secondary antibody anti-IgG-tagged
ALP, and SARS-CoV-2 [102]. The magnetic isolation of the magnetic beads associated with
SARS-CoV-2 in solution on SPEC, which is catalyzed by AP to generate electrochemical
signal, was accomplished by magnetization. The immunoassay has a detection limit of
8 ng mL−1 in saliva and enables quick detection of SARS-CoV-2 within 30 min. MBs were
chosen by Durmus et al. as carriers to create an electrochemical immunosensor for the sen-
sitive and precise measurement of SARS-CoV-2 virus and its variations in nasopharyngeal
swabs [103]. The SARS-CoV-2 virus binding to Ab-tagged MB is easily isolated from and
enriched by magnetic action. The final detection thresholds for SARS-CoV-2 virus and its
variants were 0.93 ng mL−1 and 0.99 ng mL−1, respectively.

Numerous immunosensors were developed for the detection of various diseases, such
as cancer, Alzheimer’s disease and novel coronavirus pneumonia. It is clear from the
examples listed in the text that the type of immunosensor is related to the size of the target
analyte. Noncompetitive immunosensors have a higher sensitivity and are better suited
for biomolecular detection since it requires two antibodies to bind to the target. Small-
molecule targets are better suited for detection with competing immunosensors. Both types
of competitive and noncompetitive immunosensors have undergone substantial research
and one cannot exist without the other.
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5. Conclusions

Nowadays, various diseases are serious threats to human life, thus early diagnosis of
diseases through biomarkers is particularly critical. Electrochemical immuosensors play
an essential role in biomarker detection. In this review, we highlight the developments of
electrochemical immunosensors in the diagnosis of various disease markers in the last five
years. Immunosensors are classified by type into two main classes: competitive and non-
competitive, each with three different catalysts: redox couples, typical biological enzymes,
and nanomimetic enzymes. This is complicated by the low levels of disease biomarkers
and the short detection times required for their detection. In contrast, electrochemical im-
muonsensors transform the biological signal of antigen–antibody binding into an electrical
signal during the reaction process, combining the high sensitivity, rapid signal response,
ability to detect low-abundance samples, ease of use and low cost of electrochemical and
immunosensing with outstanding advantages in the detection of biomarkers.

Depending on the combination of principle types, competitive methods amplify im-
munoreactive signals through labeled molecules to obtain electrical signals with high
sensitivity and great selectivity, and are suitable for the detection of small molecules or
semantigens. Noncompetitive immunosensors are highly sensitive and have low non-
specific adsorption because they use two antibodies to bind the same antigen and are
suitable for the detection of biological macromolecules. Direct antigen–antibody binding
for noncompetitive immunosensors has the advantage of simplicity and low cost, but the
method requires attention to the problem of background interference. Three main classes
of catalytic substances, redox small molecules, enzymes and nanomaterials, can convert
immunoreactive signals into electrical signals and amplify them, depending on the type of
immunosensor.

A redox couple is labeled on antigens, antibodies or materials to generate electrical
signals. Because of their own catalytic action, biological enzymes are used to catalyze
characteristic substrates to generate electrical signals. Due to the costly and difficult to
preserve nature of biological enzymes, a variety of nanomimetic enzymes were designed
and studied for catalyzing the generation of electrical signals in the construction of sensors.
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Immunosensors allow for sensitive and rapid detection of biomarkers. However,
immunosensors also have drawbacks, such as invalidity at excessive concentrations, a short
lifetime, and limitations by electrochemical detection equipment. The following are the
key approaches for future development of immunosensors: 1. The goal is to achieve fmol
or even lower detection limits in order to shorten analysis times and increase analytical
sensitivity. 2. The requirement to create strategies for passivating electrode surfaces to
thwart nonspecific adsorption of biological materials at the electrode interface. 3. The
creation of composite functional materials, especially when combined with numerous
amplification techniques, enhances the analytical capabilities of electrochemical enhancers
to enhance the analytical performance of electrochemical immunosensors. In conclusion,
we believe that electrochemical sensors have a bright future in disease biomarker detection.
Building on existing research, the establishment of original methods for joint detection
in the fields of immunology, novel nanomaterials, and electrochemistry will continue to
advance research on early diagnosis of diseases, and point-of-care testing for diseases will
be realized at an early date.
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