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Abstract: Carbon monoxide (CO) is a toxic, hazardous gas that has a colorless and odorless nature.
On the other hand, CO possesses some physiological roles as a signaling molecule that regulates
neurotransmitters in addition to its hazardous effects. Because of the dual nature of CO, there is
a need to develop a sensitive, selective, and rapid method for its detection. Herein, we designed
and synthesized a turn-on fluorescence probe, 2-(2′-nitrophenyl)-4(3H)-quinazolinone (NPQ), for the
detection of CO. NPQ provided a turn-on fluorescence response to CO and the fluorescence intensity
at 500 nm was increased with increasing the concentration of CO. This fluorescence enhancement
could be attributed to the conversion of the nitro group of NPQ to an amino group by the reducing
ability of CO. The fluorescence assay for CO using NPQ as a reagent was confirmed to have a good
linear relationship in the range of 1.0 to 50 µM with an excellent correlation coefficient (r) of 0.997
and good sensitivity down to a limit of detection at 0.73 µM (20 ppb) defined as mean blank+3SD.
Finally, we successfully applied NPQ to the preparation of a test paper that can detect CO generated
from charcoal combustion.

Keywords: carbon monoxide; quinazolinone; fluorescence probe; test paper; metal free

1. Introduction

Carbon monoxide (CO) is a gas produced by the incomplete combustion of organic
compounds and is ubiquitously found in the smoke from heating appliances and auto-
mobile exhaust. CO can bind more strongly to the hemoglobin in red blood cells than
oxygen; thus, the blood cannot carry oxygen, resulting in hypoxia [1,2]. In addition to
preventing oxygen delivery, CO can bind to many other hemoproteins such as myoglobin,
Cytochrome P450, and mitochondrial cytochrome oxidase to alter these functions. CO
poisoning is usually caused by inhalation of excess CO and is the most common form of
fatal air poisoning [3,4]. The symptoms of CO poisoning are headache, nausea, dizziness,
weakness, vomiting, chest pain, and confusion. For example, fatal poisoning from CO
generated by charcoal combustion often occurs. CO is a colorless and odorless gas that is
difficult to perceive and can easily cause poisoning accidents [5–7]. On the other hand, CO
is produced endogenously in vivo through heme degradation by heme oxygenase. CO has
been reported to be concerned with a series of physiological processes such as vasodilation,
anti-inflammatory response, and neurotransmission responses as important cell signaling
molecules and is attracting attention as the third most bioactive molecule after H2S and
NO [8–10]. In addition, it has been reported that abnormal blood CO concentrations are
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observed in patients with Alzheimer’s disease and cardiovascular diseases [8]. Against this
background, it is necessary to develop analytical methods for monitoring CO in air and
in vivo.

Although numerous approaches have been established to detect CO, such as gas
chromatography [9,10], Fourier-transform infrared spectroscopy (FT-IR) [11], and elec-
trochemical analysis [12], these methods have drawbacks such as the complexity of the
equipment and the difficulty with real-time on-site detection. In contrast, fluorescence-
based assays are simple, rapid, and suitable for real-time on-site monitoring [13–17]. Since
He’s group [18] and Chang’s group [19] reported a probe for CO detection in 2012, various
fluorescent probes have been developed to detect CO [20–26]. Wang et al. have developed
a selective fluorescence cell imaging probe for CO. This fluorescent probe was composed of
a genetically encoded dimeric heme protein (CooA) for CO sensing and yellow fluorescent
protein variants. CO causes displacement-induced conformational changes in CooA, which
lead to yellow fluorescence enhancement from the yellow fluorescent proteins. The probe
showed acceptable selectivity towards nitric oxide, molecular oxygen, and cyanides [18].
However, the synthesis of this probe is laborious and time-consuming. Feng’s group
successfully monitored CO in vivo based on the Tsuji–Trost reaction in the presence of
Pd [27]. Moreover, Chang’s groups have developed a cyclopalladated derivative of boron
dipyrromethene difluoride (BODIPY) where the palladium quenches the fluorescence of
the BODIPY owing to the known heavy-atom electronic effect of palladium. Upon addition
of CORM-3 as a source of CO, it leads to a release of palladium in its reduced metallic
form Pd(0) and forms a fluorescence carbonylated BODIPY [19]. However, these probes
have drawbacks such as the addition of palladium, a heavy metal of potential toxicity,
the requirement for heating at high temperatures, and long reaction times that reach one
hour. On the other hand, Zhang et al. developed a ratiometric fluorescent probe for CO
based on hemocyanin moiety [20]. Additionally, a palladium-free CO fluorescent probe
was developed based on coumarin moiety; however, this probe synthesis is somewhat
complicated, and the Stokes shift is short (about 45 nm) [22].

The detection of toxic gases is of immense significance. Hence, more attention has
shifted to the development of a highly sensitive, simple, cost-effective, and rapid sensor for
their detection [17]. Our research group has been focusing on developing new fluorescence
sensors for toxic volatile compounds and gases [28–31]. Hence, we aim to develop a
new fluorescence turn-on probe for CO with long Stokes shift and good selectivity and
sensitivity. Quinazolinone derivatives possess excellent photophysical properties. Their
fluorescence relies on the turn-on of internal charge transfer (ICT), which makes them
possess long Stokes shifts. Additionally, quinazolinone derivatives are characterized by
their aggregation-induced emission (AIE) [32,33]. Owing to their excellent luminescence
properties, in the present study, we developed a quinazolinone-based turn-on fluorescence
probe, 2-(2′-nitrophenyl)-4(3H)-quinazolinone (NPQ), for the detection of CO. NPQ is itself
non-fluorescent but rapidly reacts with CO and is converted to 2-(2′-aminophenyl)-4(3H)-
quinazolinone (APQ), which emits strong green fluorescence (Figure 1). This fluorescence
enhancement could be attributed to the reduction in the nitro group of NPQ to an amino
group upon reaction with CO, which emits fluorescence due to the ICT process. In this work,
a sensitive and selective fluorescence assay for CO with NPQ utilizing this fluorescence
enhancement was developed. The reduction reaction of CO with quinazolinone was found
to be rapid and is about 90% completed in 10 min, which is faster than other reported
reduction-based probes for CO sensing [34]. Quinazolinone derivatives are known to have
excellent fluorescence in solutions depending on the solvents due to the characteristics
of their electronic spectra, which have attracted great interest due to good photophysical
properties such as intense luminescence, excellent Stokes shift, and photostability [35–37].
In addition, since quinazolinone fluorophore exhibits AIE properties [38,39], NPQ in the
solid state could be applied to the detection of CO. Therefore, we attempted to develop a
test paper method to detect gaseous CO using filter paper adsorbed with NPQ.
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Figure 1. Fluorogenic sensing of CO through its reduction action on NPQ forming APQ.

2. Results and Discussion
2.1. Structural and Property Changes in NPQ in Reaction to CO

In the current study, CORM-3 was used as a standard for carbon monoxide, owing
to its well-known releasing capability of CO in vitro and even in vivo [40]. To examine
the changes in spectral characteristics of NPQ, the excitation and emission spectra of NPQ
after the reaction with CO released from CORM-3 were measured. The excitation bands
from 280 nm to 290 nm and the fluorescence emission around 500 nm were increased with
increasing the concentration of CORM-3 (Figure 2). As shown in the inset in Figure 2, when
the NPQ solution alone was UV irradiated (solution A), no fluorescence was observed,
while strong green fluorescence was observed upon the addition of CORM-3 to NPQ
(solution B). These results indicate that NPQ can be used for CO determination. The
fluorescence emission spectrum of the APQ solution showed fluorescence with a maximum
wavelength of around 500 nm and was identical to that of NPQ after the reaction with
CO (Figure 3). Therefore, this fluorescence enhancement was suggested to be caused by
the substitution of an electron-withdrawing nitro group involved in the quenching of
quinazolinone fluorophore for an amino group.
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Figure 2. (a) The excitation spectra (λex = 500 nm) and (b) emission spectra (λex = 280 nm) of NPQ
(30 µM) upon the addition of different concentrations of CORM-3 (0, 10, 20, 50, 100, 200 µM). The
reaction time was 30 min at room temperature. The solvents for NPQ and CORM-3 are as described
in the experimental section. The insets are (A) a photograph of NPQ (30 µM) and (B) a photograph of
NPQ (30 µM) upon the addition of CORM-3 (100 µM). RFI refers to relative fluorescence intensity.
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Figure 3. The fluorescence emission spectra of APQ (30 µM); λex = 280 nm. The solvent for APQ was
PBS buffer (pH 7.0, 10 mM, containing 30% DMSO).

To confirm the suggested reaction mechanism, HPLC experiments were performed to
prove the conversion of NPQ to APQ by comparing the retention times (Figure 4). The used
HPLC conditions are mentioned in Figure 4. Since NPQ is a non-fluorescent compound, a
signal peak was not observed on its chromatogram (Figure 4a). On the other hand, when
CORM-3 was added to NPQ, a signal peak was detected at 11 min (Figure 4b), the same
retention time as that of APQ (Figure 4c). These results show that the NPQ is converted to
the highly fluorescent APQ by the reducing ability of CO [21,34].
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Figure 4. HPLC with fluorescence detection chromatograms of (a) NPQ, (b) NPQ after the re-
action with CORM-3, and (c) APQ. HPLC conditions: column, Nacalai Cosimosil 5C18-AR-II
(4.6 × 150 mm); mobile phase, CH3CN/H2O (50/50, v/v%); flow rate, 0.5 mL/min; detection wave-
length, λex = 280 nm and λem = 500 nm; injection volume, 20 µL.

The photophysical properties of APQ in different solvents were examined to explore
the fluorescence mechanism. As shown in Figure 5a, the maximum absorption wavelength
of APQ hardly changed with different types of solvents; only some changes to the ab-
sorbance were observed, which could be attributed to the different physical properties of
the solvents. This result indicates that the ground state of APQ did not change significantly
with solvent polarity [32]. On the other hand, the maximum fluorescence wavelength of
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APQ was gradually red-shifted from 420 nm to 480 nm with increasing solvent polarity
(Figure 5b), till it reached 500 nm upon using PBS buffer (pH 7.0, 10 mM, containing
30% DMSO) as a solvent (Figure 3). Thus, it was suggested that the formation of the ICT
state upon excitation is responsible for the fluorescence emission of APQ [35,41]. The
photophysical properties of APQ in different solvents are summarized in Table 1. APQ
showed the highest molar absorption coefficients in acetonitrile. However, among the
tested single solvents, the use of DMSO resulted in the highest quantum yield (6%) and
brightness (139,200) for APQ in a single solvent. Upon using PBS buffer (pH 7.0, 10 mM,
containing 30% DMSO) as a solvent (Figure 3), the quantum yield was increased five times,
reaching 30%.
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in different organic solvents.

Table 1. Summary of the photophysical properties of APQ in different solvents.

Solvent Absorbance
λ-max (nm)

Fluorescence
λ-max (nm)

Stokes
Shift

Molar Absorption
Coefficients PLQY (%) a Brightness b

Toluene 296 420 124 22,233 0.3 6,670

CH2Cl2 287 430 143 24,467 1.3 31,807

CHCl3 287 440 153 14,100 3.9 54,990

Ethyl acetate 293 440 147 25,667 1.8 46,201

ACN 286 450 164 28,467 2.2 62,627

Ethanol 286 460 174 26,300 2.9 76,270

Methanol 285 470 185 18,833 2.6 48,966

DMSO 295 480 185 23,200 6 139,200

30% DMSO in
PBS buffer 280 500 220 22,567 30 667,010

a PLQY (photoluminescence quantum yield) calculated using quinone sulfate as a reference fluorophore adopting
the procedure described by Hariharasubramanian and Ravichandran [42]. b Brightness = Extinction Coefficient
(ε) × Fluorescence Quantum Yield (Φ) [43]

2.2. Selectivity of NPQ to CO

To evaluate the selectivity of the reaction of NPQ with CO, the change in fluorescence
was measured with the addition of typical reductants, including Fe2+, Cys, Hcy, and GSH,
reactive oxygen species, including H2O2, •OH, ClO−, and tBuOO•, and gaseous trans-
mitters including H2S and NO. Hydroxyl radical (•OH) and tert-butoxy radical (tBuOO•)
were generated by a reaction of 100 µM Fe2+ with 1 mM H2O2 or 1 mM TBHP, respectively.
Moreover, various metal ions and anions’ possible interference was tested, including the
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effect of Fe (III), Fe(II), Cu(I), Cu(II), K+, Ca2+, Na+, Mg2+, sulfate, hydrogen sulfate, nitrate,
nitrite, fluoride, bromide, chloride, and perchlorate. As shown in Figure 6, the fluorescence
of NPQ was enhanced only when CORM-3 was added, and little change in fluorescence
was observed after the addition of other substances instead of CORM-3. Furthermore, the
presence of reactive oxygen species in competitive experiments did not affect the fluores-
cence enhancement of NPQ by CO (Figure 7). Therefore, it was confirmed that NPQ has
excellent selectivity for CO.
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time was 30 min at room temperature. The solvent for NPQ is described in the experimental section.
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of reactive oxygen species (1 mM) in PBS buffer. The reaction time was 30 min at room temperature.
The solvent for NPQ is described in the experimental section.

2.3. Optimization of Reaction Condition and Validation of CO Determination

We utilized NPQ to develop a simple fluorescence assay for the determination of CO
using a spectrofluorometer. To achieve higher sensitivity, the effect of reaction conditions
on the fluorescence intensity of NPQ after the reaction with CO was investigated. At first,
the effect of pH on the fluorescence intensity of NPQ (30 µM) upon the addition of CORM-3
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(100 µM) was investigated over a range of pH 5.0–9.0. The reaction time was 30 min at
room temperature. NPQ was dissolved in PBS buffer (10 mM, pH 7.0) containing 30%
DMSO (v/v), while CORM-3 was dissolved in PBS. It was found that at pH 5, no reaction
occurred; however, increasing the pH led to an increase in the fluorescence intensity till
it reached the maximum at pH 7. Then, as the medium became slightly alkaline, the
fluorescence intensity decreased gradually (Figure 8). Hence, pH 7.0 was selected because it
gave the maximum relative fluorescence intensity (RFI). The reaction between NPQ and CO
proceeded smoothly, even at room temperature. Thus, the reaction time was investigated
from 1 to 50 min at room temperature. The RFI increased gradually till it reached nearly
the plateau at 10 min, and then the RFI remained nearly constant for at least 40 min. As the
maximum and constant fluorescence intensity was obtained at 30 min, it was selected as
the reaction time (Figure 9).
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Figure 9. The effect of reaction time on the fluorescence intensity of NPQ (30 µM) upon the addition
of CORM-3 (100 µM). The solvents for NPQ and CORM-3 are as described in the experimental section.
The arrow indicates the optimum reaction time.

From Table 1 and Figure 5b, increasing solvent polarity led to a red shift in the max-
imum fluorescence wavelength of APQ (Figure 5b), till it reached 500 nm upon using
PBS buffer (pH 7.0, 10 mM, containing 30% DMSO) as a solvent (Figure 3). This demon-
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strates that the fluorescence emission of APQ relies on the formation of the ICT state upon
excitation [35,41]. As polar solvents stabilize the charge-transfer states, the highest ICT
emission is usually observed in polar solvent mixtures such as water/DMSO mixture.
However, from APQ structure, it could form an intramolecular hydrogen bond, which in
the presence of a high amount of water, could lead to fluorescence quenching due to the
formation of mixed intramolecular and intermolecular hydrogen bonds [44]. Consequently,
we investigated the contents of DMSO in the PBS buffer, and good fluorescence intensity
was obtained in the 20% DMSO, which was increased with increasing DMSO % to 30. After
that, increasing the DMSO amount to 40% led to a decrease in fluorescence intensity. Then,
as the DMSO increased, the fluorescence intensity decreased. From the previous results,
the best composition of polar solvent mixtures that stabilizes the charge-transfer states and
retains the intramolecular hydrogen bond with the minimum intermolecular hydrogen
bond is PBS buffer containing 30% DMSO. Hence, the best condition was using 30% DMSO,
which yielded the highest RFI (Figure 10). It is noteworthy that this nonlinear relation
between the solvent water content and fluorescence intensity of quinazoline derivatives is
similar to what was reported by Wang et al. [33].
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Figure 10. The effects of the DMSO contents in the PBS buffer (10 mM, pH 7.0) of NPQ (30 µM) upon
the addition of CORM-3 (100 µM). The reaction time was 30 min at room temperature. The solvents
for NPQ and CORM-3 are as described in the experimental section, except for DMSO contents.

The calibration curve was prepared under optimized conditions (Figure 11). A good
linear relationship (r = 0.997) between the concentration of CORM-3 and the fluorescence
intensity, measured at 500 nm after excitation at 280 nm, was obtained in the range of
1.0–50 µM. The linear regression equation was Y = 347.68X + 1914.2, where Y and X
represent the fluorescence intensity and the concentration of COMR-3, respectively. The
limit of detection, defined as mean blank+3SD, was 0.73 µM. The performance of the NPQ
compared to previously reported probes is summarized in Table 2. Compared to another
Pd-based probe that requires the addition of metal to detect CO, NPQ has comparable or
relatively higher sensitivity [19,20,26,45–48]. NPQ also has the advantage of not requiring
the concomitant use of the noble metal Pd. On the other hand, NPQ is superior to other
reduction-based probes in that it can detect CO in a shorter reaction time than other probes
and is less susceptible to interference by excitation light due to its large Stokes shift [21,34].
As can be seen in Table 2, the Stokes shift is about 220 nm, which is higher than most of
the reported sensors in the literature [19–21,26,34,45–48]. Moreover, the sensitivity of NPQ
is either higher or similar to other reduction-based probes [21,34]. Another advantage of
NPQ that is worth mentioning is its excellent selectivity towards CO (Figure 6).
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Table 2. Comparison of the proposed NPQ with the previously reported CO detection probes.

Probe Name Detection Reaction Wavelengths
(λex/λem, nm)

Reaction Time
(min)

Detection Limit
(µM) Ref.

Hcy-CO Pd-based,
Tsuji–Trost reaction

410/515
410/600 15 3.8 [20]

Flav-1 Pd-based,
Tsuji–Trost reaction 411/603 15 3.19 [45]

MPVC-1 Pd-based,
azido carbonylation reaction 424/550 10 100 ppm

(3.57 × 103 µM) [26]

COP-1 Pd-mediated carbonylation reaction 475/507 None 1 [19]

COP-3E-Py Pd-based,
carbonylation reaction 521/535 60 None [46]

Pd-BNP-OH Pd-based,
nanostructure probe 405/510 240 1.9 [47]

MENap-Pd Pd-based,
demetallation reaction 435/532 30 1.4 [48]

Na-CM-ER Nitro group reduction 430/520 70 0.42 [34]
LysoFP-NO2 Nitro group reduction 440/530 45 0.6 [21]

NPQ Nitro group reduction 280/500 30 0.73 This work

The repeatability of the proposed assay by NPQ was examined using different con-
centrations (5, 10, and 50 µM) in the calibration range either on the same day (intra-day
precision) or on different consecutive days (inter-day precision). The relative standard
deviations (R.S.D) for intra-day (n = 5) assays were 3.8, 4.5, and 3.8%, respectively, and
for inter-day (n = 5) assays were 9.4, 5.5, and 7.0%, respectively. Therefore, the good
repeatability of the proposed assay was confirmed.

It is noteworthy that the reaction between CO and NPQ that produces APQ is not
reversible, as the re-oxidation of APQ to NPQ does not occur by atmospheric oxygen
or oxygen dissolved in solvents; however, it needs very strong oxidizing agents such as
dimethyldioxirane and potassium iodide–tert-butyl hydroperoxide [49,50]. Hence, the
reversibility of our probe reaction with CO is not likely to happen, which is similar to
previously reported nitro probes for CO [21,34].
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2.4. NPQ Test Paper for Visual Detection of CO

Because of the AIE properties of quinazolinone fluorophores [32,33], the fluorescence
of APQ can be observed in the solid state (Figure 12). Using this property, a test paper was
prepared for the visual detection of CO in the vapor phase. The test paper was prepared
simply by soaking a piece of filter paper with the NPQ solution and then air drying it. As
shown in Figure 13, when 100 µM CORM-3 solution was dropped on the NPQ test paper,
and fluorescence was observed under UV irradiation at 365 nm, fluorescence was observed
at the point where CORM-3 was dropped after 5 min, and clear green fluorescence could
be detected visually after 10 min.
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Figure 13. Fluorescence of the NPQ (30 µM) test paper dropped with CORM-3 solution (100 µM):
(a) before dropping the CORM-3 solution; (b) 5 min and 10 min after dropping the CORM-3 solution.

Finally, the prepared test paper was applied to detect CO generated from the com-
bustion of charcoal. As a result, fluorescence was observed in the area on the test paper
exposed to charcoal smoke, suggesting that the CO in the smoke came into contact with
NPQ adsorbed on the test paper, resulting in the fluorescence turn-on of the test paper
(Figure 14). In previous reports, most fluorescent probes have used tricarbonyl dichloro
ruthenium (II) dimer (CORM-2) or CORM-3 as CO-releasing agents and have not been
applied to the detection of CO gas produced by combustion of organic materials [21,51,52].
On the other hand, the proposed NPQ was able to detect CO directly in charcoal smoke; the
NPQ test paper has the potential for applications such as being useful for on-site monitoring
of CO to alert acute CO poisoning.
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3. Experimental
3.1. Material and Instruments

Purified water was obtained using Auto still WG 203 (Yamato Scientific Co., Ltd.,
Tokyo, Japan). o-Nitorobenzaldehyde, iodine, tin (II) chloride dihydrate (SnCl2·2H2O),
sodium dihydrogen phosphate dihydrate, sodium hydrogen phosphate, hydrogen peroxide
(H2O2), iron (II) chloride tetrahydrate, iron (III) chloride hexahydrate, copper (I) chloride,
potassium chloride, calcium chloride, sodium hydrogen sulfite, sodium nitrite, sodium ni-
trate, and sodium sulfide nonahydrate were purchased from Wako Pure Chemicals (Osaka,
Japan). Tricarbonylchloro(glycinato)ruthenium (carbon monoxide releasing molecule 3,
CORM-3), sodium bromide, and tert-butyl hydroperoxide (TBHP) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Sodium thiosulfate pentahydrate, dimethyl sulfoxide
(DMSO), homocysteine (Hcy), sodium chloride, sodium sulfate, sodium iodide, and sodium
hypochlorite were obtained from Nacalai Tesque (Kyoto, Japan). Cysteine (Cys) and mag-
nesium chloride anhydrous were purchased from Kishida (Osaka, Japan). Glutathione
(GSH) was purchased from Tokyo Chemical Industries (Tokyo, Japan). 1-Hydroxy-2-oxo-3-
(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC7, a NO donor) was obtained from
Dojindo (Kumamoto, Japan). All reagents and chemicals were purchased from manufac-
turers and applied directly without further purification. The websites of the supporting
companies for the used chemicals are listed in Table S1 (Supplementary Materials).

The fluorescence and UV–vis spectra were recorded on an RF-1500 spectrofluorometer
(Shimadzu, Kyoto, Japan) and UV-1800 spectrophotometer (Shimadzu, Kyoto, Japan),
respectively. The structures of NPQ and APQ were analyzed by EI-MS (m/z) using JMS-
700N (JEOL, Tokyo, Japan), elemental analysis using Perkin Elmer 2400 II (MA, USA),
melting point measurement using ATM-02 (AS ONE, Osaka, Japan), and 1H NMR using
Varian5-inova500 (500 Hz) spectrometer (Varian, CA, USA).

3.2. Synthesis of NPQ

NPQ was synthesized by a one-step reaction (Figure S1) as follows. o-nitrobenzaldehyde
(300 mg, 2 mmol) and o-aminobenzamide (400 mg, 3 mmol) were dissolved in ethanol
(20 mL), and then iodine (750 mg, 3 mmol) was added, and the reaction mixture was
refluxed to 80 °C for 6 h. After cooling to room temperature, 5% sodium thiosulfate aqueous
solution (200 mL) was added and allowed to stand for a few minutes. The precipitate
was collected by filtration and then washed with ethanol, toluene, and then water. The
residual solid was purified by silica gel column chromatography to acquire a pale-yellow
solid (yield; 51.3% and m.p. 230–231 ◦C). The structure was confirmed by EI-MS (m/z),
H1 NMR, and elemental analysis. The EI-MS spectrum (Figure S2) shows a molecular
ion peak at 267 corresponding to [M]+. The 1H NMR spectra (Figure S3, and 500 MHz,
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DMSO-d6) δ (ppm) results were as follows: δ =7.56 (t, J = 7.6Hz, 1H), 7.64 (d, J = 8.1Hz,
1H), 7.80–7.92 (m, 4H), 8.18 (q, J = 7.4 Hz, 2H), 12.82 (s, 1H). The elemental analysis was
calculated for C14H9N3O3; C, 62.92%; H, 3.39; N, 15.72%; found: C, 62.69%; H, 3.24%; N,
15.23%. The MS, 1H NMR, and elemental analysis data are very similar to those reported
by Sayahiet et al., who have synthesized NPQ previously; however, they used a different
synthetic approach [53]. These data and those from the previous report prove the NPQ
structure with a molecular formula of C14H9N3O3.

3.3. Synthesis of APQ

NPQ (0.13 mmol) and SnCl2·2H2O (0.52 mmol) were dissolved in methanol (10 mL),
and the reaction mixture was refluxed to 80 °C for 2 h. The solvent was removed by
evaporation under reduced pressure. The residue was redissolved in ethyl acetate. The
mixture was washed with saturated NaHCO3 and saturated NaCl, respectively. The
resulting organic layer was dried with anhydrous MgSO4; then, purification was carried
out by silica gel column chromatography to acquire a yellow solid (yield; 76.6% and m.p.
245–246 °C). The structure was confirmed by EI-MS (m/z), 1H NMR, and elemental analysis.
The EI-MS spectrum (Figure S4) shows a molecular ion peak at 237, corresponding to [M]+.
The H1 NMR spectra (Figure S5 and 500 MHz, DMSO-d6) δ (ppm) results were as follows:
δ = 6.58 (t, J = 7.5 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 7.05 (s, 2H), 7.18 (t, J = 7.3 Hz, 1H), 7.47 (t,
J = 7.0 Hz, 1H), 7.81–7.70 (m, 3H), 8.10 (d, J = 7.8 Hz, 1H), 12.10 (s, 1H). These 1H NMR data
are very similar to those reported by Saravanan et al. and Venkateswarlu et al., who have
synthesized the APQ and its derivatives [54,55]. The elemental analysis is calculated for
C14H11N3O; C, 70.87%; H, 4.67; N, 17.71%; found: C, 70.60%; H, 4.71%; N, 17.72%. These
data and those from the previous report prove the APQ structure with a molecular formula
of C14H11N3O.

3.4. General Procedure for Fluorescence Measurement of CO Released from CORM-3

To 2 mL of 30 µM NPQ in PBS buffer (10 mM, pH 7.0) containing 30% DMSO (v/v),
2 mL of CORM-3 in PBS buffer was added and mixed, and then the mixture was kept at
room temperature for 30 min. Afterward, the fluorescence spectrum of the mixture was
recorded at the excitation of 280 nm.

3.5. CO Sensing with NPQ Test Paper

NPQ test papers were prepared by immersing filter paper in an ethyl acetate solution
of NPQ (30 µM) for 2 h and then air dried. After a drop of CORM-3 solution (100 µM) was
added to the prepared NPQ test paper and left to stand for several minutes, fluorescence
was visually observed under UV light irradiation at 365 nm. In addition, to evaluate the
ability of the NPQ test paper to detect gaseous CO, charcoal was combusted in a glass
jar, and the NPQ test paper was put at the opening of the jar. After the NPQ test paper
was exposed to smoke generated from charcoal combustion in a glass jar for 30 min, the
fluorescence of the test paper under UV light was observed.

4. Conclusions

In the present work, we developed NPQ, a highly sensitive and selective quinazolinone-
based fluorescent probe for CO detection. NPQ could be synthesized easily in a one-step
reaction using inexpensive and readily available materials. The nitro group of NPQ is
reduced to an amino group by the reaction with CO to emit strong fluorescence around
500 nm. NPQ turned on its fluorescence towards CO selectively and showed very good
tolerance to different interferents, including various anions and metal ions, oxidants, re-
ductants, and even free radicals. NPQ could detect CO with good sensitivity down to the
detection limit of 0.73 µM. Finally, NPQ could be applied to develop a test paper for the
visual detection of CO in the vapor phase.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28093654/s1, Table S1: The websites of the supporting
companies for the used chemicals in the study. Figure S1: Synthesis of NPQ and APQ; Figure S2:
EI-MS spectrum of NPQ; Figure S3: 1H NMR spectrum of NPQ with enlargement at the interest area
between 7 and 8.5 ppm as an inset; Figure S4: EI-MS spectrum of APQ; Figure S5: 1H NMR spectrum
of APQ with enlargement at the interest area between 6.5 and 8.5 ppm as an inset.
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