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Abstract: Fungal diseases have always been a major problem for cantaloupe crops; however, synthetic
fungicides are hazardous to humans and the environment. Consequently, a feasible alternative to
fungicides without side effects could be by using bio agents and naturally occurring plants with
antibacterial potential. This study has achieved a novel procedure for managing wilt and root rot
diseases by potentially using Trichoderma sp. culture filtrates in consortium with plant extract of
Calotropis procera, Rhizoctonia solani, Fusarium oxysporum, and Pythium ultimum, which were isolated
from infected cantaloupe roots with identified root rot symptoms. The antagonistic activity of four
Trichoderma isolates and analysis of antibiotics and filtrate enzymes of the most active Trichoderma
isolate were determined as well as phytochemical analysis of C. procera plant extract using HPLC-UV.
The obtained results showed that all Trichoderma isolates considerably lowered the radial growth of
P. ultimum, R. solani, and F. oxysporum in varying degrees. The scanning electron micrographs illustrate
the mycoparasitic nature of Trichoderma sp. on F. oxysporum. The phytochemical analysis of C. procera
indicated that phenolic contents were the major compounds found in extracts, such as vanillin
(46.79%), chlorogenic acid (30.24%), gallic acid (8.06%), and daidzein (3.45%) but including only a
low amount of the flavonoid compounds rutin, naringenin, and hesperetin. The Pot experiment’s
findings showed that cantaloupe was best protected against wilting and root rot diseases when it
was treated with both Trichoderma sp. culture filtrates (10%) and C. procera extract of (15 mg/mL),
both alone and in combination. This study demonstrates that the application of bio agent Trichoderma
spp. filtrate with C. procera phenol extract appears useful for controlling wilting and root rot disease in
cantaloupe. This innovative approach could be used as an alternative to chemical fungicide for the
control of wilting and rot root diseases.
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1. Introduction

Cantaloupe (Cucumis melo L.) belongs to the Cucurbitaceae family, which is one of the
world’s most well-known fruit crops and is a great source of nutrients such as cucurbitacin,
lithium, and zinc [1]. Cantaloupe cultivated in Egypt can be exported to the Arabian and
Gulf markets [2]. One cup of fresh cantaloupe contains 144 calories and 6% of the daily
fiber requirement, and it also contains 100% of the recommended value of vitamin C and
vitamin A. It provides about 12% of the daily potassium requirement and also has high
levels of vitamins and minerals such as folic acid, calcium, copper, zinc, and iron [3].

One of the main causes of the direct depletion of agricultural natural resources is plant
diseases [4]. These cause 10–20% annual losses in global food production, which has a
negative influence on the food supply and results in a billion-dollar financial shortfall [5].
Fungi are the most dangerous plant pathogens among soil-borne diseases, e.g., Rhizoctonia
solani, Fusarium oxysporum, and Pythium ultimum. These three soil-borne fungi have been
implicated in the root rot and wilt diseases of cantaloupe in fields. Plant diseases have
been successfully prevented by using chemical control, but overuse has accelerated the
emergence of infections that are fungicide-resistant. In addition, chemical application
upsets the ecological equilibrium of soil microorganisms [4]. However, because fungal
conidia persist for a long period, and chemical residues are dangerous to human health,
employing fungicides to combat Fusarium wilt is unsuccessful [6]. Due to its variety of
sources, bio-control is safe for people and animals and is ecologically sustainable [7].

Trichoderma fungus, an antagonist of phytopathogenic fungi, has been employed in
90% of biological controls for plant disease [4]. Because of its capacity to fight infections
and perform a variety of functions, including cell wall disintegration, hyphal growth, and
antagonist activity versus phytopathogens, the genus Trichoderma serves as a biocontrol
agent [8]. Root rot and wilt diseases are caused by the pathogenic fungi Rhizoctonia
solani, Fusarium oxysporum, and Pythium ultimum. Trichoderma spp. isolated from soil
have demonstrated significant antifungal activities [9]. Trichoderma fungi are well-known
producers of numerous extracellular enzymes, including cellulases, endochitinases, N-
acetyl-β-galactosidases, β-1,3- and β-1,6-glucanases, proteases, and xylanases [10]. The
enzymatic mixtures (xylanase, cellulase, and glucanase) produced by Trichoderma exhibited
the highest concentration of fibrolytic enzymes and were amended to industrial feed to
test their ability to hydrolyze insoluble fibers [11]. The antagonistic Trichoderma produces
extracellular hydrolases including chitinase and glucanase, which directly attack pathogens
to dissolve the cell walls of phytopathogens [12]. By using antagonistic nonpathogenic
microorganisms, biological control is a good alternative way to reduce Fusarium wilt and
root rot infection to limit the negative impacts in many crops [13].

Many physiologically active substances are found in plants and are used as nat-
ural substitutes for manufactured chemicals. Natural fungicides are organic bioactive
substances [14]. The presence of terpenes, flavonoids, phenolics, phytosterols, and polyke-
tides has a significant impact on the effectiveness of natural fungicides made from plant
extracts [15]. Phenols, flavonoids, and tannins possess anti-radical and antioxidant charac-
teristics and also directly inhibit the growth of some types of fungi [16]. Sodom’s apple is
the common name for Calotropis procera (Aiton) W.T. Aiton (family Apocynaceae). It is a
plant widely spread worldwide, especially in arid and semi-arid regions [17]. Calotropis pro-
cera extracts have been shown to have several pharmacological effects, including anticancer,
anti-inflammatory, antidiabetic, antioxidant, and antibacterial [18]. Numerous investiga-
tions have determined that this plant contains some metabolites, including flavonoids,
tannins, terpenoids, saponins, alkaloids, and steroids, because of its significant biologi-
cal effects. These phytoconstituents serve as anti-inflammatory, anti-diarrheal, antiviral,
antioxidant, and antibacterial substances, among other medicinal functions [19].

Thus, the objective of this study is to assess the antifungal efficacy of Trichoderma
isolate (Trichoderma spp.) culture filtrates and a phenolic extract of Calotropis procera in
preventing wilting and root rot diseases in cantaloupe plants as caused by Pythium ultimum,
Fusarium oxysporum, and Rhizoctonia solani, both in vitro and in vivo.
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2. Results and Discussion
2.1. In Vitro Experiments
2.1.1. Screening for Antagonistic Potential of Trichoderma Isolates against Tested
Phytopathogenic Fungi (Dual-Culture Experiments)

The efficacy of regional Trichoderma isolates in PDA medium for preventing the mycelia
development of F. oxysporum was evaluated. The findings demonstrated that each isolated
species of Trichoderma considerably and to various degrees hindered the radial development
of F. oxysporum (Table 1) (Figure 1). The Trichoderma isolates possibly prevented the mycelia
growth of F. oxysporum by between 53.64% and 100%. Maximum mycelia growth inhibition
of F. oxysporum was exhibited by isolate T2 (100%), followed by T4 (66.28%), while the
lowest inhibition (53.64%) was caused by isolate T1. According to the findings, every
isolated Trichoderma isolate considerably and to various degrees restricted the radial growth
of R. solani, with Trichoderma isolate T2 exhibiting full overgrowth, and the experiment
targeted with T3 showed the least inhibition (74.08%). P. ultimum mycelia development was
successfully restrained by Trichoderma isolates; the isolate T2 displayed full overgrowth on
P. ultimum. The pathogen tested had the lowest percentage of isolate T3 (68.52%) inhibiting
mycelia development. Trichoderma is a well-known plant pathogen antagonist and a highly
efficient biological control agent for a number of soil-borne fungal plant pathogens [20,21].
Particularly in the case of F. oxysporum infection, Trichoderma spp. can operate as a biological
inhibitor of phytopathogenic fungus in several plants [20]. Rojo et al. [21] mentioned that
T. harzianum, T. koningii, and T. viride stopped the spread of Fusarium spp. and R. solani
infection in bean seedlings. Also, in soils where these diseases naturally occur, treating
sunflower seeds with microorganisms that are harmful to Rhizoctonia solani, Fusarium spp.,
and Macrophomina phaseolina may prevent their proliferation [22]. Due to competition
for scarce resources, which is the most frequent cause of microorganism death, fungal
phytopathogens are biologically controlled. According to Howell [23], competition is
effective when the pathogen conidia demands further nutrients for germination and germ-
tube elongation.

Table 1. Effect of different Trichoderma isolates on the mycelial growth of F. oxysporum, R. solani, and
P. ultimum in vitro, with mean radial growth (mm).

Isolates F. oxysporum R. solani P. ultimum

Control 87.00 ± 0.57 a 90.00 ± 0.0 a 90.00 ± 0.0 a
T1 40.33 ± 0.33 b 18.67 ± 0.33 d 22.67 ± 0.33 d
T2 0.0 ± 0.0 e 0.0 ± 0.0 e 0.0 ± 0.0 e
T3 36.67 ± 0.33 c 23.33 ± 0.33 b 28.33 ± 0.33 b
T4 29.33± 0.33 d 20.33± 0.33 c 25.67± 0.0 c

LSD 0.001 0.001 0.001
Each value is the three-replicate average. Means with the same alphabetical letter in the column within a
comparable set of means do not significantly differ from one another when using Duncan’s multiple range test
procedure at a significance level of 0.05.

2.1.2. Analysis of the Enzymatic Crude Extract and Antibiotics in Fungal Filtrate of the
Most Active Trichoderma Isolate

The enzymatic crude extract of isolate T2 was obtained by filtration of the fungal
culture by using a sterilized bacterial filter (0.45 µm) under sterilized conditions. The
analysis of fungal filtrate took place by enzyme assay in culture filtrate. The results in
Table 2 show that T2 produced extracellular enzymes of polygalacturonase (7.56), xylanase
(7.30), protease (5.65), β-glucosidase (3.98), cellulase (3.41), B, 1-3-exoglucanse (3.22), and
chitinase (1.93 µg/mL). The extracellular enzyme activities produced by three Trichoderma
harzianum strains in culture filtrates were chitinase (2,60, 3,66, and 4.75 µmol GlcNAc h−1

(mg protein)−1) and glucanase (67, 24, and 85 µmol glucanase h−1 (mg protein)−1) after
48 h of fungal cultivations [12]. Several studies have shown that Trichoderma spp. cell
wall fragments generated by extracellular enzymes during mycoparasitic response can
suppress various plant diseases, including Fusarium spp. Chitinases and glucanases have a
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critical role in the mycoparasitism process, as they act as proteolytic enzymes, catalyzing
the hydrolysis of peptide bonds in proteins [24]. Trichoderma species produce and secrete
β-1,3-glucanase, NAGAse, chitinase, acid phosphatase, acid proteases, and alginate lyase,
which are effective antagonists against the pathogens [25]. Trichoderma β-1,3-glucanases
are vital for the enzymatic degradation of the cell walls of phytopathogenic fungi during
mycoparasitic attraction [26]. The production of hydrolytic enzymes by Trichoderma has
been shown to be influenced according to culture conditions and the host [27]. According
to [28,29], Trichoderma species either indirectly or directly suppress fungal phytopathogens
through biological means via competition for resources and space, altering environmental
factors, or encouraging the development of plant defenses and antibiosis or directly through
processes like mycoparasitism. Our findings demonstrate that extracellular enzymes are
released from the Trichoderma isolates under examination, and these findings are consistent
with those of Chen et al. [30] and Mukherjee et al. [31].
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Table 2. Extracellular enzymes secreted by Trichoderma isolate (T2).

Enzymes of Trichoderma
Isolate (T2)

(µmol Enzyme min−1·mg−1

Protein) Enzymes (µmol Enzyme min−1·mg−1

Protein)

Protease 5.65 Polygalacturonase (PG) 7.56
β-1-3-exoglucanase 3.22 β-glucosidase 3.98

Chitinase 1.93 Xylanase 7.30

Cellulase 3.41 Trichorzins PA
(peptaibols) µg/mL 13.0

2.1.3. Effect of Trichoderma spp. (T2) on Tested Phytopathogenic Fungi under Scanning
Electron Microscopy

Mycelial samples from the communication area of the dual culture of F. oxysporum plus
Trichoderma sp. (T2) were observed by scanning electron microscope (Figure S2). Hyphae of
Trichoderma spp. (T2) frequently grow parallel to the hyphae of the host F. oxysporum and
stick onto its surface, followed by hasty and excessive coiling (Figure S2) and establishment
of appressoria-like structures on the host surface (Figure S2). Finally, lysis of host cell
walls was also observed (Figure S2), showing the mycoparasitic nature of Trichoderma sp.
(T2) on F. oxysporum. The Trichoderma isolates showed mycoparasitic activity, which was
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determined using the capacity for Trichoderma overgrowth on the mycelia development
of Fusarium oxysporum in the culture, which could indicate that it can actively parasitize
the pathogen.

2.1.4. Screening of Plant Extracts as Antifungal Activities against Tested Fungi

The antifungal effects of seven plant extracts against F. oxysporum were examined
(Figure 2). The order of antifungal activities was as follows: Calotropis procera, Eucalyptus
rostrata, Nerium oleander, Cymbopogon proximus, Azadicachta indica, Pluchea dioscoridis, and
Cyperus rotundus, with 21.33, 16.67, 14.67, 12.33, 10.67, 8.67, and 7.33 mm, respectively.
The results showed that C. procera (21.33 mm) was the most effective plant extract against
F. oxysporum, and the least effective plant extract was C. rotundus (7.33 mm). The strongest
and most effective growth inhibitor of fungus among all plant extracts for all tested phy-
topathogenic species was a plant extract called Calotropis procera [32]. Secondary plant
metabolites that may prevent pathogen formation and proliferation include polyphenols,
alkaloids, flavonoids, and terpenoids, which may explain why plant extracts have antifun-
gal properties [33]. A fungistasis was seen as a result of the Calotropis procera plant extract’s
impact on the tested fungal development, which prevented the tested fungal mycelia and
linear growth. The earlier findings were consistent with those of [34,35]. Numerous sec-
ondary metabolites produced by plants have a biocide effect on postharvest infections [36].
These substances have a connection to the plant’s immune system and can be effective
fungal inhibitors [37]. The antimicrobial properties of natural plant extracts have been
demonstrated in numerous investigations, largely because of their abundance in various
phenolic component classes [38]. The thiol group at the plant extract active site is where
polyphenols have shown antifungal properties [21].
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2.1.5. Effect of Different Concentrations of Calotropis procera against Tested Fungi

The mean values of growth (colony diameter in mm) of the tested fungi, i.e., F. oxys-
porum, R. solani, and P. ultimum, as grown on the optimal agar medium containing dif-
ferent concentrations of plant extract of C. procera (5, 10, and 15 mg), are represented in
Figures 3 and 4. The growth from all treatments was measurable by the end of the 6th day
after inoculation. The results revealed that the fungal growth was inhibited by increasing
the concentration of the plant extract. Low inhibition percentages were obtained with low
concentrations of plant extract (5 mg) that affected each fungi (F. oxysporum, 37.64%; R. solani,
43.33%; P. ultimum, 43.33%). Meanwhile, the inhibition percentage of tested fungi increased
by increasing the plant extracts’ concentrations. At 15 mg/mL, the inhibition percentage
was 71.13%, 75.55%, and 74.44% for F. oxysporum, R. solani, and P. ultimum, respectively.
There were no significant effects of plant extracts on either R. solani or P. ultimum.
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2.2. Phytochemical Analysis of Most Active Plant Extract

Table 3 and Figure 5 show a phytochemical analysis of the methanol extract of C. procera
obtained by HPLC_UV. The results demonstrate that 18 compounds were found, three of
which are flavonoid, plus fifteen phenolic compounds. Flavonoid compounds such as rutin,
naringenin, and hesperetin were found at percentages of 1.29, 1.56, and 0.85, respectively,
representing only a minimal presence. The major compounds were phenolic, including
vanillin (46.79%), chlorogenic acid (30.24%), gallic acid (8.06%), and daidzein (3.45%). All
phenolic compounds have antifungal activities, as shown in Table 3.

Table 3. HPLC UV–Vis Detectors analysis of methanol extract of Calotropis procera.

RT Compound Type Area Area% Antifungal Activity Against Ref.

3.58 Gallic acid Phenolic 162.19 8.06 Alternaria solani [39]
4.27 Chlorogenic acid Phenolic 608.01 30.24 Candida albicans [40]
4.61 Catechin Phenolic 11.24 0.55 Candida albicans [41]
5.69 Methyl gallate Phenolic 32.62 1.62 Magnaporthe grisea, Botrytis cinerea, and Puccinia recondita [42]
6.39 Syringic acid Phenolic 20.84 1.03 Ganoderma boninense [43]
6.70 Pyrocatechol Phenolic 17.34 0.86 Bipolaris carbonum [44]
6.86 Rutin Flavonoid 26.09 1.29 Fusarium solani [45]
7.47 Ellagic acid Phenolic 5.76 0.28 Candida krusei and Candida parapsilosis [46]
8.68 Coumaric acid Phenolic 2.16 0.10 Botrytis cinerea [47]
9.25 Vanillin Phenolic 940.70 46.79 Alternaria alternata [48]
9.85 Ferulic acid Phenolic 46.86 2.33 Fusarium graminearum [49]
10.5 Naringenin Flavonoid 31.56 1.56 Candida albicans [50]
11.5 Rosmarinic acid Phenolic 2.67 0.13 Candida albicans [51]
15.6 Daidzein Phenolic 69.51 3.45 Herpes simplex and Candida albicans [52]
17.3 Quercetin Phenolic 2.79 0.13 Candida albicans [51]
19.1 Cinnamic acid Phenolic 11.14 0.55 Aspergillus flavus, Aspergillus terreus, and Aspergillus niger [53]
20.5 Kaempferol Phenolic 1.74 0.08 Fusarium oxysporium [54]
21.0 Hesperetin Flavonoid 17.21 0.85 Candida albicans and Candida tropicalis [55]
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2.3. In Vivo Experiments
2.3.1. Effect of Trichoderma spp. filtrate and Methanol Extract of C. procera Each or in
Combination on Cantaloupe Plants Infected with F. oxysporum
Disease Incidence

The data in Figure 6 show that, in comparison to the control plants, F. oxysporum-
infected cantaloupe plants had a disease incidence (DI) that was extremely high (60.33%).
The disease incidence (DI) was reduced when diseased cantaloupe plants were treated with
Trichoderma spp., C. procera extract, Trichoderma spp., or C. procera extract consortium or the
fungicide Rhizolex. The Trichoderma spp. and C. procera extract consortium was the most
successful treatment in lowering the prevalence of wilting disease in cantaloupe plants
(0.00%).
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Figure 6. Effect of Trichoderma spp. and extract of C. procera each and in consortium on disease
incidence of cantaloupe plants infected with F. oxysporum. P = the pathogen; C = the control (F. oxys-
porum). P + F (pathogen + fungicide), P + T (pathogen + treatment of Trichoderma sp.), P + E
(pathogen + extract of C. procera), and P + T + E (pathogen + Trichoderma sp. + extract of C. pro-
cera). Different letters indicate significant value using Duncan’s multiple range test procedure at a
significance level of 0.05.

Cultural filtrates of the antagonistic fungal strains Trichoderma harzianum and Tricho-
derma viride showed antifungal potency against different pathogenic fungal strains [56]. The
culture filtrate of Trichoderma longibrachiatum SFC100166 could be a valuable source for the
enhancement of natural agents to control late blight caused by Phytophthora infestans [57].

Many soil-borne fungi, including the Fusarium species, S. sclerotium, R. solani, S. rolfsii,
Pythium species, and R. solani, can be controlled by using Trichoderma species on vegetables,
industrial crops, and fruit [58].

2.3.2. Growth Parameters

The results in Table 4 and Figure 7 demonstrate that in cantaloupe plants that were
infected with F. oxysporum, all growth indicators were drastically lowered, including shoot
fresh weight (4.57 gm), shoot dry weight (2.47 gm), shoot length (14.27 cm), number of
leaves (5.33), root length (10.33 cm), root dry weight (0.63 gm), and root fresh weight
(1.58 gm), when in comparison to the control plants. The application of C. procera extract
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along with Trichoderma spp. considerably improved the growth responses of cantaloupe
plants (root length was 23.67 cm, fresh weight was 7.54 gm, dry weight was 3.45 g, shoot
length was 28.27 cm, fresh weight was 15.60 g, dry weight was 8.57 gm, and there were
11.00 leaves).

Table 4. Effect of Trichoderma spp. and extract of C. procera on growth parameters of cantaloupe plants
infected with F. oxysporum.

Treatment
Growth Parameters

R.L.
(cm) R.F.W. (gm) R.D.W. (gm) S.L. (cm) S.F.W. (gm) S.D.W. (gm) Leaf Numbers

C 20.67 ± 0.33 b 5.29 ± 0.22 b 2.59 ± 0.19 b 27.33 ± 0.30 b 14.10 ± 0.25 b 7.12 ± 0.0.20 b 9.67 ± 0.27 b
P 10.33 ± 0.33 d 1.58 ± 0.22 d 0.63 ± 0.19 c 14.27 ± 0.30 e 4.57 ± 0.25 d 2.47 ± 0.20 d 5.33 ± 0.27 e

P + F 16.67 ± 0.33 c 3.58 ± 0.22 c 2.33 ± 0.19 b 24.33 ± 0.30 c 12.33 ± 0.25 c 5.53 ± 0.20 c 7.33 ± 0.27 d
P + T 21.67 ± 0.33 b 4.09 ± 0.22 c 2.46 ± 0.19 b 26.43 ± 0.30 b 13.43 ± 0.25 b 6.69 ± 0.20 b 9.00 ± 0.27 b
P + E 16.33 ± 0.33 c 3.57 ± 0.22 c 2.12 ± 0.19 b 23.23 ± 0.30 d 12.53 ± 0.25 c 5.56 ± 0.20 c 8.67 ± 0.27 c

P + T + E 23.67 ± 0.33 a 7.54 ± 0.22 a 3.45 ± 0.19 a 28.27 ± 0.30 a 15.60 ± 0.25 a 8.57 ± 0.20 a 11.00 ± 0.27 a
LSD 0.001 0.001 0.001 0.001 0.001 0.001 0.00

The data that were recorded are the averages of three replicates. Means with the same alphabetical letter in the
column within a comparable set of means do not significantly differ from one another when using Duncan’s
multiple range test procedure at a significance level of 0.05. P = the pathogen; C = the control (F. oxysporum). P + F
(pathogen + fungicide), P + T (pathogen + treatment of Trichoderma sp.), P + E (pathogen + extract of C. procera),
and P + T + E (pathogen + Trichoderma sp. + extract of C. procera).
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Figure 7. Effect of Trichoderma spp. and extract of C. procera based on factors for growth; cantaloupe
plant diseased with F. oxysporum.

Cantaloupe plants cultivated in soil treated with Trichoderma spp. had greater plant
height and fresh weight than cantaloupe plants inoculated with F. oxysporum, according
to the effect of antagonism on their growth under pot conditions. In the current investiga-
tion, plants treated with Trichoderma spp. also grew taller. Trichoderma gamsii application
produced similar effects on the growth of cereal and crops of legumes [59]. According to
Abou-Zeid [60], inoculating tomato plants with antagonists can decrease the occurrence
of several diseases. The best effect in suppressing cantaloupe root rot was shown by the
growth of plants treated with Trichoderma spp., which was greater than the growth of those
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under the pathogen alone. In a pot culture assay, it was discovered that adding Tricho-
derma spp. To the soil improved the root and shoot length. A diffusible growth-regulating
agent was also used to stimulate increased growth in Trichoderma spp., and T. harzianum
completely prevented R. solani infection.

2.3.3. Root Surface Area

The information reported in Figure 8 illustrates the cantaloupe plant’s root surface
area. According to the findings, plants with F. oxysporum infection alone had an extremely
small root surface area of 1.0 cm2 compared to control plants (4 cm2). However, the diseased
plants treated with Trichoderma spp. or C. procera extract had greater root surface areas (5
and 4 cm2, respectively). However, combining Trichoderma spp. and C. procera extract led to
a very large root surface area (6 cm2). The results show significant change between plants
infected with the pathogen fungus and other treatments.
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Figure 8. Effect of Trichoderma sp. and extract of C. procera on root surface area of cantaloupe plants
infected with F. oxysporum. P = the pathogen; C = the control (F. oxysporum). P + F (pathogen +
fungicide), P + T (pathogen + treatment of Trichoderma sp.), P + E (pathogen + extract of C. procera),
and P + T + E (pathogen + Trichoderma sp. + extract of C. procera). Different letters indicate significant
value using Duncan’s multiple range test procedure at a significance level of 0.05.

2.3.4. Pearson Correlation Analysis

The correlation coefficients (R2) and relative p-values among the morphological pa-
rameters of treated plants show a high correlation among all morphological parameters
that were measured, including root length, root fresh weight, root dry weight, shoot fresh
weight, shoot dry weight, leaf numbers, and root surface area (Table 5).

2.3.5. Total Phenol Content

Total phenol contents were examined in cantaloupe plants that were infected and
treated with Trichoderma spp., C. procera extract, or the fungicide Rizolex-MZ. Despite
the elevated total phenol content in F. oxysporum-infected cantaloupe plants, treatment
with Trichoderma spp., Calotropis procera extract, or the fungicide Rizolex-MZ resulted in a
further increase in the phenol content. The treatment of Trichoderma spp. with C. procera
extract resulted in the greatest increase in the phenol content of infected cantaloupe plants
(19.27 µg·g−1 gallic acid) (Figure 9). There were no significant effects among plants infected
with the pathogen and the plants infected with the pathogen and treated with C. procera
both alone and with Trichoderma spp.
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Table 5. Pearson correlation among the plant growth parameters.

Root Length Root Fresh
Weight

Root Dry
Weight Shoot Length Shoot Fresh

Weight
Shoot Dry

Weight
Leaf

Numbers
Root

Surface

Root length 1
Root fresh weight 0.890 ** 1
Root dry weight 0.909 ** 0.877 ** 1

Shoot length 0.946 ** 0.830 ** 0.914 ** 1
Shoot fresh weight 0.925 ** 0.847 ** 0.924 ** 0.984 ** 1
Shoot dry weight 0.968 ** 0.929 ** 0.927 ** 0.952 ** 0.954 ** 1

Leaf numbers 0.919 ** 0.909 ** 0.854 ** 0.889 ** 0.905 ** 0.951 ** 1
Root surface 0.884 ** 0.759 ** 0.851 ** 0.852 ** 0.857 ** 0.858 ** 0.816 ** 1

** Correlation is significant at the 0.01 level (2-tailed).
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Figure 9. Effect of Trichoderma spp. and extract of C. procera both alone and in consortium on
total phenol contents of cantaloupe plants infected with F. oxysporum. P = the pathogen; C = the
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sp.), P + E (pathogen + extract of C. procera), and P + T + E (pathogen + Trichoderma sp. + extract of
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at a significance level of 0.05.

It was hypothesized that Trichoderma inoculation raised the lytic enzyme’s activity,
which in turn increased the quantity of phenols. This may have increased physical barrier
strength or created a chemical barrier that was resistant in comparison to the hydrolytic
enzymes created by the infection, leading to resistance against F. oxysporum [61].

3. Materials and Methods
3.1. Isolation, Purification, and Identification of F. oxysporum, P. ultimum, and R. solani

Cantaloupe plants with varying degrees of root and wilt were collected in Egypt from
many locations, including Sadat City, Nubaria, El Khatatba, and Alexandria (K. 76 Egypt
Road). The infected roots were cut into small pieces, properly cleaned with running tap
water, and then immersed in sodium hypochlorite (0.5% chlorine) for one minute. The
surface was cleaned using D. water and dried between two sterile filter sheets [62]. The roots
were cut into small, 2–3 mm pieces, and four pieces were placed on a 2.5% potato dextrose
agar (PDA) medium amended with 10 mg L−1 rifampicin and 200 mg L−1 ampicillin. The
plates were maintained at ambient temperature for 7 to 10 days and then at 28 ◦C for 7 days.
Pure cultures were kept for future use at 5 ◦C, and the separated fungi were identified
using cultural and morphological characteristics as well as microscopically described [63].
The isolates were identified as Fusarium oxysporum 9704 AUMC, Rhizoctonia solani 6590
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AUMC, and Pythium ultimum 4413AUMC, according to Booth [64]. The identification was
performed by the Mycology Center, Assiut University (AUMC).

3.2. Isolation and Identification of Trichoderma spp.

There are many ways to isolate Trichoderma spp.; however, serial dilution of samples
is one of the most frequently described ways in the literature [65,66]. This procedure is
easy, inexpensive, and suitable for handling big samples. Soil samples were collected
around healthy roots of cantaloupe plants from fields across Egypt (Table 6), including
Sadat City, Nubaria, El Khatatba, and K. 76 Egypt Road, Alexandria. This was followed by
air drying and grinding soil samples into powder. The sample stock solution was produced
by mixing 10 g of powdered soil sample with 90 mL of distilled water. The samples were
then serially diluted, as 10−1, 10−2, 10−3, 10−4, 10−5, and 0.5 mL of each prepared dilution
was equally dispersed and kept for seven days at 28 ◦C on a PDB medium in a Petri plate.
The isolated fungi were sub-cultured in Trichoderma-selective (TSM) medium and identified
based on physiological, morphological, and cultural features [67]. Trichoderma spp. isolates
were identified based on conidiophores, phialides, mycelium structure, growth, and other
colonial characteristics as well as conidia [68]. The identity of the chosen Trichoderma spp.
isolate was confirmed by the Mycology Center at Assiut University in Egypt.

Table 6. Trichoderma isolates from Cantaloupe.

Isolates Latitude and Longitude Location of Host Plant

T1 30◦38′41.9′′ N 30◦06′53.9′′ E Nubaria
T2 30◦39′37′′ N 30◦04′03′′ E Sadat City
T3 30◦13′04′′ N 30◦51′51′′ E El Khatatba
T4 30◦42′01′′ N 30◦02′50′′ E Alex. Cairo Road K. 76.

3.3. Collection of Wild Plants, Identification, and Extractions

Seven wild plants, namely Eucalyptus rostrata Schlecht, Pluchea dioscoridis L, Nerium
oleander L., Cymbopogon proximus (hochst) Staps, Azadicachta indica Adrjuss, Calotropis procera
(Aiton), and Cyperus rotundus L., were collected from fields, canal sides, and desert region
of Sadat City in different regions of the El-Menofya governorate [69]. Ten grams of plant
leaf powder was steeped for one week in 100 mL of 70% methanol at room temperature
in an orbital shaker (120 rpm). The mixtures were then centrifuged at 5000 rpm for 5 min.
Using a rotary evaporator, the supernatants were evaporated. The plant extract was diluted
in 1% dimethyl sulfoxide (DMSO) to obtain a final concentration of 15 mg/mL [70].

3.4. Disease Control (In Vitro Experiments)
3.4.1. The Inhibitory Activity of Trichoderma spp. Isolates versus Tested Phytopathogenic
Fungi (Dual-Culture Experiments)

By using a dual-culture method, the antagonistic action of Trichoderma spp. isolates
versus the tested fungi was assessed [71]. A pathogen disk (6 mm in diameter) was located
on one side of the Petri dish. On the parallel side, an antagonist disk was located an even
distance apart. PDA plates containing only the pathogen’s mycelium’s disks were used as
controls. Each experiment was performed three times. The phytopathogens’ radial growth
in the control and treatment plates was assessed after six days of incubation at 28 ◦C, and
the percentage of inhibition of radial mycelial growth (PIRG) was determined using the
following formula:

PIRG % = (R1 − R2)/R1 × 100

where R1 = radial growth of the phytopathogen in the control plate; R2 = radial growth of
the phytopathogen when an antagonist is present [72].
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3.4.2. Enzymes Assays and Antibiotics of Selected Trichoderma spp. Isolate in
Culture Filtrate
Enzymes Assays

Enzyme assay experiments were performed in the Central Labs Unit of Research
National Center, Egypt. Chitinase activity was measured according to the methods of
Boller [73] and Reissig [74]. Cellulase activity and polygalacturonase (PG) activity were
measured in relation to the method of Collmer [75] and Miller et al. [76]. “β-1,3-glucanase”
activity was determined by the Malik and Singh [77] methods. Protease activity was
assessed according to methods of Lee and Takahashi [78]. Xylanase activity was evaluated
related to the methods of Bailey et al. [79], and β-glucosidase activity was measured in
relation to the Berghem and Petterson [80] methods. (The methods are presented in detail
in the Supplementary Materials).

3.5. Sample Preparation for Scanning Electron Microscopy (SEM)

A scanning electron microscope (SEM) was used to examine the hyphal interaction
between F. oxysporum and T. atroviride. A mycelial disc (5 mm) was inserted into the PDA
plate, taken from both colonies of the leading edge of F. oxysporum and T. atroviride, both of
which grow toward each other and intermix their hyphae, in order to locate the hyphae
interaction areas. Agar blocks measuring 1 cm thick were removed from plate culture,
and the interaction areas were marked for SEM processing. Leica’s tissue processor model
Lynexel was used for sample preparation. The mycelial samples from the contact region
were first fixed with osmium oxide before being dehydrated with ethyl alcohol serial
dilution followed by acetone. The treated samples were then processed again after being
coated with gold using a sputter coater (EMS 550) and dried using a critical point drier
(EMS 850). Then, by using an SEM (JEOL100CX-ASID-4D), the mycoparasitism and hyphae
contacts were examined at the EM Unit in the Mycology Center at Al-Azhar University in
Egypt, the microscope was run at 30 kV [81].

3.6. Antifungal Screening of Selected Plant Extracts

The agar well diffusion method was used to screen the tested seven plant extracts for
their antifungal activities, as demonstrated by Daoud [82]. A sterile Petri dish was pipetted
with one milliliter of 106 conidia·mL−1 6–7-day-old F. oxysporum culture in the center. The
medium of PDA for fungi was then poured into the Petri dish containing the inoculum and
mixed well. Using a sterile cork borer (6 mm in diameter), wells were formed into agar
plates containing inoculums after hardening. Then, 100 µL of each extract were applied to
the appropriate wells at a concentration of 15 mg/mL. The plates were chilled for 30 min to
ensure that the extracts were mixed effectively with the agar. After that, the plates were
incubated for 48 h at 28 ◦C. After measuring the diameter of the inhibition zone, which
included the well diameter, the following the incubation period allowed for the detection
of antifungal activity. DMSO at a concentration of 10% was used as a negative control.

3.7. In Vitro Evaluation of the Effect Different Concentrations of C. procera against Tested Fungi

The experiment evaluated the effects of different concentrations of the plant extract of
C. procera (5, 10, and 15 mg/mL) on mycelial growth of the tested fungi, i.e., F. oxysporum,
P. ultimum, and R. solani. The tested phytopathogenic fungi were cultivated for five days at
25 ◦C on PDA before being used for the radial growth tests. In the center of a PDA plate,
20 µL of each concentration of C. procera extract was then added. After the treatments were
absorbed into the agar, a 5 mm diameter plug from the PDA fungal cultures was inoculated
on the center of the plate. Every assay was performed three times. Then, the cultures were
incubated at 28 ◦C for 5 days. The inhibitory activity or radial growth (IR) was calculated
according to the following formula [83]:

% IR = Dc − Dt/Dc × 100
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where IR = inhibiting mycelial development percentage; Dc = average fungal mycelial
growth diameter of the DMSO (20 µL) at a concentration of 10%, which was employed as a
negative control [81]; Dt = average fungal mycelial growth diameter after extract treatment.

3.8. Phytochemical Analysis of Most Active Plant Extract by HPLC UV–Vis Detectors

The phytochemical compositions of the extract from leaves of Calotropis procera were
determined using the HPLC UV–Vis Detectors to find phenolic, flavonoids, and other active
compounds, and analysis was performed with an Agilent 1260 series instrument. The
analysis was conducted in the Central Labs Unit of the Research National Center, Egypt.
Using a Zorbax Eclipse Plus C8 column (4.6 mm × 250 mm i.d., 5 µm), the separation was
performed. At a flow rate of 0.9 mL/min, the mobile phase was composed of water (A)
and 0.05% trifluoroacetic acid in acetonitrile (B). The following was the sequential linear
gradient programming for the mobile phase: 0 min (82% A), 0–1 min (82% A), 1–11 min
(75% A), 11–18 min (60% A), 18–22 min (82% A), and 22–24 min (82% A). At 280 nm,
the multi-wavelength detector was observed. For every sample solution, there was one
injection volume of five microliters. At 40 ◦C, the column temperature was kept constant.

3.9. Disease Control (In Vivo Experiments)
Effects of Trichoderma spp. filtrate and C. procera plant extract on cantaloupe plants infected
by F. oxysporum

To obtain the inoculum of Fusarium oxysporum, five discs of a seven-day-old F. oxys-
porum culture grown on PDA medium were added to 500 mL bottles of sand-cornmeal
medium (SCM), and the mixture was incubated at 28 ◦C for 14 days [84]. Autoclave steril-
ization was used to prepare the 1:2 sand-clay soil used in this experiment. Then, 1 gm/kg
soil F. oxysporum inoculum was added to pots (12 cm in diameter by 20 cm in height)
containing 2.5 kg of sterilized soil; they were mixed well in upper surface and then watered
as necessary for 7 days [85]. The healthy root systems of transplanted cantaloupes (30 days
old) were soaked in treatments of each of the following: 15 mg/m of Calotropis procera
extract, Trichoderma spp., and its combinations for 30 to 60 min; the plants were then culti-
vated in the infected soil. The treatments (15 plants in each treatment, one plant in each pot)
were according to the following: P = pathogen (F. oxysporum), C = control (un-infected soil),
P + T = (pathogen + soaking in 10% filtrate of Trichoderma spp. (8 days)), P+ F = pathogen +
soaking in the fungicide Rizolex-T, and P + T + E (pathogen + soaking in 10% filtrate of
Trichoderma spp. (8 days) + 15 mg/mL extract of Calotropis procera). For the control roots,
water was used. In this experiment, the Ministry of Agriculture’s recommended dosage
for the fungicide Rizolex-T was 3 gm/kg soil [86]. The data from this experiment were
collected after 30 days from the transfer.

3.10. Measurements of the Growth Parameters of the Cantaloupe Plants

Fifteen plants were taken from each treatment and cleaned under running water to
remove dirt. The length of the root (cm), the length of the shoot (cm), the number of leaves,
the fresh and dry weights of the root and shoot (gm), and root surface area (cm2) were
measured according to Tagliavini [87]. The incidence rate percentages were investigated
according to the following equations:

Disease incidence (DI) % =
Number of diseased plants

Total number of plants
× 100

3.11. Total Phenol Estamations

Total phenol estimation (mg/gm gallic acid) was carried out using the Folin–Ciocalteau
reagent, whereby 0.5 mL of extract was added to 2.5 mL of 10-fold diluted Folin–Ciocalteu
reagent and then 2 mL of 7.5% Na2CO3 solution. The mixture was kept in the dark for
30 min at ambient temperature, and the absorbance was read by spectrophotometry (Helios
UV–Vis Scanning Spectrophotometers, Caerphilly, England) 760 nm [85].
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3.12. Statistical Analysis

The mean of determinations performed in triplicate is the total of all values according
to the latest release of SPSS 16. The study employed one-way analysis of variance (ANOVA)
to statistically analyze the data. The least significant difference (LSD) is determined at the
p ≤ 0.05 level.

4. Conclusions

As a result, our research was meant to replace the unfavorable and risky usage
of pesticides with an alternative non-chemical, ecologically friendly, efficient, biological
control action against Rhizoctonia solani, Fusarium oxysporum, and Pythium ultimum, which
infect cantaloupe plants under both in vitro and in vivo tests. The results demonstrate
that Trichoderma isolates have antifungal activities against F. oxysporum, R. solani, and
P. ultimum in vitro. Trichoderma spp. culture filtrates contain many vital enzymes and
antibiotics that are responsible for suppressing the pathogenic fungi. The methanol extract
of Calotropis procera showed more antifungal activities against F. oxysporum among the
tested plants. Vanillin, chlorogenic acid, and gallic acid were the most common phenolic
compounds found in the methanol extract of C. procera. Trichoderma spp. culture filtrates in
consortium with a methanol extract of C. procera reduced the prevalence of wilting disease
caused by F. oxysporum, enhancing growth parameters such as root length, root fresh, dry
weight, shoot length, shoot fresh dry weight, and number of leaves.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29010139/s1, Figure S1: Effect of Trichoderma isolates
on F. oxysporum, R. solani, and P. ultimum mycelial growth after 6 days of incubation; Figure S2:
Scanning electron microscopy observations of the mycoparasitic nature of Trichoderma sp. (T2) on
F. oxysporum. (A) Parallel growth of Trichoderma hyphae (T) and coleogenesis of (T) surrounding (F)
hyphae. (B) Formation of structures resembling appressoria (ab) as a result of Trichoderma growth
on Fusarium hyphae (F) sticking together, “Ab”. (C) The Fusarium (F) wall finally lysed; Figure S3:
HPLC-MS analysis of methanol extract of Calotropis procera.
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