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Abstract: Nowadays, the quality of natural products is an issue of great interest in our society due
to the increase in adulteration cases in recent decades. Coffee, one of the most popular beverages
worldwide, is a food product that is easily adulterated. To prevent fraudulent practices, it is necessary
to develop feasible methodologies to authenticate and guarantee not only the coffee’s origin but
also its variety, as well as its roasting degree. In the present study, a C18 reversed-phase liquid
chromatography (LC) technique coupled to high-resolution mass spectrometry (HRMS) was applied
to address the characterization and classification of Arabica and Robusta coffee samples from different
production regions using chemometrics. The proposed non-targeted LC-HRMS method using
electrospray ionization in negative mode was applied to the analysis of 306 coffee samples belonging
to different groups depending on the variety (Arabica and Robusta), the growing region (e.g., Ethiopia,
Colombia, Nicaragua, Indonesia, India, Uganda, Brazil, Cambodia and Vietnam), and the roasting
degree. Analytes were recovered with hot water as the extracting solvent (coffee brewing). The data
obtained were considered the source of potential descriptors to be exploited for the characterization
and classification of the samples using principal component analysis (PCA) and partial least squares–
discriminant analysis (PLS-DA). In addition, different adulteration cases, involving nearby production
regions and different varieties, were evaluated by pairs (e.g., Vietnam Arabica—Vietnam Robusta,
Vietnam Arabica—Cambodia and Vietnam Robusta—Cambodia). The coffee adulteration studies
carried out with partial least squares (PLS) regression demonstrated the good capability of the
proposed methodology to quantify adulterant levels down to 15%, accomplishing calibration and
prediction errors below 2.7% and 11.6%, respectively.

Keywords: non-targeted LC-HRMS analysis; fingerprinting chemical descriptors; coffee adulteration;
principal component analysis (PCA); partial least squares–discriminant analysis (PLS-DA); partial
least squares (PLS) regression

1. Introduction

Recently, the analytical requirements of food trials have been augmented considerably
because food fraud is a growing challenge worldwide and food safety is often difficult
to control due to extensive commercial chains. In addition, consumer expectations about
food quality have also increased, being willing to pay more money for safer food products
with specific attributes, such as the geographical origin of production, among others. To
cope with all these factors, the development of analytical methodologies to guarantee
food integrity, safety and authenticity has become of paramount importance since it is a
criterion of quality and safety for them [1,2]. These analytical methodologies mainly focus
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on targeted strategies based on monitoring selected compounds used as sample markers
(chemical descriptors) to accomplish their classification, characterization and authenti-
cation [3]. Thus, if standards are commercially available and the methods are perfectly
established, targeted strategies are very powerful and suitable for carrying out food quality
control and authentication. However, quantifying a relatively high number of target com-
pounds in complex matrices such as foodstuffs is difficult because of both possible matrix
effects and/or interferences [3,4]. In addition, the requirement of standards, which are not
always commercially available, will considerably increase the cost of such methodologies.
All these facts are among the main drawbacks of targeted approaches. In this respect,
non-targeted strategies, based on obtaining a sample metabolomic fingerprint, have gained
in importance in the last few years to deal with a wide variety of analytical issues related
to food authenticity, food safety and public health. In these strategies, prior knowledge
of the chemical compounds that may be present in the samples is not necessary as the
sample fingerprint consists only of the instrumental response of a given method [1,4–7].
For example, ultraviolet or fluorescence data as a function of chromatographic time [8],
or the intensity of MS signals as a function of the m/z ratio and time [9] are examples of
instrumental responses typically employed as sample fingerprints to solve food authentica-
tion issues. Thus, non-targeted methods can maximally explore the compounds present in
the sample [1].

As commented, non-targeted methodologies have been widely employed to ad-
dress different food issues, such as verifying geographical origin or detecting contam-
inants [1,10,11]. According to the literature, the most common analytical methods for food
fingerprinting metabolomics rely on HRMS [6,12] and nuclear magnetic resonance (NMR),
especially when a tentative identification of metabolites is also intended [2,5–7,12–14]. How-
ever, fingerprinting methodologies based on ultraviolet–visible (UV-vis) and fluorescence
(FL) detection are also widely used to address food characterization and authentication [15].
Due to the food matrix complexity, separation techniques such as liquid chromatogra-
phy (LC), gas chromatography (GC) or capillary electrophoresis (CE) are considered in
combination with the mentioned detectors to increase analyte resolution [16–18]. As previ-
ously commented, general and simple sample treatment methods are frequently preferred
to reduce chemical compound discrimination prior to analysis. Finally, fingerprinting
metabolomic strategies provide, in general, a large quantity of data that, together with the
high number of samples involved in food authentication issues, make necessary the use of
chemometrics to extract useful information [4,6,7].

Beverages are easily alterable through fraudulent practices, such as mislabeling or
the addition of unspecified additives to increase their volume, with fruit juices, coffee, tea,
wine and other alcoholic beverages being the ones with the highest adulteration rates [19].
Coffee is the most important commercial non-alcoholic beverage, being the second most
commercialized product in the world markets after petroleum, with a turnover of ca. USD
10,000 million per year [20]. The coffee intake brings healthy effects against cardiovascular
diseases, obesity, hypertension, type II diabetes or stress due to the antioxidant activity of
bioactive substances such as polyphenols [21]. Worldwide, the two principally cultivated
coffee species are Coffea arabica (Arabica coffee) and Coffea canephora (Robusta coffee).
In general, coffee production areas extend from 25 N to 25 S of latitude because of the
appropriate climatic conditions for coffee cultivation. In addition, coffee beans produced
at high altitude are harder to produce and, therefore, more appreciated. The sites for
coffee growing are then selected based on environmental factors like temperature, sunshine
intensity, wind, type of soil, topography, rainfall and humidity, among others. Depending
on these factors, the content of bioactive substances in coffee varies, resulting in coffees
with very different properties and flavors [22]. These production factors continue attracting
the interest of coffee breeders, especially in the case of Arabica coffee which, in general, is
the most preferred by consumers and is considered of higher quality than Robusta coffee.
Apart from the species, the final coffee price also depends on the region of production and
agricultural practices [20,22]. For these reasons, coffee is highly susceptible to fraudulent
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practices for illicit benefits. Thus, producers and importing companies are interested in
analytical methods to guarantee that coffee has not been adulterated along the complex
commercial chain [22].

To address coffee characterization and authentication, both targeted and non-targeted
strategies have been proposed, the latter being the most employed in the last few years.
NMR [23] and infrared (IR) [24] spectroscopies, high-performance liquid chromatogra-
phy with ultraviolet (HPLC-UV) or fluorescence (HPLC-FLD) detection [11,15], direct
infusion–electrospray–high-resolution mass spectrometry (DIESI-HRMS) [25], and gas
chromatography coupled to mass spectrometry (GC-MS) [26,27] are examples of techniques
for coffee authentication via non-targeted fingerprinting. Some LC-HRMS metabolomic
approaches have also been described for the evaluation of the coffee roasting process [28]
or the assessment of Colombian coffees [29].

In the present work, a liquid chromatography–high-resolution mass spectrometry
(LC-HRMS) method using a linear ion-trap (LTQ)–Orbitrap mass analyzer was evaluated
to address the classification, characterization and authentication of coffee beverages ac-
cording to their origin, variety and roasting degree. Detection through HRMS was selected
because it is capable of identifying unknown components and reducing false positives or
negatives, making it crucial in obtaining comprehensive and reliable profiles in sample
analysis. Additionally, it contributes to the identification of metabolites, providing valuable
information for developing future targeted methods [28,29]. For this study’s purposes, a
total of 306 commercially available coffee samples grouped into three sets were analyzed
with the proposed methodology after simply brewing the coffee and filtering. The obtained
LC-HRMS fingerprints based on the feature intensity as a function of the m/z ratio and
chromatographic time were then used as the source of chemical information (sample chem-
ical descriptors) to address the characterization and classification of the analyzed coffees
by principal component analysis (PCA) and partial least squares-discriminant analysis
(PLS-DA). Finally, some coffee adulteration cases were defined to evaluate the capability of
the proposed methodology to detect and quantify coffee adulterations with partial least
squares (PLS) regression to prevent future coffee fraud. Additionally, it must be high-
lighted that in this work, all the sample characteristics addressed (coffee origin, variety, and
roasting degree) will equally contribute to the obtained sample profiles, thus addressing
specific classification issues while considering different features simultaneously, in contrast
to previous studies where certain sample features are fixed during the analysis.

2. Results
2.1. Non-Targeted LC-HRMS Fingerprints

Nowadays, LC-HRMS is one of the most outstanding techniques in food analysis due
to its high specificity, sensitivity and selectivity. In this work, the non-targeted LC-HRMS
metabolomic fingerprints of coffee samples were obtained by reversed-phase chromatogra-
phy using a porous-shell C18 column under gradient elution conditions (see Section 3.2)
with acidified water (0.1% formic acid) and methanol as mobile phase components. The
HPLC system was coupled to an LTQ Orbitrap Velos HRMS instrument (Thermo Scientific,
Pleasanton, CA, USA) using an electrospray ionization source (ESI) in negative ion mode.

A total of 306 coffee samples, distributed into three study cases, were analyzed after
brewing the coffee using the LC-HRMS method. As a non-targeted approach was intended,
a universal chromatographic separation was applied to obtain the richest instrumental
responses. Hence, LC-HRMS fingerprints were registered in full MS scan mode (m/z range
100–1500). For illustration, Figure 1 shows the LC-HRMS metabolomic fingerprints (total
ion chromatograms (TIC)) and representative HRMS full scan spectra (at 14.88 min) for
three coffee samples (Arabica coffee from Brazil, Robusta–Arabica coffee from India and
Robusta coffee from Uganda) belonging to set 1 (Section 3.3).
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spectra (m/z 100–1500) at a retention time of 14.88 min obtained for (a) an Arabica coffee sample 
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TICs in Figure 1 show the total signal response from all the ions eluting at each re-
tention time. From them, the LC-HRMS metabolomic fingerprints are an even more com-
plex system, giving place to more than 1000 features per sample (between 1381 and 1941, 
depending on the samples). Although these TIC plots seem similar, subtle differences re-
lated to the number of peaks and their relative intensities can be observed. For example, 
at ca. 15 min, the three coffees have a very intense peak, possibly in which several com-
pounds coelute. In addition, several characteristic signals in the range from 2 to 5 min are 
also observed. Another noticeable peak signal elutes at 11.3 min, also with higher intensi-
ties in Arabica and Robusta-Arabica samples. In contrast, the peaks in the range from 17 
to 19 min depict higher intensities in Robusta coffees. Other less intense common signals 
are detected around the retention time of 9 min or in the range from 20 to 32 min. More 
interestingly, some signals seem to be specific for some coffee types, such as those ob-
served at retention times of 24 and 28 min for Robusta and Arabica coffees, respectively. 
In any case, it should be mentioned that the obtained LC-HRMS fingerprints seem to be 

Figure 1. LC-HRMS metabolomic fingerprints (total ion chromatograms (TIC)) and full MS scan
spectra (m/z 100–1500) at a retention time of 14.88 min obtained for (a) an Arabica coffee sample from
Brazil, (b) a Robusta–Arabica coffee from India and (c) a Robusta coffee sample from Uganda.

TICs in Figure 1 show the total signal response from all the ions eluting at each
retention time. From them, the LC-HRMS metabolomic fingerprints are an even more
complex system, giving place to more than 1000 features per sample (between 1381 and
1941, depending on the samples). Although these TIC plots seem similar, subtle differences
related to the number of peaks and their relative intensities can be observed. For example, at
ca. 15 min, the three coffees have a very intense peak, possibly in which several compounds
coelute. In addition, several characteristic signals in the range from 2 to 5 min are also
observed. Another noticeable peak signal elutes at 11.3 min, also with higher intensities in
Arabica and Robusta-Arabica samples. In contrast, the peaks in the range from 17 to 19 min
depict higher intensities in Robusta coffees. Other less intense common signals are detected
around the retention time of 9 min or in the range from 20 to 32 min. More interestingly,
some signals seem to be specific for some coffee types, such as those observed at retention
times of 24 and 28 min for Robusta and Arabica coffees, respectively. In any case, it should
be mentioned that the obtained LC-HRMS fingerprints seem to be reproducible within the
samples belonging to the same category; thus, they are useful as chemical descriptors to
address sample classification by chemometrics.
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2.2. Sample Exploration and Classification According to the Coffee Variety

The potential of LC-HRMS fingerprints as discriminative chemical markers for the
classification of coffee was assessed using PCA. The first goal of PCA was to examine
the behavior of quality control samples (QCs). QCs were blended mixtures containing
a portion of each coffee extract within each set of samples, as explained in Section 3.3.
The corresponding data matrix (X-matrix) for each study case included their respective
QCs. These matrices consisted of intensity signals detected at a specific m/z value and
retention time (i.e., the so-called features), and their dimensions were n × f, with n being
the number of samples (including the QCs) and f being the number of features. An
autoscaling preprocessing was applied to ensure that all variables were equally weighted.
In the obtained PCA score plots, QCs did not appear grouped but displayed a linear
distribution trend depending on their injection order within the sequence. This behavior
indicates that something affected the LC-HRMS fingerprinting signal throughout the
sample sequence. In fact, the QCs’ signal decreased from the beginning of the sample
sequence to the end, probably because the electrospray source became dirty over time, and
the sensitivity decreased correspondingly. As a consequence, the fingerprinting data matrix
needs to be corrected considering the variation in signal intensity observed for the QCs to
ensure a rigorous interpretation of chemometric results when undertaking classification
and authentication studies. Given that the QC samples are injected regularly throughout
the sample sequence, the sensitivity decay of each sample fingerprint was compensated
using the nearest QCs injected in the sequence (each feature data were divided by the
corresponding value from the nearest QCs; also, each QC data were divided by itself,
resulting in fingerprinting variables normalized to 1). As an example, Figure 2 shows
the PCA score plot of PC1 vs. PC2 when using the corrected LC-HRMS metabolomic
fingerprints for set 1, set 2 and set 3 of coffee samples (see Section 3.3), displayed by
labeling the samples according to the coffee variety. As expected, the correction provided
more compact clusters for sample types.

Considering the PCA distribution of coffee, in general, samples with similar attributes
(variety) tended to be grouped. As shown in Figure 2, a very acceptable discrimination
among the samples was achieved.

As previously mentioned, PCA is a non-supervised exploratory method useful to
study the initial behavior of the analyzed samples. However, as depicted in Figure 3, to
improve sample group discrimination, the corrected data matrices for each coffee set were
also used to address coffee classification according to the three sample sets according to the
coffee variety by PLS-DA.

When focusing on the classification regarding coffee varieties, excellent sample clas-
sifications were accomplished for all the sets studied, as depicted in Figure 3. Perfect
differentiation was always obtained between pure Arabica and pure Robusta samples
(independently of the geographical origin of the samples), and very acceptable sample
discrimination was also observed for blended varieties (mixtures of Arabica–Robusta).
These results are also confirmed by the figures of merit shown in Table 1, showing good
sensitivity and specificity values (>94.3% and >94.3%, respectively), as well as classification
errors below 3.5%.

PLS-DA paired models were also evaluated and validated to address the classification
rates when considering a single sample class against all the others. Each paired PLS-DA
model was built using 70% of the samples, randomly selected, as the calibration set and the
remaining 30% as the test set of “unknown” samples for validation purposes. The results
obtained for the different coffee varieties involved in sets 1, 2 and 3 are shown in Figure 4.
Moreover, Table 2 provides the optimal number of LVs for each paired classification model,
as well as the values of accuracy, sensitivity, specificity, and classification error achieved for
both calibration and prediction steps for sets 1, 2 and 3, respectively.
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Figure 2. PCA score plots obtained when corrected non-targeted LC-HRMS metabolomic fingerprints
were used as sample chemical descriptors to study coffee samples of (a) set 1 (score plot of PC1 vs.
PC2), (b) set 2 (score plot of PC1 vs. PC2 vs. PC3) and (c) set 3 (score plot of PC1 vs. PC2 vs. PC3),
according to the coffee variety.

Table 1. Sensitivity, specificity and classification errors by PLS-DA when studying the coffee samples
according to their variety.

Class Sensitivity (%) Specificity (%) Classification Errors
(%)

Set 1

Arabica 100 100 0

Arabica–Robusta mixture 100 100 0

Robusta 100 100 0
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Table 1. Cont.

Class Sensitivity (%) Specificity (%) Classification Errors
(%)

Set 2

Arabica 98.6 94.3 3.5

Arabica–Robusta mixture 94.3 98.6 3.5

Set 3

Arabica 100 100 0

Robusta 100 100 0
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Figure 3. PLS-DA score plots (LV1 vs. LV2) obtained when corrected non-targeted LC-HRMS
metabolomic fingerprints were used as sample chemical descriptors to study coffee samples of
(a) set 1, (b) set 2 and (c) set 3, according to the coffee variety.



Molecules 2024, 29, 232 8 of 23Molecules 2024, 29, 232 8 of 23 
 

 

 
Figure 4. Paired PLS-DA classification plots of Y predicted vs. samples for set 1: (1.a) Arabica vs. 
Others, (1.b) Robusta vs. Others, (1.c) Arabica–Robusta mixture vs. Others, for set 2: (2.a) Arabica 
vs. Arabica–Robusta mixture, and for set 3: (3.a) Arabica vs. Robusta. Filled and empty symbols 
correspond to calibration and prediction sets, respectively. Red lines represent the threshold be-
tween classes. 
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Figure 4. Paired PLS-DA classification plots of Y predicted vs. samples for set 1: (1.a) Ara-
bica vs. Others, (1.b) Robusta vs. Others, (1.c) Arabica–Robusta mixture vs. Others, for set 2:
(2.a) Arabica vs. Arabica–Robusta mixture, and for set 3: (3.a) Arabica vs. Robusta. Filled and empty
symbols correspond to calibration and prediction sets, respectively. Red lines represent the threshold
between classes.

Table 2. Accuracy, sensitivity, specificity and classification errors obtained for calibration and
prediction on paired PLS-DA models for sets 1, 2 and 3 according to their variety.

Class LVs
Calibration Prediction

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Classification
Error (%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Classification
Errors (%)

Set 1

Arabica 3 100 100 100 0 100 100 100 0

Arabica–Robusta
mixture 2 100 100 100 0 100 100 100 0

Robusta 2 100 100 100 0 100 100 100 0
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Table 2. Cont.

Class LVs
Calibration Prediction

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Classification
Error (%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Classification
Errors (%)

Set 2

Arabica 2 96.5 98.2 92.6 4.6 94.3 95.9 90.9 6.6

Arabica–Robusta
mixture 2 96.5 92.6 98.2 4.6 94.3 90.9 95.8 6.6

Set 3

Arabica 3 100 100 100 0 90.9 83.3 100 8.3

Robusta 3 100 100 100 0 90.9 100 83.3 8.3

The proposed LC-HRMS fingerprinting methodology seems to be suitable for pre-
venting blended coffee frauds, as demonstrated by the good classification performance
attained, according to the variety of coffee, with paired PLS-DA model accuracy, sensitivity
and specificity higher than 96.5%, 92.6% and 92.6%, respectively, and classification errors
lower than 4.6%. In the case of model prediction, accuracy, sensitivity, specificity and
classification errors >90.9%, >83.3%, >90.9% and <8.3%, respectively, were obtained.

2.3. Sample Exploration and Classification According to the Coffee Geographical Production Region

To carry out the exploration and classification of samples based on their geographical
production region, the same approach described in the preceding section was followed.

The exploration of samples, as illustrated in Figure 5 through PCA score plots, provides
a visual representation of how the samples are distributed based on their geographical
production region but, interestingly, this distribution is significantly influenced by the
coffee varieties. This influence contributes to the overlap observed among different groups
of samples, particularly noticeable in sets 1 and 2.

Subsequently, PLS-DA was employed to classify the samples and attempt to enhance
the distribution as observed in the previous PCA score plots (Figure 5). The better obtained
PLS-DA classification score plots obtained for sets 1, 2 and 3 are shown in Figure 6.

Focusing on the classification of coffee samples based on their geographical origin, the
proposed approach provides acceptable results. In all the cases, the samples are grouped
according to their geographical production region, with more or less discrimination among
the different sample groups depending on the complexity of the sample set. For example, in
set 1 (Figure 6a) including five sample classes, it can be observed the proposed fingerprints
discriminate the samples from different countries. In fact, when considering the proposed
multiclass PLS-DA model (Table 3), acceptable results were obtained.

Table 3. Sensitivity, specificity and classification errors by PLS-DA when studying the coffee samples
according their geographical production region.

Class Sensitivity (%) Specificity (%) Classification Errors (%)

Set 1

Brazil 94.7 98 3.6

Central and South America 95 99 3

Ethiopia 100 98.7 0.6

India 100 100 0

Uganda 100 100 0

Set 2

Colombia 89.5 81.3 14.6

Ethiopia 95.0 94.9 5
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Table 3. Cont.

Class Sensitivity (%) Specificity (%) Classification Errors (%)

India 90.0 97.5 6.3

Indonesia 70.0 79.7 25.1

Nicaragua 80.0 51.9 34.1

Set 3

Cambodia 100 100 0

Vietnam 100 100 0
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Table 3. Sensitivity, specificity and classification errors by PLS-DA when studying the coffee sam-
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Class  Sensitivity (%) Specificity (%) Classification Errors (%) 
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Brazil 94.7 98 3.6 
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Figure 5. PCA score plots obtained when corrected non-targeted LC-HRMS metabolomic fingerprints
were used as sample chemical descriptors to study coffee samples of (a) set 1 (score plot of PC1 vs.
PC2), (b) set 2 (score plot of PC1 vs. PC2 vs. PC3) and (c) set 3 (score plot of PC1 vs. PC2 vs. PC3),
according to the coffee geographical production region.
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Figure 6. PLS-DA score plots (LV1 vs. LV2) obtained when corrected non-targeted LC-HRMS
metabolomic fingerprints were used as sample chemical descriptors to study coffee samples of
(a) set 1, (b) set 2 and (c) set 3, according to the geographical production region.

The results worsened for set 2 (Figure 6b). In any case, again samples clustered accord-
ing to their corresponding country of production, albeit with some observed overlapping in
certain instances. When considering the proposed multiclass PLS-DA model (Table 3), sen-
sitivities and specificities were higher than 80% and 51.9%, respectively, and classification
errors were lower than 34.1%.

The results clearly improved for set 3 (Figure 6c), with clear discrimination between the
Cambodian and Vietnamese samples. Despite the lower complexity of this case (with only
two sample groups involved), coffee growing conditions are quite similar between these
two groups due to their geographical proximity (and climatic conditions) in comparison to
the geographical production regions addressed in the other sets of samples. Cross-validated
multiclass predictions (Table 3) provide 100% sensitivity and specificity values, with 100%
sample classification rates.

As has been performed for the case of sample classification based on coffee varieties,
to evaluate and validate PLS-DA classifications, PLS-DA paired models were executed.
The results obtained for the different coffee origins involved in sets 1, 2 and 3, are shown
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in Figure S1 (Supplementary Materials). Moreover, Table S1 (Supplementary Materials)
provides the optimal number of LVs, accuracy, sensitivity, specificity, and classification
error for each paired classification model and for both calibration and prediction steps for
sets 1, 2 and 3, respectively.

As shown in Table S1, the obtained results for calibration are favorable, with accuracy,
sensitivity and specificity values higher than 89.2%, 84.6% and 89.9%, respectively, and
calibration errors below 12.7%. However, for PLS-DA prediction, sets 1 and 2 presented
values capable of improvement, especially in cases such as Brazil (set 1), or Indonesia and
Nicaragua (set 2). In contrast, for set 3, the accuracy, sensitivity and specificity values were
100%, as expected.

In response to the results obtained for sets 1 and 2, a PLS-DA classification tree
was designed, in which the most different class was modeled versus a diverse group
that integrates all the others to recognize (and separate) all the belonging samples in
both calibration and prediction sets. The multiclass pool was analyzed with another
paired model to separate the next most different class from the other. The process was
repeated until all classes were separated from each other. This methodology involved
a stepwise exclusion of sample groups based on their distinctive distribution patterns
within each set. For example, in the case of set 1, the initial model excluded Ugandan
samples as they exhibited perfect discrimination from the remaining samples (probably
for being 100% Robusta samples). Subsequently, the PLS-DA model was validated in
pairs: Uganda vs. Others. Then, with “Others” another classification was performed,
where Ethiopia samples were the most differentiated ones. So, this process was repeated
for the remaining samples with their PLS-DA validation models corresponsive, until
achieving a comprehensive classification of all sample types within each set. The scheme
of the sequential elimination of groups in the PLS-DA tree model for the classification of
samples from sets 1 and 2 according to their geographical production region is shown in
Figure S2 (Supplementary Materials).

Figure 7 depicts the sequential validation models obtained based on the order of
sample group classification for set 1. Similar information is provided for coffee set 2 in
Figure S3 (Supplementary Materials). Furthermore, Table 4 provides the obtained values of
the optimal number of LVs, accuracy, sensitivity, specificity and errors for calibration and
prediction for each PLS-DA paired validation model within the classification tree.

Table 4. Accuracy, sensitivity, specificity and classification errors obtained for calibration and
prediction on paired PLS-DA models for set 1 and 2 according to the geographical production region
within the tree classification framework.

Class LVs
Calibration Prediction

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Classification
Errors (%)

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Classification
Errors (%)

Set 1

Ethiopia 2 100 100 100 0 100 100 81.3 9.3

Brazil 2 100 100 100 0 100 100 100 0

Central and
South America 2 100 100 100 0 100 100 100 0

India 2 100 100 100 0 100 100 100 0

Uganda 2 100 100 100 0 100 100 100 0

Set 2

Colombia 3 100 100 100 0 91.7 83.3 100 8.3

Ethiopia 3 100 100 100 0 96.7 83.3 100 8.3

India 2 100 100 100 0 95.2 100 93.8 3.1

Indonesia 2 92.5 92.9 92.3 7.4 89.5 100 84.6 7.7

Nicaragua 3 100 100 100 0 91.7 100 83.3 8.3
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Figure 7. Paired PLS-DA plots of Y predicted vs. samples for set 1 within the tree classification
framework: (1.a) Uganda vs. Others, (1.b) Ethiopia vs. Others, (1.c) India vs. Others, and (1.d) Brazil
vs. Central and South America. Filled and empty symbols correspond to calibration and prediction
sets, respectively. Red lines represent the threshold between classes.

As shown in Table 4, the approach of constructing PLS-DA models in a tree structure
has proven effective, manifesting notably enhanced classification values across the majority
of cases, obtaining accuracy, sensitivity and specificity values higher than 92.5%, 92.9% and
92.3%, respectively, and classification errors lower than 7.4% for calibration, and higher
than 91.7%, 83.3% and 81.3%, and lower than 9.3%, respectively, for prediction.

2.4. Sample Exploration and Classification According to the Coffee Roasting Degree

The exploration and classification of samples based on roasting degree followed the
procedure outlined in the preceding section. The PCA score plots in Figure 8 show the
distribution of samples considering their roasting degree, highlighting, once more, a notable
influence of coffee varieties that contributes to the sample group overlapping.

Subsequently, PLS-DA was executed to carry out the classification of the samples with
the aim of improving the distribution observed in the previous PCA scores plots (Figure 8).
The better obtained PLS-DA classifications obtained for sets 1 and 2 are shown in Figure 9.

As Figure 9 shows, the proposed fingerprints resulted in also being acceptable sample
chemical descriptors to accomplish coffee characterization and classification based on the
roasting degree for sets 1 and 2. However, depending on the case, the obtained sample
groups are more or less discriminated. In any case, acceptable values for sensitivity,
specificity and classification errors were also obtained (Table 5).
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Figure 8. PCA score plots obtained when corrected non-targeted LC-HRMS metabolomic fingerprints
were used as sample chemical descriptors to study coffee samples of (a) set 1 (score plot of PC1 vs.
PC2) and (b) set 2 (score plot of PC1 vs. PC2 vs. PC3), according to the coffee roasting degree.

Table 5. Sensitivity, specificity and classification errors by PLS-DA when studying the coffee samples
according their origin region.

Class Sensitivity (%) Specificity (%) Classification Errors (%)

Set 1

1/5 100 100 0

2/5 100 98 1

4/5 98.3 100 0.9

Set 2

2/5 72.5 75.3 26.1

3/5 89.5 87.8 11.4

4/5 79.5 84.6 17.9

5/5 94.7 89.8 7.7

As was performed for the case of sample classification based on coffee varieties and
geographical origin, to evaluate and validate PLS-DA classifications, PLS-DA paired models
were executed. The results obtained for the different coffee involved in sets 1, 2 and 3,
are shown in Figure S4 (Supplementary Materials). In addition, Table S2 (Supplementary
Materials) provides the optimal number of LVs for each paired classification model, as well
as the values of accuracy, sensitivity, specificity and classification errors achieved for both
calibration and prediction steps for sets 1 and 2, respectively.
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Figure 9. PLS-DA score plots (LV1 vs. LV2) obtained when corrected non-targeted LC-HRMS
metabolomic fingerprints were used as sample chemical descriptors to study coffee samples of (a) set
1 and (b) set 2, according to the roasting degree.

As shown in Table S2, the obtained results for calibration are favorable, with accuracy,
sensitivity and specificity values higher than 90%, 89.3% and 90.9%, respectively, and
calibration errors below 9.9%. However, for PLS-DA prediction, sets 1 and 2 presented
values capable of improvement, especially in cases such as the 4/5 roasting degree in set 1.

The PLS-DA classification tree was again assessed for the classification of samples from
sets 1 and 2 according to their roasting degree. The scheme of the sequential elimination of
groups in the tree model is shown in Figure S5 (Supplementary Materials).

Figure 10 depicts the sequential validation models obtained for set 1. Similar infor-
mation is provided for coffee set 2 in Figure S6 (Supplementary Materials). Furthermore,
Table 6 provides the obtained values of accuracy, sensitivity, specificity and errors for
calibration and prediction, as well as the optimal number of LVs for each PLS-DA paired
validation model within the tree classification framework.

As shown in Table 6, the approach of constructing PLS-DA models in a tree structure
has proven effective, enhancing classification figures across the majority of cases, obtaining
accuracy, sensitivity and specificity values higher than 95.7%, 92.9% and 96.4%, respectively,
and classification errors lower than 5.4% for calibration, and higher than 87%, 83.3% and
83.3%, and lower than 16.6%, respectively, for prediction.
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Figure 10. Paired PLS-DA plots of Y predicted vs. samples for set 1 within the tree classification
framework: (a) 4/5 vs. Others and (b) 1/5 vs. 2/5. Filled and empty symbols correspond to
calibration and prediction sets, respectively. Red lines represent the threshold between classes.

Table 6. Accuracy, sensitivity, specificity and classification errors obtained for calibration and
prediction on paired PLS-DA models for sets 1 and 2 according to the roasting degree within the tree
classification framework.

Class LVs
Calibration Prediction

Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Classification
Errors (%)

Accuracy
(%) Sensitivity(%) Specificity (%) Classification

Errors (%)

Set 1

1/5 2 100 100 100 0 100 100 83.3 8.3

2/5 2 100 100 100 0 94.4 83.3 100 8.3

4/5 3 100 100 100 0 87.1 86 89.5 12.2

Set 2

2/5 3 100 100 96.4 1.8 87 91.7 83.3 12.5

3/5 2 95.7 92.9 96.4 5.4 87.1 83.3 83.3 16.6

4/5 3 98 96.4 100 1.8 87 83.3 91.7 12.5

5/5 4 96.4 92.9 97.1 5 94.6 83.3 96.7 10

Overall, the obtained results prove that the proposed non-targeted LC-HRMS method
based on metabolomic fingerprints allows quite acceptable sample chemical descriptors
to be obtained to address coffee classification based on different coffee attributes, such as
geographical origin, variety and roasting degree. In addition, in most cases, similar or
slightly better sample discrimination than the one previously described by non-targeted
HPLC-UV [30] and HPLC-FLD [8] was observed, with the advantage that LC-HRMS
fingerprints can be very useful in the future to identify possible biomarkers from loading
and VIP plots if required. Anyway, this is not mandatory in authentication issues, as
demonstrated in the present contribution.

2.5. Detection and Quantitation of Blended Coffee Adulterations by PLS

Based on the previously described results, the capability of the corrected non-targeted
LC-HRMS metabolomics fingerprinting methodology to provide sample chemical descrip-
tors for the detection and quantitation of adulterant percentages in blended coffee samples
was evaluated by PLS regression.

For that purpose, three blended coffee adulteration cases involving nearby geograph-
ical production regions and coffee variety attributes, i.e., (i) Vietnamese Robusta coffee
adulterated with Cambodian coffee, (ii) Vietnamese Arabica coffee adulterated with Cam-
bodian coffee and (iii) Vietnamese Arabica coffee adulterated with Vietnamese Robusta
coffee, were studied. These three cases were selected because of the proximity between the
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coffee-growing geographical regions and climatic conditions, thus it was expected they
would be among the most difficult coffee fraudulent practices to be detected.

Two independent sample sets (calibration set and validation set) were employed for
each adulteration case. Table 7 shows the blended percentages to build the calibration and
validation sets, where X represents the original coffee and Y represents the adulterant. Each
adulteration level was prepared in quintuplicate, obtaining 55 sample extracts in total for
each adulteration case under study. Additionally, an extra adulterated sample at a 50%
level was used as a QC solution.

Table 7. Concentration levels of the blended coffees employed in calibration and validation sets for
each adulteration case evaluated. X is the original coffee and Y the coffee considered the adulterant.

X% (Coffee) Y% (Adulterant)

Calibration

100 0
80 20
60 40
40 60
20 80
0 100

Validation

15 85
25 75
50 50
75 25
85 15

Figure 11 shows, for illustration, the Vietnamese Robusta coffee adulterated with
Cambodian coffee case, and the PLS regression model obtained. In addition, Table 8
summarizes the PLS regression results obtained for the three adulteration cases evaluated.
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Figure 11. PLS regression model for the Vietnamese Robusta coffee adulterated with Cambodian
coffee case.

Table 8. Evaluation of the coffee adulteration cases by PLS using corrected non-targeted LC-HRMS
metabolomics fingerprints as chemical descriptors.

Pure Coffee Adulterant LVs R2 Calibration
Errors (%)

Prediction
Errors (%)

Vietnamese
Arabica Coffee

Cambodian
coffee 4 1.0 0.74 10.5

Vietnamese
Robusta Coffee

Cambodian
coffee 2 0.995 2.7 10.8
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Table 8. Cont.

Pure Coffee Adulterant LVs R2 Calibration
Errors (%)

Prediction
Errors (%)

Vietnamese
Arabica Coffee

Vietnamese
Robusta Coffee 3 0.999 1.1 11.6

As shown in Table 8, the PLS calibration for all the studied cases was very satisfactory,
with good linearities (correlations higher than 0.995), and calibration and prediction errors
below 0.74% and 11.6%, respectively.

Overall, the obtained results demonstrated that the proposed non-targeted LC-HRMS
metabolomics methodology is suitable to detect and quantify adulteration percentage levels
in blended adulterated coffees grown in nearby geographical production regions.

3. Materials and Methods
3.1. Chemicals and Solutions

The reagents for the preparation of the chromatographic mobile phase were HPLC
grade methanol from PanReac AppliChem (Barcelona, Spain), formic acid (≥98%) from
Sigma-Aldrich (St. Louis, MO, USA) and Milli-Q water from an Elix 3 coupled to a Milli-Q
system (Millipore Corporation, Burlington, MA, USA) (water was filtered with a 0.22 µm
nylon membrane before use).

Mineral water obtained from Eroski (Elorrio, Spain) was employed for coffee brewing.

3.2. LC-HRMS Instrumentation

Samples were analyzed with a UHPLC system (Dionex UHPLC instrument, Thermo
Fisher Scientific, Pleasanton, CA, USA) equipped with a binary pump and an autosampler.
The LC instrument was coupled to an LTQ Orbitrap Velos HRMS instrument (Thermo
Fisher Scientific) with an electrospray ionization source (ESI) in negative ion mode. A
reversed-phase chromatographic separation with a Kinetex® C18 (100 mm × 4.6 mm,
2.6 µm partially porous particle size) column by Phenomenex (Torrance, CA, USA) was
proposed, under gradient elution conditions using water with 0.1% formic acid (solvent A)
and methanol (solvent B) as mobile phase components. The mobile phase flow rate was
0.4 mL/min, and the column was kept at room temperature. The gradient elution program
is summarized in Table 9. The injection volume was 5 µL (full-loop mode).

Table 9. LC-HRMS elution program.

Time (min) Methanol (%) Elution Mode

0 3 Initial conditions
30 75 Linear gradient
32 95 Linear gradient
34 95 Isocratic step

34.2 3 Linear gradient
40 3 Isocratic (column re-equilibration)

ESI ionization source operated using nitrogen (purity higher than 99.98%) for the
sheath, sweep and auxiliary gases at flow rates of 60, 0 and 10 a.u. (arbitrary units),
respectively. The capillary temperature and ESI ionization source temperature were 350 ◦C
and 25 ◦C, respectively, and an S-Lens RF level was 50 V. Orbitrap HRMS instrument was
tuned and calibrated before the analysis with a commercial calibration solution (Thermo
Fisher Scientific). Full MS scan mode (m/z 100–1500) with a mass resolution of 60,000 full
width at half-maximum (FWHM, at m/z 200), an FTMS Full automatic gain control (AGC)
Target activate of 1 × 106 and a maximum injection time (IT) of 200 ms, were proposed for
HRMS sample acquisition.
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3.3. Samples and Sample Treatment

A total of 306 commercial coffee samples, grouped into three different sets (Table 10),
were analyzed.

Table 10. Description of the analyzed coffee samples.

Commercial
Name

Number of
Samples

Coffee
Variety

Origin
Region

Roasting
Degree

Set of samples number 1

Arabica Ethiopia Harrar 20 Arabica Ethiopia 1/5
Bukeela 20 Arabica–Arabica Mixture Ethiopia 1/5
Dulsao 20 Arabica Brazil 2/5

Arpeggio 20 Arabica Central and
South-America 4/5

Indriya 20 Arabica–Robusta Mixture India 4/5
Robusta Uganda 20 Robusta Uganda 4/5

Set of samples number 2

Master Origin Colombia 20 Arabica Colombia 3/5
Master Origin Ethiopia 20 Arabica Ethiopia 2/5

Master Origin India 20 Arabica–Robusta Mixture India 5/5
Master Origin Nicaragua 20 Arabica Nicaragua 2/5
Master Origin Indonesia 20 Arabica Indonesia 4/5

Paris Black 20 Arabica–Robusta Mixture Unknown origin 4/5

Set of samples number 3

- 20 Arabica Vietnam Unknown
- 20 Robusta Vietnam Unknown
- 10 Arabica–Robusta Mixture Vietnam Unknown
- 6 Unknown Vietnam Unknown
- 10 Unknown Cambodia Unknown

The first two sets encompassed 120 Nespresso® coffee samples purchased from super-
markets in Barcelona (Spain). These samples differed in the country of origin (geographical
production region), in the coffee variety (Arabica, Robusta, or mixture of blends), and in
the roasting degree (increasing from 1 to 5). The third set consisted of 66 coffee samples
purchased from Vietnamese and Cambodian local supermarkets, classified into five groups
depending on the coffee variety and the region of origin (no information regarding the
roasting degree was available). Moreover, this set was designed to address the applicability
of the proposed methodology for the classification and authentication of coffees from
nearby countries produced under similar climatic conditions.

Coffees were brewed with mineral water to prevent any variation caused by the water
composition. For the two first cases, the brewing process was with an espresso machine
(Nespresso®), and always using the same final volume. On the other hand, for the third
set, coffees were brewed with an Italian coffee maker (Moka pot), grinding the coffee
beans when necessary. In this second procedure, ground coffee (~40 g) introduced well
compressed into the Italian coffee maker was brewed with 400 mL of the mineral water
using a Bunsen burner to carry out the coffee lixiviation. Coffee extracts were filtered with
0.45 µm nylon filters (Phenomenex, Alcobendas, Spain) into 2 mL glass vials which were
stored at −4 ◦C until LC-HRMS analysis. Additionally, a QC solution was prepared for
each set of samples by mixing 50 µL of each sample extract.

Some coffee samples belonging to set 3 were also used in the adulteration studies. For
this purpose, adulterated samples were blended with different amounts of other substances
as previously described in Section 2.5.
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3.4. Data Analysis

All the samples belonging to each set were randomly analyzed with the non-targeted
LC-HRMS method. LC-HRMS raw chromatographic data were then processed with the
MSConvert v3.0 free software. It should be considered that this work aimed to develop a
method able to provide a fingerprint that reflects all the influence of any sample specific
feature and thus, data were not standardized for level of roasting degree, although it
obviously will influence the amount of produced chemicals. This decision was grounded
in the idea of making the method simpler and, simultaneously, more applicable to all types
of coffee samples. By allowing all sample characteristics to contribute to the obtained
sample fingerprints, all the intrinsic complexity of the samples will be considered and it
will enhance the method capability to adapt to the natural variability found in different
coffee beans.

For data simplification, a threshold peak filter of 104 (absolute intensity) was applied.
The resulting filtered data were processed with MZmine-2.53 free software to obtain Excel
files with the chemical features detected (ion signals as a function of m/z values and
retention times). In MZmine-2.53 processing, data were submitted to exact mass detection
to create a mass list of individual ions for each MS spectrum throughout the chromatogram,
considering a noise level of 2 × 104. Then, all mass lists were filtered and the residual
signals were removed using the FTMS shoulder peaks filter method. After this, a peak time
range of 0.05–2 min, an m/z tolerance of 5 ppm, and an intensity threshold of 2.5 × 104

were established to apply the chromatogram builder method to join the exact mass signals
found in contiguous scans in a sample. Then, chromatogram deconvolution was applied
to separate each detected chromatogram into individual peaks. After this, the join aligner
was applied to match the exact masses detected on samples (mass tolerance of 5 ppm)
with a peak retention time (tolerance of 2.5 min). Finally, the data were exported in Excel
format, building a data matrix (samples × variables) where variables consisted of ion
signal intensity values as a function of m/z and chromatographic retention time. Then,
the resulting LC-HRMS fingerprints were filtered to eliminate those spurious features that
appear occasionally in some samples but are not at all in a general pattern (they must
be found in at least five samples to not be excluded from the data matrix). The resulting
matrices, with a number of features of ca. 58–317 were used for PCA, PLS-DA and PLS.
The SOLO 8.6 software from Eigenvector Research (Manson, WA, USA) was used for
the chemometric treatment [31]. Details of the theoretical background of these statistical
methodologies are addressed elsewhere [32].

X-data matrices to be treated by PCA and PLS-DA consisted of the obtained non-
targeted LC-HRMS metabolomic fingerprints for the corresponding analyzed samples and
QCs within each set of coffee samples. In all cases, normalization pretreatment concerning
the overall analyte concentration was applied to provide similar weights to all samples
(normalization performed according to the QCs). The Y-data matrix in the PLS-DA models
defined the membership of each coffee sample in the corresponding class. Then, scatter
plots of scores from principal components (PCs) were used to study the robustness of
the employed method and the classification trends exhibited by the samples. In the case
of PLS-DA, scatter plots of scores from latent variables (LVs) were used to study the
distribution of samples. The optimal number of LVs, in both PLS-DA and PLS, was the
first significant minimum point of the cross-validation (CV) errors from a Venetian blind
strategy. In addition, paired PLS-DA models were assessed and validated on independent
prediction sets. For that purpose, PLS-DA models were built using 70% of the sample
group (randomly selected) as the calibration set, while the remaining 30% of the sample
group constituted the prediction set. In addition to this, PLS-DA models in tree structure
were provided in necessary cases, along with their respective validations (paired PLS-DA
models). In the case of PLS, models were validated on the prediction sets by using 15%,
25%, 50%, 75% and 85% adulteration levels as described in Section 2.5.
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4. Conclusions

In the present work, a non-targeted LC-HRMS metabolomic fingerprinting method-
ology has proved to provide very acceptable sample chemical descriptors to characterize,
classify and authenticate coffee samples according to different attributes such as their geo-
graphical production region (even in the cases of coffees grown from nearby countries such
as Vietnam and Cambodia with very similar climatic conditions), their variety (Arabica,
Robusta or mixture blends) and their roasting degree, by means of chemometric methods.
In addition, the proposed methodology was also able to detect fraudulent practices and
quantify the adulteration percentage by PLS regression.

Overall, the PLS-DA models achieved satisfactory classifications. Classification error
rates for the different coffee varieties analyzed in coffee sample sets 1, 2 and 3 remained be-
low 8.3%. However, for the classifications of samples based on the geographical production
region and roasting degree, the performance was not as robust for sets 1 and 2. Therefore,
PLS-DA models with a tree structure were employed to improve the initially obtained
values, resulting in higher sensitivity and specificity percentages higher than 83.3% and
81.3%, respectively, and classification errors lower than 16.6% in predicted samples in the
paired PLS-DA models.

The application of PLS in the analysis of adulterated coffee samples delivered satisfac-
tory results, featuring commendable linearity with correlations higher than 0.995 and low
calibration errors.

The proposed methodology is very powerful thanks to the accurate mass detection
provided by HRMS and the large amount of chemical information recorded for each sample
using a fingerprinting approach; therefore, it could be very useful for future experiments,
if required, aimed at biomarker identification, which can then be proposed as marker
compounds to be monitored by targeted methodologies. However, we have demonstrated
that the proposed non-targeted LC-HRMS metabolomic fingerprints can be easily employed
without the requirement of compound identification (simplifying the cost and difficulty
of use of the proposed methodology) to address coffee authentication issues, as well as to
detect coffee fraudulent practices using blended adulterations.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29010232/s1, Table S1. Accuracy, sensitivity, specificity
and classification error obtained for calibration and prediction on paired PLS-DA models for set 1, 2
and 3 according to the geographical production region.; Table S2. Accuracy, sensitivity, specificity
and classification error obtained for calibration and prediction on paired PLS-DA models for set 1
and 2 according to the roasting degree; Figure S1. Paired PLS-DA plots of Y predicted vs. samples
for set 1: (1.a) Uganda vs. Others, (1.b) India vs. Others, (1.c) Brazil vs. Others, (1.d) Ethiopia vs.
Others, (1.e) Central and South America vs. Others, for set 2: (2.a) Colombia vs. Others, (2.b) Ethiopia
vs. Others, (2.c) India vs. Others, (2.d) Indonesia vs. Others, (2.e) Nicaragua vs. Others, and for set
3: (3.a) Cambodia vs. Vietnam. Filled and empty symbols correspond to calibration and prediction
sets, respectively. Red lines represent the threshold between classes; Figure S2. Classification scheme
based on the geographical production region of coffee in tree structure for (a) set 1 and (b) set 2;
Figure S3. Paired PLS-DA plots of Y predicted vs. samples for set 2 within the tree classification
framework: (1.a) Ethiopia vs. Others, (1.b) India vs. Others, (1.c) Indonesia vs. Others, and (1.d)
Colombia vs. Nicaragua. Filled and empty symbols correspond to calibration and prediction sets,
respectively. Red lines represent the threshold between classes; Figure S4. Paired PLS-DA plots of Y
predicted vs. samples for set 1: (1.a) 1/5 vs. Others, (1.b) 2/5 vs. Others, and (1.c) 4/5 vs. Others, for
set 2: (2.a) 2/5 vs. Others, (2.b) 3/5 vs. Others, (2.c) 4/5 vs. Others and, (2.d) 5/5 vs. Others. Filled
and empty symbols correspond to calibration and prediction sets, respectively. Red lines represent
the threshold between classes; Figure S5. Classification scheme based on the roasting degree of coffee
in tree structure for (a) set 1 and (b) set 2; Figure S6. Paired PLS-DA plots of Y predicted vs. samples
for set 2 within the tree classification framework: (a) 5/5 vs. Others, (b) 3/5 vs. Others and, (c) 2/5 vs.
4/5. Filled and empty symbols correspond to calibration and prediction sets, respectively. Red lines
represent the threshold between classes.
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