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Abstract: Monoterpenes and meroterpenes are two large classes of isoprene-based molecules pro-
duced by terrestrial plants and unicellular organisms as diverse secondary metabolites. The global
rising incidence of cancer has led to a renewed interest in natural products. These monoterpenes and
meroterpenes represent a novel source of molecular scaffolds that can serve as medicinal chemistry
platforms for the development of potential preclinical leads. Furthermore, some of these natural
products are either abundant, or their synthetic strategies are scalable as it will be indicated here,
facilitating their derivatization to expand their scope in drug discovery. This review is a collection
of representative updates (from 2016–2023) in biologically active monoterpene and meroterpenoid
natural products and focuses on the recent findings of the pharmacological potential of these bioactive
compounds as well as the newly developed synthetic strategies employed to access them. Particular
emphasis will be placed on the anticancer and antioxidant potential of these compounds in order to
raise knowledge for further investigations into the development of potential anti-cancer therapeutics.
The mounting experimental evidence from various research groups across the globe regarding the
use of these natural products at pre-clinical levels, renders them a fast-track research area worth
of attention.
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1. Background
1.1. History

Throughout history, herbal medicines have been used to treat various diseases in
humans. The earliest documented incidence of patient treatment using these methods
dates back to approximately 2600 BC in Ancient Egypt [1]. These medicinal practices
utilized a variety of plant extracts to treat various maladies ranging from simple infections
to cardiovascular diseases [1]. These naturally derived compounds are still utilized today
in a medicinal context as molecular scaffolds or starting points to build new drugs and
molecular probes.

In the past 30 years approximately 50% of all approved drugs for cancer treatments
were either natural products or derived from a natural product scaffold [2]. Although
modern medicine has overcome some of the historical reliance of physicians on natural
therapeutic agents, it is estimated that 80% of people worldwide rely on natural-derived
medicinal agents as some form of primary care [3]. These compounds still provide an
invaluable opportunity to further explore human disease and treatment. Furthermore, as
of 2005 less than 10% of the biodiversity on this planet had been biologically evaluated
for their therapeutic potential [4] this underscoring the vast potential of these resources.
Various recent reviews have highlighted the importance of natural product research in
anticancer and antibiotic research for similar natural products not included here [5–8].
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1.2. Classification

Terpenes are the largest classification of biologically produced organic molecules
accounting for approximately one third of all characterized natural products. These com-
pounds are structurally classified as combinations of monomeric isoprene units because
are likely to follow the isoprene rule. In 1953, this rule was proposed to rationalize the
biogenesis of terpenoid compounds. The isoprene rule not only clarified the biochemical
origin of this class of molecules but also serves as the basis for their classification [9].

The subgroups of terpenes are defined by the number of isoprene units present in
the molecule. Because all terpenes are composed of a number of isoprene units, they
will share the hydrocarbon formula (C5H8)n. Activated isoprenoid precursors, isopentyl
pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), polymerize in a variety
of combinations through enzymatically catalyzed coordination-insertion, coordinative
chain growth and radical ionic mechanisms. These polymerizations afford higher order
terpenoid compounds (Figure 1). The various combinations of IPP and DMAPP as well as
the potential for rearrangement mechanisms at each step yields a high degree of structural
diversity in this class of molecules.
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Figure 1. Simplified detailing the convergent biosynthesis of acyclic, monocyclic, and bicyclic
monoterpenes highlighting the mevalonate and MEP pathways.

Monoterpenes are the smallest molecules of the isoprenoids with a conserved hydro-
carbon formula of C10H16. There are more than 400 known chemical structures that have
been classified as monoterpenes [10]. There have been many monoterpenes isolated and
elucidated from natural sources that contain unique and intricate structures each having
their own properties in biological systems. These molecules can further be classified as a-,
mono-, or bicyclic systems.

1.3. Biosynthesis of Monoterpenes

The methylerythritol 4-phosphate (MEP) pathway is a series of enzymatically medi-
ated steps that was identified in bacteria that yields both of these activated derivatives as
shown in Figure 1 [11]. The first committed step of this pathway is the decarboxylation re-
action between glyceraldyhyde-3-phosphate (G3P) and pyruvate catalyzed by the enzyme
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deoxy-d-xylulose-5-phosphate synthase (DXS) [12]. This step results in the production
of 1-deoxy-d-xylulose 5-phosphate (DXP). Subsequent enzymatic reactions will produce
(E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) which then undergoes a cat-
alytic dehydration to leave DMAPP and IPP. The mevalonate (MVA) pathway begins with
the condensation of three molecules of acetyl CoA to produce mevalonate. Mevalonate is
then phosphorylated in two catalytic steps to give mevalonate pyrophosphate. This com-
pound is then decarboxylated to provide IPP which can be isomerized further to produce
DMAPP [13].

Following the biosynthesis of the activated isoprene units, a key polymerization
reaction takes place between DMAPP and IPP yielding geranyl pyrophosphate (GPP). The
enzyme responsible for this reaction, GPP synthase (GPPS), is a highly regulated enzyme
that is responsible for the first committed step towards production of all monoterpene
compounds [14]. Through subsequent catalyzed reactions two important intermediates
emerge as the starting point for further derivatization of monoterpenes. The first, geranyl
cation, serves as the substrate for production of most acyclic monoterpenes. From this
cationic intermediate a variety of reactions can occur leading to the monoterpenes. The
second transition state, α-terpinyl cation, is thought to be the branch point for the synthesis
of mono- and bi-cyclic monoterpenes [15].

1.4. Meroterpenes

Meroterpenoids are a large group of compounds characterized as being biosynthet-
ically mixed, hybrid molecules. These compounds typically involve the combination of
a terpene with polyketides, alkaloids, phenols, or amino acids (Figure 2). The large po-
tential for combination affords this class of molecules with a high degree of structural
diversity. Recently these compounds have been gaining attention from chemists and biol-
ogists alike for their complex scaffolds and intriguing bioactivities. While many of these
compounds have been isolated and identified there is much more to be gleaned from
these molecules. Biological evaluations of these compounds have shown their aptitude as
potential therapeutic compounds.
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2. Biological Activities of Monoterpenes
2.1. Acyclic Monoterpenes

Terpenes have been known to be responsible for crucial roles in their parent or-
ganism’s biochemical regulation and response to external stimuli. This diverse class of
compounds are involved in many biological processes ranging from signaling, hormonal
processes, and as biochemical defense mechanisms. In medicine, these compounds have
been researched for their biological relevance as potential natural product therapeutics.
These natural products have demonstrated antiviral, antifungal, antimicrobial, analgesic,
anti-inflammatory, antioxidant, and antitumor properties [16]. This wide array of benefi-
cial biological attributes increases the interest placed on these compounds by medicinal
chemists and biologists.

The acyclic monoterpene subgroup is quite diverse and only representatives are
shown in Figure 3 (1a-6). Currently, a few of these members have been identified for having
antioxidant or anticancer properties, and it remains an active field with a promising future.
As it is highlighted here, many of these identified compounds show both antioxidant and
anti-cancer activity, but recent representatives are described.
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Figure 3. Structures of acyclic monoterpenes that have been identified for their antioxidant or
anticancer activities.

3,7-Dimethyl-2,6-octadienal or citral (2a, Figure 3), is an aldehyde-containing monoter-
penoid that has been isolated as a volatile compound in essential oils from many different
species disbursed across the kingdoms Eukaryota and Plantae [17]. Studies of essential oils
containing this natural product have identified citral as having anticancer and antioxidant
properties. A recent computational study of the effect of essential oils from Cymbopogon
or lemongrass species on the protein network implicated citral as a chemo-preventative
compound [18]. Another study utilized proteomic and molecular approaches to show
that the essential oil from Ocimum × africanum induced apoptosis of human gastric cancer
cell line by causing endoplasmic reticulum stress and impairment of the formation of the
ribosome. GC-MS analysis of the essential oil showed that citral is a major component
comprising 19% of this oils mass [19]. The potential of citral as a medicinal agent was
demonstrated using citral-loaded micelles (CLM) as a treatment method for in vitro breast
cancer models. This treatment method was tested in multiple breast cancer cell lines, and all
showed IC50 values of 145, 152, 139, and 130 µM for MCF7, MDA-MB-321, MDA-MB-468,
and HCC-1806 respectively [20]. Concerns with these findings are the high concentrations
used as well as the lack of data evaluating the citrus compounds cytotoxicity to normal cell
lines, therefore further validations studies are warranted.

A recent study conducted in murine models showed this monoterpene’s ability to
stave off methotrexate induced lung injury. Treatment of damaged lung tissue with citral
resulted in decreased congestion and hemorrhage while no necrotic tissue, alveolar dilation,
or interstitial fibrosis was noted in comparison with the methotrexate-treated control [21].
The combined studies suggest citral can mitigate inflammation.

In addition, antioxidant properties of citral were reported in 2021 [22]. The study
aimed to determine the mode of action of citral using computational and experimental
studies including molecular biology assays such as MTT (3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide) assay, a colorimetric assay for assessing cell metabolic
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activity, and Chorioallantoic Membrane Assay (CAM) assay, which assess the antiangio-
genic properties of the compounds. The studies indicated that citral might affect PPARγ and
vascular endothelial growth factor receptors (VEGFR-1 and VEGFR-2). Furthermore, the
results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assays conducted
by this research team confirm this compound’s antioxidant properties [22].

Citronellal (1a, Figure 3), a prominent constituent of essential oils, has been reported
to display anticancer and antioxidant properties [23]. In addition, citronellal was identified
as a promising agent against triple negative breast cancer cell lines. Ho showed that
a crude extracts of Citrus hystrix DC, citronellol, and citronellal significantly reduced
cell proliferation and migration by inducing cell cycle arrest in the MDA-MB-231 cell
line [23]. The IC50 values of the aforementioned extracts were in the millimolar range
while those of compounds citronellol and citronellal were 1.16 and 1.41 nM respectively.
However, the cytotoxicity of these compounds on normal tissue is of concern as the IC50
values of citronellol and citronellal were shown to be 1.96 and 1.81 nM respectively when
tested against human monocyte derived macrophages. Independent antiproliferative
studies of citronellal using Sulforhodamine B (SRB), MTT, and NRU (neutral red uptake)
antiproliferative assays indicate its potential against a triple-negative breast cancer cell
model (MDA-MB-231) [24]. The study also conducted in vitro experiments to evaluate
citronellal’s activity against LOX-5 (arachidonate 5-lipoxygenase), finding the IC50 value to
be in the low micromolar range [24]. Furthermore, the compounds efficacy was evaluated
using the Ehrlich Ascites Carcinoma (EAC) model where it was found to inhibit tumor
cell growth by 46% at 75 mg/kg, well below the lethal dose of 1000 mg/kg [25]. The anti-
inflammatory and redox-protective effects of citronellal, indicated by in vitro and in vivo
methods were also reported using leukocyte injected mouse models and carrageenan
rat models [25]. The redox protective effects were demonstrated by reduced hepatic
lipoperoxidation, as well as oxidation of certain protein. Citronellal administration via
intraperitoneal route was able to inhibit the carrageenan and arachidonic acid- induced rat
hind paw edema models (popular methods for evaluation of anti-inflammatory activity of
lipoxygenase inhibitors) [25]. Citronellol (1b, Figure 3) has demonstrated notable anticancer
properties as well as citronellol-containing essential oils have been reported to display
anticancer potential in cell models [21,26].

Geranic acid (2e, Figure 3) isolated from Thymus × citriodorus was recently identified
as an anti-inflammatory agent [27]. It is worth noting that in some instances of treatment
the required concentrations to elicit a favorable biochemical response proved cytotoxic.
While the findings of this study are promising, further work is required prior to the
use of the relevant compounds as potential therapeutic agents. Geraniol (2b, Figure 3)
has been identified as a main bioactive component in essential oils and validated as a
pure compound. Geraniol is a major component of Palmarosa, lemon grass, and rose
essential oils which have been documented for their beneficial attributes. Geraniol has
been shown to protect against cyclophosphamide-induced hepatotoxicity in rat models
by modulating expression levels of NFK-β, PPARγ, inducible nitric oxide synthase, and
cyclo-oxygenase 2 [28]. Cyclophosphamide is a chemotherapeutic agent with liabilities due
to its hepatotoxicity so identification of compounds that can prevent this unfavorable effect
are highly desirable. Dosing of rats was done at a concentration of 25 mg/kg once daily one
hour after their respective treatments of corn oil (vehicle), or geraniol (100 and 200 mg/kg).
The groups treated with geraniol showed lowered expression levels of IL-1β, TNF-α, MDA
and other hepatotoxicity markers. The only enzymes shown to be upregulated when
treated with geraniol were GSH, and PPARγ. The data shows the promising ability of
geraniol to curb some negative side effects caused by the treatment of patients with this
effective and well-documented cancer drug.

Geranyl acetate (2c, Figure 3) is a major component of various essential oils and plant
extracts that have shown biological activity. A recent study described the cytotoxicity of
this compound from the essential oils of kaffir lime callus [29]. This study conducted MTT
assays on the breast cancer cell line, T47D and non-cancerous cells Sel Vero. The results
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of these assays showed a low cytotoxicity in both cancerous and noncancerous cells. The
determined IC50 values exceeded 100 µg/mL in both cases [29]. These findings suggest
that the acetate group makes this compound much more cell permeable.

Geranylacetone (2d, Figure 3) has been identified in a number of essential oils and
plant extracts that have demonstrated anticancer activities. Recently, geranylacetone was
identified as a major component of Lithocarpus polystachyus Rehd. a plant with documented
anticancer properties [30]. This monoterpene was shown as a major constituent of the
volatile compound mixture, present at a concentration of about 283 µg/mL in the distilled
sample [30]. An independent study identified geranylacetone as a major component of
Dianella ensifolia (6% GC-MS) [31]. This study conducted a series of in vitro experiments to
understand the antioxidant potential of this oil. A series of biological assays (DPPH, ABTS,
and FRAP) were conducted to determine the antioxidant properties of this essential oil
(EO) in comparison with positive control BHT (butylated hydroxytoluene). Geranylacetone
is also able to react as a free radical scavenger. Both geraniol and geranylacetone have been
demonstrated to serve as free radical scavengers, albeit at high concentrations of 4–8.0 mM.
DPPH radical scavenging assay showed that geranylacetone after 15 min indicated a
modest dose-dependent effect [32].

Halomon (6, Figure 3), a halogenated acyclic monoterpenoid, has been reported to
be active against the non-small cell lung carcinoma cell model (NSCLCN6-L16) and colon
cancer cell model (HCT-116) in vitro. Furthermore, in vivo studies have demonstrated
the anticancer activity of this compound against U251 brain cancer. Halomon showed
cytotoxicity against many cancer subtypes, including renal-, brain-, and colon-derived
solid tumor cell lines. It also showed that this monoterpenoid acts as an inhibitor for DNA
methyltransferase-1 with an IC50 value of 1.25 µM [33], which decreases the expression
of tumor suppressor genes. Preliminary in vivo studies evaluated the biological effect
of Halomon via intraperitoneal injections on U251 brain cancer xenograft model. This
model involves the implantation of cancer cells into immunocompromised rats; the tumor
is allowed to grow, and then the effects of a treatment are evaluated in vivo. It was
demonstrated that five daily doses of 50 mg/kg had a 40% success rate in treatment [33].

Anticancer and antioxidant activity have also been demonstrated with lavandulyl acetate
(5, Figure 3) which is found in essential oils and plant extracts such as Lavandula angustifolia
(lavender oil). GC-MS indicated that lavandulyl acetate is found in 23 percent (w/w) of the
overall mixture on average of this essential oil [34]. The essential oil was evaluated on sev-
eral assays including cytokine cellular response, LPS-stimulated HaCaT Keratinocytes, and
LPS-prestimulated human monocyte derived macrophages (hMDMs). A dose dependency
was observed between lavandulyl acetate in the oil and a potent anti-inflammatory and pro-
regenerative response [34]. The studies indicate that this compound might hit several targets as
these biological processes involve different pathways. The pharmacological effects of lavender
oil depend on the concentration of lavandulyl acetate as independent studies have also shown
other biological activities for this essential oil [31].

Linalool (3a, Figure 3), a chiral acyclic monoterpenoid, has demonstrated anticancer
and antioxidative properties [35,36]. The anticancer activity of the essential oil from
Ocimum forskolei Benth with 28–10% of linalool has been reported [37]. The oil’s IC50 values
were shown to be close to 17, 7, 5, and 25 µg/mL for MCF7, HT29, HCT116, and MRC5
respectively. A recent study done found that linalool displays antiproliferation effects
on breast cancer cell lines MCF-7 and MDA-MB-231. This research demonstrated that at
100 µM concentration of linalool there was approximately 55 and 65 % cell viability for
MCF7 and MDA-MB-231 respectively after 24 h [35]. The determined IC50 values of linalool
were a mild 588 and 480 µM for MDA-MB-231 and MCF7 respectively [35]. Unfortunately,
no data was provided for normal cells, which calls for further studies to experimentally
determine therapeutic index and its potential as anticancer agent.

Linalool has demonstrated antioxidative properties in a study from Plumeria alba [38].
The essential oils from this plant have been shown to have antioxidant properties. Gas
Chromatography-Mass Spectroscopy studies identified that linalool composes about 24%
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of the active essential oil. The samples prepared from the plants flowers gave IC50 values
of 370, 1014, and 1943 µg/mL for the H2O2 scavenging assay, DPPH radical scavenging
assay, and thiobarbituric acid reactive substances (TBARS) assay respectively [38]. In ad-
dition, in vivo studies in hemiparkinsonian rat models indicated neuroprotective effects.
Linalool treatment demonstrated neuroprotectivity in the form of anti-inflammatory and
antioxidative action in dosages as low as 50 mg/kg [39]. Through the observed behav-
ioral and neurochemical effects linalool indicated neuroprotective activity presumably
through its antioxidative properties [39]. Linalyl acetate (3b, Figure 3) has been well
documented to have favorable bioactivities. Anticancer properties have been associated
with essential oils from Lavandula angustifolia, Lavandula officinalis, Lavandula latifolia, and
bergamot [40–44], all of which contain linalyl acetate in concentrations as high as 44%. A
study conducted on the lavender essential oils from Lavandula angustifolia demonstrated
an IC50 values of 0.36% (v/v) against HaCaT cell line in an MTT assay [43]. Additionally,
there have been reports of linalyl acetate associated antioxidant activity in essential oils of
Salvia sclarea, and Myrtus nivellei, across different regions [45,46]. The essential oil attained
from Myrtus nivellei demonstrated an IC50 value of 2.25 mg/mL [46].

Myrcene (4, Figure 3) has been shown to display anticancer bioactivities when used as a mix-
ture in the essential oils from Mentha spicata, Matricaria chamomilla, and Citrus pseudolimon [47,48].
The IC50 values of the essential oil from Matricaria chamomilla were demonstrated to be between
200 and 320 µg/mL for cancer cell lines A549, MCF7, and PC3. Meanwhile the IC50 values for
the Mentha spicata essential oils were 672, 708, and 206 µg/mL for cell lines A549, MCF7, and
PC3 respectively [47].

It has been documented that plant essential oils with high concentrations of myrcene
have antioxidant potential in biological systems. Essential oils from Hedyosmum purpurascens,
Pinus halepensis, Salvia officinalis, Cymbopogon citratus, Piper eriopodon, and Prangos trifida, all hav-
ing high concentrations of myrcene, have demonstrated antioxidant activities [49–53]. Myrcene
has been demonstrated to inhibit oxidative stress by down regulating pro-inflammatory cy-
tokines and inflammatory mediators [54]. This compound’s ability to decrease the oxidative
stress induced by rotenone was demonstrated by the significant reduction of pro-inflammatory
cytokines upon myrcene-rotenone co-treatment. While monitoring expression levels of inflam-
matory markers a dramatic decrease in expression was noted in iNOS and COX-2 [54].

2.2. Cyclic Monoterpenes

The cyclic monoterpenes 7–12 (Figure 4) have a strong background in biological
activities as they are common members of essential oils used in ethnopharmacology [55].
The natural product p-cymene (97, Figure 4) is an aromatic, cyclic monoterpene that has
been demonstrated to have antioxidant properties in vivo. A study conducted in diabetes
induced Wistar rats demonstrated this compound’s ability to upregulate mTOR, AKT, and
phospho-AKT enzymes all of which being crucial regulators of oxidative stress [56]. The
diabetes induced rats were dosed with either 55 mg/kg of metformin, an approved type
II diabetes medication, or 25, 50, 100 mg/kg of p-cymene. All groups were successful in
increasing the expression of these key oxidative stress regulatory enzymes [56]. It is worth
noting that although the 25, and 50 mg/kg groups were less effective than metformin, the
100 mg/kg group was able to upregulate these enzymes to a comparable degree as the
metformin group [56].

d-Limonene (8, Figure 4) is a chiral, cyclic monoterpene that has been shown to have both
anticancer and antioxidant properties. A study conducted in vivo animal models showed this
compound’s ameliorative effect on chloroform induced cardiotoxicity by lowering oxidative
stress, inflammatory and cardiac markers [57]. The study monitored the change in cardiac
injury markers whose expression was increased by CCl4; following two weekly doses of
200 mg/kg of d-limonene approximately 50% reduction in serum levels of cardiac inflam-
matory markers IL-6, Hs-CRP, and TNFα was noted [57]. An independent study observed
the effects of d-limonene in cancer therapy. This work used d-limonene for its antioxidant
effects in a co-treatment study with doxorubicin [58]. The designed nanoparticle delivery
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system showed a strong decrease in cell viability against HepG2 human liver cancer cell
line and a decrease in cytotoxicity of the LX2 normal cells [58]. Unfortunately, there was no
further biological evaluation of this treatment system to further support the hypothesis of the
mechanism of action with the doxorubicin-d-limonene nanoparticle delivery systems.
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Carvone (10, Figure 4) is a chiral, cyclic monoterpenoid present in large quantities in
caraway and spearmint essential oils that has been isolated identified for its anticancer and
anti-oxidative properties. A study on the anticancer effects of carvone on myeloma cells
(KMS-5) indicated that this meroterpenoid induces apoptosis through inhibition of the p38
MAPK signal transduction pathway [59]. It was found that the IC50 of carvone against this
cell line was 20 µM [59]. Apoptosis was identified as the mode of action for this treatment
by DAPI, AO/EB, and V/PI staining assays carried out at concentration of 20 µM carvone.
Furthermore, western blot analysis demonstrated the decrease in expression of p-P38, a
dual regulator of apoptosis, in response to carvone treatment at 20 µM leading to the
conclusion that this compound may inhibit the expression of this regulatory enzyme [59].
An independent study investigated this compound’s effects in alleviation of doxorubicin
induced cardiotoxicity. The IC50 value of carvone on the MCF7 cell line was determined
to be 14 µM while in the healthy cell line H9C2 this monoterpenoid was nontoxic up to
200 µM [60]. In vivo analysis of male BALB/c mice was done to evaluate the synergistic
effects of carvone during concomitant treatment with doxorubicin. These experiments
showed that the myocardial disorganization and degeneration imposed by 20 mg/kg
intraperitoneal (i.p) injection of doxorubicin was alleviated when i.p. injection of 75 mg/kg
carvone was done one hour prior to doxorubicin treatment [60]. Identical injection of
150 mg/kg carvone resulted in no notable tissue generation upon histological analysis [60].

Cuminaldehyde (11, Figure 4) is an aromatic, cyclic monoterpenoid with anticancer
biological properties. Research done on cuminaldehydes effects on human colorectal
adenocarcinoma (COLO 205) cells showed that this compound induces cell death through
topoisomerase I and II inhibition [61]. An in vitro evaluation of cuminaldehyde treatment of
COLO 205 cells demonstrated a notable decrease in cell growth and increase in cytotoxicity
at µM concentrations. After 24 h of cell treatment with 40 µM cuminaldehyde there was a
50% decrease in cell viability. This compound was further tested against topoisomerase
I and II to show the inhibitory relationship between these molecules. The degradation
of monomeric DNA in the presence of 5–20 µM cuminaldehyde indicates the interaction
between this monoterpenoid and the nuclear proteins. Furthermore, tumor reduction
capacity was demonstrated using a COLO 205 xenograft in a nude mice model. Daily
subcutaneous injection of 10 and 20 mg/kg cuminaldehyde resulted in 48 and 69 % tumor
reduction respectively [61] with no notable loss in body weight. Although these findings
are promising the lack of comparative data with healthy cell lines makes it difficult to
evaluate this compound for its efficacy as a potential therapeutic.

Hinokitiol (12, Figure 4) is a tropolone related, cyclic monoterpenoid that has been
reported to show activity in anti-inflammatory and antioxidation processes while simulta-
neously promoting apoptosis and autophagy in cancer cells [62,63]. Western blot analysis of
B16F10 murine melanoma cell line and 4T1 murine mammary carcinoma cell line showed
this natural products potential of decreasing expression of heparanase, an enzyme known
for its pro-metastasis effects in concentrations of 1 to 1250 nM. Furthermore, this research
conducted in vivo studies on C57BL/6J and BALB/c mice. The results showed an inhibi-
tion of tumor metastasis and prolonged survival [62]. While these results are promising, the
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study did not analyze the effects of the monoterpene as a form of administered medication
and instead injected B16F10 and 4T1 cells that had been pretreated in 1250 nM concentra-
tions of hinokitiol into the mice. An independent study analyzed the cellular response of
human osteosarcoma cell lines to treatment of hinokitiol in vitro.

Cell viability assays of U2OS and MG-63 human osteosarcoma cell lines showed a
concentration dependent decrease in cell viability with hinokitiol treatments the 10–80 µM
concentration range [63]. Furthermore, this research conducted western blot analysis
of MG-63 cells showing that with treatment of hinokitiol results in PARP and caspase-3
cleavage both of which being known mediators of apoptosis. Cleavage of PARP was
noted after treatment of hinokitiol in concentrations as low as 20 µM and demonstrated a
concentration dependent increase through 80 µM [63] suggesting this compound induces
programed cell death. Unfortunately, the study did not analyze any of the aforementioned
phenomena on healthy cell lines.

3. Chemistry and Biological Activities of Selected Meroterpenoids

Meroterpenoids are a large group of compounds characterized as being biosynthetically
hybrid molecules, which typically involve the combination of a terpene with polyketides,
alkaloids, phenols, or amino acids. The large potential for variations in the combination of
synthons provides a class of molecules with a high degree of structural diversity. Recently,
these natural products have gained attention from chemists and biologists alike as there
are new chemical applications and synthetic strategies to access these complex molecular
scaffolds. While many of these compounds have been isolated and identified there is a
new need for larger quantities to pursue biological studies. Biological evaluations of these
compounds have shown potential for therapeutic development, many of these intriguing
meroterpene structures have already been reviewed [64] and they are not included in this
review. Specific synthetic lessons and innovative approaches are highlighted for the members
of this meroterpene family, particularly natural products 100–188 (Figure 5). This diagram
highlights the complexity and diversity of these natural products containing 3 to 6 rings,
which also includes an increase in ring size within this family of natural products.

Total syntheses of small molecules can be challenging as insufficient functional groups
are available to facilitate carbon-carbon bond formation and/or introduce chirality. Enan-
tioselective divergent total syntheses for several meroterpenoids from Psoralea corylifolia
have been recently reported [65]. The synthesis commenced with the readily available
2-methylcyclohexanone 16 in gram-scale, which was coupled with methyl acrylate medi-
ated by thiourea catalyst (Cat. 1, Scheme 1) followed by treatment with 2-iodoxybenzoic
acid (IBX) to oxidatively generate the corresponding α,β- system and subsequent saponi-
fication furnished acid 15. The newly formed compound 15 was subjected to catalytic
PdCl2(PPh3)2 mediated intramolecular decarboxylative vinylation to establish the desired
carbon quaternary center of enone 14. Compound 14 was then subjected to a 1,4-Michael
addition reaction in the presence of copper and quenched with an aryl electrophile. This
installs the α-arylation reaction sequence yielding diastereomers 13 and 13’, with com-
pound 13 being predominant in 8:1 d.r. and can be separated by column chromatography.
To improve the yield and favor a closer 1:1 ratio, Cesium fluoride was used instead of the
copper acetate ligand which provided a 20% increase in yield. When applied properly,
strategic conjugate addition reactions, when applied properly can expedite syntheses by
forming carbon-carbon bonds efficiently, leading to improved overall yields. Compound
13 was subjected to reduction of the C-1 ketone with LiAlH4 or amine borane reagent
to enrich one diastereomer over the other one providing alcohols 17 and 17’ in either
14:1 or 1:7 respectively. Compound 17 can be deprotected by BBr3 to yield the natural
product (+)-psoracorylifol F (100a) in good yield, which was subjected to regioselective
mCPBA epoxidation, and subsequent LiAlH4 reductive opening of the epoxide provided
(−)-7β,8β-hydroxy-12β-cyclobakuchiol C (100b). Aromatic methoxy deprotection of com-
pound 17’ by thermal treatment in the presence of the thio-anion led to the natural product
(−)-8α-hydroxy-12β-psoracorylifol F (18). Compound 13 was exposed to a three-step
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synthetic sequence strategy, α-epimerization, carbonyl reduction via NaBH4 treatment,
and heat-mediated thio-anion methyl deprotection of the phenol provided natural product
(−)-7β,8α-hydroxy-12β-psoracorylifol F (100d). Alternatively, compound 17 was treated
with MeI to protect the secondary hydroxyl group, and the aromatic methoxy group was
revealed under thio-anion reaction conditions to yield compound 19 in excellent yields. The
resultant compound 19 was oxidized at the alpha phenol with IBX followed by reduction
with NaBH4 of the newly formed ortho-diketone to provide the natural product corypsoriol
J (100c). In parallel efforts, compound 13’ was subjected to carbonyl-reduction followed by
LiAlH4 or amine borane reagent to enhance the diastereoselectivity yielding alcohols 20 and
20’ in 6.5:1 or 18:1 ratio respectively. Deprotection of compound 14 mediated by thio-anion
treatment under heat led to natural product (−)-corypsoriol H (100e), which upon two-step
sequence epoxidation mediated by mCPBA and subsequent reductive opening of the epox-
ide with LiAlH4 provided (−)-8α-hydroxy-cyclobakuchiol C (100g). In a similar fashion,
intermediate 20 was subjected to methyl-protecting group maneuver via intermediate 21,
followed by one-pot oxidation mediated by IBX and subsequent reduction of the newly
formed ortho-diketone. This, mediated by NaBH4 yielded corypsoriol I (100h). Finally,
methyl deprotection of compound 20’ mediated by thermal treatment in the presence of
thio-anion yielded (−)-psoracorylifol G (100f). The short and efficient synthetic strategy
enables access to a large number of natural products, which can be further investigated for
their biological properties.
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Rhodomyrtone belongs to a large and diverse family of tricyclic meroterpenoid sys-
tems isolated from Rhodomyrtus tomentosa [66–70]. This set of compounds has been shown
to have strong antibacterial activity, acting primarily against gram-positive strains. In
addition, the combined extracts of Rhodomyrtus tomentosa have shown anti-cancer and
anti-tumoral effects in various models [66,67]. The synthesis of the unusual caryophyllene-
derived meroterpenoids (CDMTs) including rhodotomentone A (127) and rhodotomentone
B (128) was reported via a biomimetic pathway [68–70], (Scheme 2). The synthesis began
from the natural product leptospermone (22), a commonly occurring acylphloroglucinol,
which was subjected to dehydration mediated by DIBAL-H, yielding the dearomatized
ortho-quinone methide (o-QM) intermediate 23 in gram-scale. This maneuver was followed
by a [4+2] Diels-Alder photo-cycloaddition reaction with singlet oxygen, generated under
blue LED (455 nm) radiation to provide endoperoxide intermediates 24a and 24b in 1:1 ratio.
The formed o-QM intermediate 23 was subsequently subjected to hetero-Diels-Alder (HDA)
reaction with β-caryophyllene 25 to produce a mixture of rhodomentone A (115), and the
related natural products, tomentodione A, B, C and D (116, 117, 118, and 119). Rhodomen-
tone A (115) can be treated with endoperoxide 24b to undergo the key Kornblum-DeLamare
rearrangement and Diels-Alder cycloaddition reaction sequence under thermal reaction
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conditions. This produces rhodotomentone A(127) and B(128), along with two other
rhodotomentone diastereoisomers, compounds 27 and 28. Additionally, endoperoxide 24b
was reacted with β-caryophyllene (25) to undergo the Kornblum-DeLamare rearrangement
and Diels-Alder cycloaddition reaction sequence under thermal conditions to generate
rhotomentodine A, B, Q and R (123, 124, 125 and 126), along with rhodomyrtusial A, B and
C (120, 121 and 122) and compound 29 [70].
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In an efficient approach (Scheme 3), CDMTs 123, 124, 125 and 126 were easily converted
to the corresponding natural products rhodomentone A (127), 28, rhodomentone B (128) and
27 respectively. This was carried out under hetero-Diels-Alder (HDA) reaction conditions,
requiring Lewis acid, ZnI2 and heat, in relatively modest yields. The synthetic approach
offers rapid access to impressively complex structures [70].

The meroterpenoids macrocarpals and psigudials isolated from Psidium guajava a food
crop widely abundant in tropical regions has been reported to display an array of medicinal
properties [71,72]. These compounds have displayed significant biological properties as
anti-HIV and anti-bacterial agents. To further evaluate their properties, access to sufficient
quantities of these compounds is required. The application of a hetero-Diels-Alder (HDA)
reaction in meroterpenoid synthesis is frequently utilized due to the likely probability that
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a similar pathway is taking place in nature to generate these natural products [72]. A short
biomimetic-inspired synthesis to guajadial 113 and compound 30 was recently reported
(Scheme 4). The synthesis commenced with a Knoevenagel condensation between ben-
zaldehyde 31 and diformylphloroglucinol 32 providing compound 33 for in situ generated
o-quinone methide 34. The HDA cycloaddition reaction between caryophyllene 30 and
o-QM 34 led to guajadial 113, psidial A 114 and cycloadduct 36 [72].
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Hyperforin-like structures are a large family of meroterpenes that share a challenging
molecular caged motif. A recent innovative synthetic strategy based on an annulative
approach of polycyclic polyprenylated acylphloroglucinol (PPAP) meroterpenoids with
3,5-dimethylorsellinic (DMOA) was reported as shown in Scheme 5 [73]. The synthesis
commenced with the readily available methylcyclopenenone synthon, which was sub-
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jected to sequential 1,4-copper-mediated conjugate addition reaction, namely formation
of the lithium enolate followed by alkylative enolate trapping to generate the substituted
cyclopetanone 37, which was subjected to further α-alkylated to furnish the highly sub-
stituted cyclopetanone 38. Next, cyclopetanone 38 was subjected to the key annulation
reaction with β-lactone diketene, leading to diketone 39 as the major product, along with
C-acylated product 40 and O-acylated product 41. Diketone 39 was further methylated with
trimethylsilyldiazomethane to generate the vinylogous ester isomers 42 and 43. Compound
43 was subjected to oxidative rearrangement mediated by hypervalent iodine to provide
product 45 with bicyclo[3.3.1]nonane ring system via intermediate 44. Compound 45 was
subjected to a subsequent chlorination reaction to provide halogenated compound 46.
Finally, a deprotonation/prenylation alkylation, acylation reaction sequence was used to
introduce the last isoprenyl group generating the most challenging quaternary center. This
was followed by deprotection of the methoxy group to yield hyperforin (103) in modest
yields. The short strategy is flexible enough to generate a potential diverse library of
derivatives for future biological evaluations.
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A similar approach has been applied to the caged meroterpenoid garsubellin A (104,
Scheme 6) [73]. The total synthesis was initiated with methylcyclopenenone, which was
α-prenylated to generate compound 47, followed by 1,2 Grignard reaction to access allylic
alcohol 48. The resultant compound 48 was subjected to an anionic oxy-Cope rearrangement
to provide bisprenylated cyclopentanone 49. Then, compound 49 underwent an annulation
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reaction with β-lactone diketene to produce diketone 50, followed by Pd(OAc)2/Cu(OAc)2
mediated unusual Wacker-type-intramolecular cyclization to provide tricycle system 51.
Tricyclic system 51 was treated with PhI(OAc)2 under basic condition for an oxidative ring
expansion leading to compound 52, the needed bicyclo[3.3.1]nonane ring system that upon
cobalt catalyzed Mukaiyama hydration reaction provided tricycle 53. At this point in the
synthesis compound 53 was treated with lithium tetramethylpiperidide (LTMP), and TsCl
to introduce the α-vinylogous chlorine to generate compound 54, followed by acylation
to introduce the congested quaternary center leading to compound 55. Various types of
alkylation reactions are feasible for such compound, but alkylation with borane prenyl
system mediated by [Pd(allyl)Cl2], and catalytic CPhos ligand under basic conditions
introduce the prenyl group and remove the silyl protecting group to provide garsubellin A
(104), as well as compound 56, which could be treated with acid or base to yield garsubellin
A (104).
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The polycyclic fused ring meroterpenes such as berkeleyone A have displayed anti-
inflammatory activity [74], while preandiloid A has shown antimicrobial properties. As-
perterpene A was identified as a potent BACE-1 inhibitor with an IC50 value of 78 nM
against this enzyme, out preforming commercial BACE-1 inhibitors. Furthermore, in vivo
animal model studies were congruent with the in vitro efficacy studies of this natural
product [74]. These findings indicate that these compounds require further studies and
synthetic strategies to access them in large quantities.

A successful approach to these natural products involves the use of a cyclization reac-
tion to set up the tricyclic system in a single step as shown in Scheme 7 [73]. The synthesis
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began with farnesyl bromide being subjected to alkylation with the anion of propionitrile,
followed by one-pot bromohydrin formation/cyclization reaction sequence to generate
epoxide 57, which upon reductive epoxide-opening radical cyclization furnished tricyclic
ketone 58. Then, ketone intermediate 58 was subjected to annulation reaction with β-lactone
diketene to produce diketone 59, which was O-methylated, followed by oxidative ring
expansion mediated by PhI(OAc)2 under basic conditions to furnish bicyclo[3.3.1]nonane
ring system 60. The newly formed tetracyclic 60 was exposed to Wittig olefination and
subsequent chlorination reaction to yield halogenated polycyclic compound 61.
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Upon further three-step α-alkylative methyl ester functionalization, methylation via
Suzuki coupling reaction of the vinyl chloride with MeB(OH)2, and acid mediated depro-
tection yielded advanced intermediate 62. Then, compound 62 was subjected to the final
chloride-mediated demethylation, leading to the DMOA-derived metabolite, protoausti-
noid A (175). Compound 175 was further oxidized with mCPBA to provide berkeleyone
A (174). In addition, advanced polycyclic compound 62 was treated with pyridinium
chlorochromate (PCC) to generate compound 63, which was subjected to Shigehisa’s
cobalt(II)-catalyzed hydroalkoxylation reaction leading to polycyclic intermediate 68. Fi-
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nally, this compound was treated with LiCl to free the trapped enolate system, yielding the
natural product andrastin D (158) in racemic form. Furthermore, as shown in Scheme 8, the
tetracyclic compound 63 was subjected to Carreira’s alkene hydrochlorination conditions to
provide the polycyclic compound 69 via hydrogen-atom-transfer (HAT) process involving
radical intermediate 66. Subsequent demethylation of polycyclic compound 69 mediated
by LiCl yielded the natural product preterrenoid (159), which underwent stereoselective
α-oxidation mediated by magnesium monoperoxyphthalate (MMPP) to afford terrenoid
(160). Upon ring-expansion via retro-Claisen/esterification cascade reaction under basic
conditions, compound 160 was converted to racemic terretonin L (161). This synthetic
strategy is efficient at enabling the generation of multiple members of this meroterpene
family in good overall chemical yields [73]. This approach is not asymmetric, however,
there are multiple opportunities to introduce asymmetry.
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Forging complicated carbon-carbon bonds in complex natural products represents a
challenge that requires groundbreaking synthetic endeavors or engaging in biomimetic syn-
thesis, the process of imitating nature’s way to make molecules. Biomimetic synthesis of
the psiguadial meroterpenoids featuring the key cationic cyclization reaction using terpene
(+)-bicyclogermacrene 70 as the platform has been reported [75] and it is depicted in Scheme 9.
The synthesis commenced with the generation of ketone-aldehyde 72, which was generated
from (+)-2-carene (71) upon treatment with KMnO4 to mediate the dihydroxylation, and
subsequent oxidative diol cleavage reaction. Compound 72 was further treated with Wittig
reagent A under basic reaction conditions to provide compound 73, which was deprotected,
and cyclized under samarium mediation to provide the 10-membered cyclic system 75, which
was then converted to (+)-bicyclogermacrene 70 with the required E-olefin geometry using
a modified Corey-Winter protocol. Compound 70 was then converted to 2-ledene (105) via
acid facilitated intramolecular cationic cyclization. The natural product 105 was transformed
to (+)-viridiflorol (106) upon treatment with hydroboration/hydroxylation conditions. Alter-
natively, compound 105 was subjected to Mukaiyama’s cobalt-catalyzed phenylsilane/O2
hydration conditions to provide natural product (−)-palustrol 107. Finally, epoxidation of com-
pound 70 was facilitated upon treatment with mCPBA, followed by intramolecular cyclization
provided (+)-spathulenol (108).

As highlighted in Scheme 10, biomimetic approaches allow for flexible synthesis of
various members of the same natural product family [75]. Thus, compound 70 was treated
with intermediate o-QM 77 to enable the hetero-Diels-Alder (HDA) reaction, in order to
yield the natural product psiguadial D (112). The compound o-QM 77 was synthesized
in situ as the Knoevenagel-type condensation reaction product between bisformylated
phloroglucinol 76 and phenyl aldehyde. Furthermore, 112 was converted to psigudial C
(111) via epoxidation reaction. Under the similar reaction conditions, the o-QM 77 was
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unified with compound 4 via sequential cationic intermolecular coupling reaction followed
by intramolecular cyclization cascade reactions. Briefly, intermediate 77 under acidic condi-
tions generated the benzylic carbocation, which was able to react with compound 70 via
addition reaction to yield intermediate 79. Compound 79 underwent an intramolecular
cyclization, and a 1,2-hydride shift to establish the most stable cation 81. Finally, intramolec-
ular cyclization from the phenolic system facilitated the installation of the last 7-member
ring system of the natural product psiguadial A (110).
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The sesquiterpene-tropolones belong to a class of structurally distinctive meroter-
penoids characterized as sesquiterpene mono- and bistropolones, which includes pycnid-
ione and eupenifeldin, featuring a unique polycyclic ring system with rich stereochemistry.
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These compounds are isolated from Neosetophoma sp. a species of fungi. These compounds
were tested against a series of cancer cell lines: human breast cancer (MDA-MB-231),
two human ovarian cancer cell lines (OVCAR-3 and OVCAR-8), human mesothelioma
(MSTO-211H), and human lung cancer (A549) to determine their IC50 values; the most
potent compound, eupenifeldin (133, Scheme 11) had IC50 values of 2.83, 0.33, 0.02, 0.08,
1.33 µM for the above listed cell lines respectively [76]. To further evaluate the cytotoxicity
of these compounds towards healthy tissues a mitochondrial toxicity assay was conducted
for compounds 129, 131 and 133 (Figure 5). The results of this experiment showed no
cytotoxicity up until a maximum dose of 12.5 µM, which was well above the majority
of the IC50 values for the compounds tested [76]. Further study of this natural product
was conducted by Maldonado et al. focusing on its effects on a panel of ovarian cancer
cell lines. The antiproliferative effect (EC50) of eupeninfeldin on three ovarian cancer cell
lines (OVCAR-3, OVCAR-5, OVCAR-8) and nontumorigenic fallopian tube cells (FTT3-Tag)
were determined to be 10, 11, 12, and 170 nM respectively [77]. The results indicate the
selectivity of the compound for cancer cell models over normal tissue with a greater than
10-fold difference. Additional mechanistic studies included cell migration assays, which
provided favorable outcomes [77]. To validate their in vitro findings, hollow fiber studies
were conducted in murine models. OVCAR-3 and OVCAR-8 hollow fibers were implanted
in mice, which were treated with eupeninfeldin or vehicle daily for 4 days. A significant
reduction of OVCAR-3 cell model was observed while no significant inhibition of OVCAR-8
cell model was recorded suggesting the compound is working via a specific pathway. To
further investigate the mechanism of action specific protein evaluation was conducted for
apoptosis pathway (caspase 3/7 activation, PARP cleavage, autophagy assays) and global
protein analysis using tandem mass tag (TMT), a chemical label technique that facilitates
sample multiplexing in mass spectrometry (MS)-based quantification and identification
of the proteome. Bafilomycin A1, a member of macrolide antibiotics and an autophagy
inhibitor, was used as a co-treatment with eupenifeldin on their selected ovarian cancers cell
lines (OVCAR-3, OVCAR-5, and OVCAR-8) to determine if this compound is mediating cell
death through autophagy as a primary cell death modality. The resultant data indicated that
indeed bafilomycin was able to significantly rescue the cells from death. Their combined
findings indicate that this natural product displays selectivity. It is likely mediating cell
death through autophagy [77]. Pycnidione (140, Figure 5) is another example of bioactive
sesquiterpene-bistropolone meroterpenoid natural products. First isolated from fungal
species, Phoma sp., this compound has been studied extensively for its biological activities.
Kaneko studied the effects of pycnidione on leukemia cell models [78]. This compound
alone or in combination with bleomycin against a panel of human cancer cell lines had a
significant anti-proliferative effect. Ongoing studies indicate that pycnidione inhibits of
topoisomerase II at an IC50 value of 19 µM and modulates the cell cycle at the G2 phase [78].
These biological studies highlight the importance of having access to large quantities of
these natural products for further derivatization to improve efficacy. The recent total
synthesis of the structurally revised flagship members of the pycnidione family, namely
(+)-pycnidione (140), dehydroxypycnidione (137) and (−)-epolone B (130) was elegantly
designed on a modular [4+2] inverse electron-demand hetero-Diels-Alder (HDA) reaction
between the in situ generated ortho-quinone methide (o-QM) 82 and the corresponding
dienophile, hydroxyhumulene 83 or humulene 84 (Scheme 11). While the majority of [4+2]
cycloaddition reactions require heat, microwave assistance can also promote the rection,
and minimize decomposition of starting materials or intermediates. A unified synthetic
endeavor was recently used to generate various members of these complex meroterpenes
through the in situ generation of compound 82 (Scheme 11). The resultant transition state
of either dienophile 83 or 84 can proceed either as a single monocyclic formation step, TS1
or a bis-cyclization formation, TS2. They indicated that the reaction can be modified to
favor one or various products. However, the diastereomers of eupenifeldin series have yet
to be synthesized and remain a highly active area of research [79].
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The synthesis capitalizes on the advantages to access building blocks 83, o-quinone
methide precursors 85a and 85b in sufficient quantities (Scheme 12) [79]. Their strategic
synthesis began with 1,3-cyclopentanedione 90, followed by O-alkylation with 91, which is
formed in situ with paraformaldehyde and chlorotrimethylsilane under basic conditions,
providing the vinyl chloride 87 that can easily undergo a [2+2] intramolecular photocy-
cloaddition furnishing tricycle 92. Light-driven [2+2] cycloaddition reactions are the most
direct approach to build tetrasubstituted cyclobutanes that may lead to diverse structures.
Upon one-pot iodination/Kornblum oxidation, the tricycle 92 was converted to hydroxy
enone 86, followed by O-methylation provide intermediate 93. Use of either AgBF4 or
UV light (254 nm) facilitated the ring expansion via fragmentation of compound 93 to
provide the methoxy-tropolone 85 in good yields (Scheme 12A). Alternatively, treatment
of compound 86 with Lewis acid, boron trifluoride diethyl etherate, resulted in tropolone
84. Thus, the use of simple transformations easily generates the large ring-containing
molecule in sufficient quantities. (−)-Kobusone 89 was converted to the corresponding
α-hydroxylated product 95 via Davis’ oxiziridine treatment as shown in Scheme 12B. The
resultant α-hydroxyl group was protected with a silyl group, followed by 1-carbon Wittig
reaction yielding compound 88, setting the stage for the ring opening. This reaction previ-
ously discovered by the Shenvi group [80] highlights the strategic use of Cobalt/Sal/silane
catalyst systems to mediate a Hydrogen-Atom Transfer (HAT) retrocycloisomerization of
compound 88 to afford compound 96 in excellent yields. Rhenium catalyzed deoxygenation
and silyl group removal with TBAF provided the desired compound 83 as the starting
material for the cycloaddition reaction.

The application of this HDA reaction to various ene-systems is an efficient approach to
generate natural products with high order architecture as shown in Scheme 13. Furthermore,
these types of cyclization reactions tend to be selective and can be applied to large scale
settings, enabling carbon-carbon bond formations in an economical manner. With the
in situ generated o-QM 82 from tropolone 85a or 85b and dienophile 83, the platform
was established for the [4+2] inverse electron demand HDA reaction [79]. The thermal
microwave assisted HDA reaction between (−)-hydroxyhumulene 83 and o-QM (generated
in situ from precursor 85) provided cycloadducts 99 and 189. Note that mesitylene was
used rather than toluene to reach higher boiling points and provide the desired products
in modest yields. Next deprotection of methoxy group of compounds 99 or 189 via base,
led to the natural product epimers 132 or 130a respectively. Then, compound 99 was
subjected to HDA reaction again with compound 85b to yield 191, which was deprotected
under basic reaction conditions to afford the natural product epimer compound 140a. The
same treatment could be provided to compound 189 to yield the natural product epimer
140b (8,9-epi, epi-(−)-pycnidione) in good yields. Finally, the HDA reaction of between
humulene 84 (no chirality) and in situ generated o-QM (from 85a or 85b) was conducted
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to produce compounds 97 or 98 respectively. Deprotection of these compounds led to the
natural product 130b (dehydroxyepolone B) as a racemate in good yields. Compound 98
was further treated with dienophile for a second HDA reaction under the same reaction
conditions to provide the adduct precursor of 137 in poor yields indicating the second HDA
reaction is more difficult for 83 than for the allylic system 84. Perhaps, the presence of the
hydroxyl group lowers the barrier slightly in favor of that second reaction. Deprotection of
the methoxy group provided natural product 137 [79].

Recent synthetic approaches towards the trans-syn-fused drimane meroterpenoids
have capitalized in advancements in chemoenzymatic reactions [81] to facilitate carbon
economic and diversity oriented synthetic strategies. The total synthesis application using
a chiral-pool natural product is highlighted in Scheme 14. The synthesis commenced with
the commercially and readily available sclareolide 192, which was treated with acid to
epimerize the β-hydrogen, and re-formation of the syn-lactone (199, Scheme 15). Then,
stereoselective enzymatic hydroxylation of the methylene group adjacent to the quaternary
center using P450BM3 variant KSA15 provided compound 193 in respectful yields in gram
scale. Compound 193 was treated with nBuLi, trapped with a silyl group, and coupled with
2-methyl aniline anion to provide compounds 194 and 195. This indole reaction known as
Smith-modified Madelung indole synthesis protocol is usually high yielding and relatively
compatible with other functional groups. This mixture was converted to 196 under acid
treatment to facilitate the dehydration. System 196 was then exposed to Albright-Goldman
oxidation to generate the corresponding ketone, which was further subjected to two-step
microwave-promoted intramolecular Friedel-Crafts cyclization reaction and subsequent
in situ trapping of the enolate with acetic anhydride, affording enol ether adducts 197
and 198. Next palladium catalyzed hydrogenation and subsequent K-selectride mediated
diastereoselective reduction of enol ether adduct 197, provided N-acetyl-polyveoline (156).
In parallel, compound 198 was treated with potassium carbonate to release the acetate
group, resulting in the natural product polysin (155) in good yield.
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To generate other meroterpenoid family members (Scheme 15), lactone 199 was con-
verted to methyl ester 202 through a series of four linear steps [81]. The lactone was
first opened using heat, followed by three-step Arndt-Eistert homologation to furnish
the corresponding methyl ester 202 in excellent yields. Then, compound 202 was treated
with Mukaiyama hydration protocol which led to a mixture of lactone 203 and tertiary
alcohol 204 in relatively good yields. In addition, lactone 203 was converted back to methyl
ester 202 and recycled to increase the overall yield. Upon saponification and subsequent
Yamaguchi lactonization of tertiary alcohol 204, the trans-syn-trans-fused lactone 201 was
generated. At this point, the application on enzymatic transformation at the methylene
group adjacent to quaternary center was conducted. The enzymatic hydroxylation took
place under P450BM3 variant MERO1 L75A on a preparative scale to produce alcohol
200. Next vinyl triflate formation was conducted upon treatment of alcohol 200 with
silyl group protection and trapping of the enolate to provide the corresponding triflate,
which underwent Sonogashira coupling reaction with alkyne 205, to generate dienyne 206.
Subsequent hydrosilylation of the newly formed dienyne 206 catalyzed by Platinum(0)-
1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex known as Pt(DVDS) in the presence
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of Et3SiH, afforded the desired hydrosilylated triene intermediate, which could readily
undergo 6π electrocyclization/aromatization reaction under copper(II) triflate to yield
arene 207. The resultant compound was treated with Dess-Martin periodinane (DMP) to
mediate the oxidation of the secondary hydroxyl group followed by desilylative iodiniza-
tion under NIS mediation to provide iodo-arene 208. Compound 208 was subjected to
copper-catalyzed hydroxylation of aryl halides under mild conditions, namely Cu(acac)2 in
the presence of N,N′-bis(4-hydroxyl-2,6-dimethylphenyl)oxalamide (BHMPO) and base
to yield chrodrimanin C (141). The natural product 141 can be converted to verruculide
A (143) upon treatment with Saegusa 2-step protocol to install the α,β-unsaturated sys-
tem. Furthermore, this natural product can be converted to chrodrimanin T (142) under
Fe(II)/α-ketoglutarate-dependent oxygenase treatment to introduce the hydroxyl group
stereoselectively at the γ-position of the lactone ring. Overall, the Renata group provided
an impressive use of enzymatic and modern organic chemistry reactions [81].

Another effective synthetic approach using natural products as a chiral pool is the
strategy towards the arisugacin natural products. These drimane meroterpenoids have
been isolated from Penicillium sp. and other sources. Their members have demonstrated
acetylcholinesterase inhibitory activity in the nanomolar range [82]. Access to both libraries
and large quantities of these compounds is desirable to interrogate their mode of action.
Stypodiol is a pentacyclic meroterpenoid isolated from the brown algae S. flabelliforme,
which displays a broad range of biological activity. Stypodiol has shown anti-proliferative
effects against a number of cancer cell lines and also has antimicrobial capacity. This com-
pound showed promising anti-proliferative activity in the low micromolar range against a
human neuroblastoma cell line (SH-SY5Y) [83]. While multiple cancer cell lines were tested
most of them showed weak anti-proliferative effects, indicating the compound is likely to
have selectivity towards a specific cancer subtype. Therefore, efficient synthetic approaches
to this family of compounds are desirable. A recent rapid and modular approach using
modern organic chemistry, such as radical-based reactions combined with chemoenzymatic
reactions has been reported [81]. As shown in Scheme 16, the synthesis commenced with
natural product sclareolide 192, which underwent enzymatic hydroxylation using P450BM3
variant BM3 MERO1 in the presence of thermostabilized phosphate dehydrogenase (Opt13)
at the methylene group adjacent to the quaternary center. The corresponding compound
210 was protected with a silyl group followed by stereoselective α-hydroxylation, con-
ducted via trapping of the enolate with oxygen to efficiently generate compound 211. Next,
lactone 211 was reduced to the triol system followed by oxidative cleavage of the diol
moiety, rapidly furnishing the key aldehyde 209. Aldehyde 209 was coupled with pyrone
213 via a formal [3+3] cycloaddition/hydrogen atom transfer (HAT) reaction mediated by
phosphoric acid 215 to generate cyclized product 217, which was acetylated in a one-pot
procedure with acetic anhydride. Phosphoric acid catalyst promoted in situ alcohol de-
hydration and formal [3+3] cycloaddition to provide the shown stereocenter as the major
product. Then, it was treated with Mn(dpm)3 in the presence of TBHP (tert-butyl hydrogen
peroxide) and PhSiH3 to facilitate a chemoselective HAT reduction reaction to provide
the natural product phenylpyropene C (146). This Mukaiyama reduction protocol has
high stereospecificity as it favored the hydride addition from the bottom face, yielding the
product in a 20 to 1 ratio with respect to its diastereoisomer.

Alternatively, aldehyde 209 was coupled with pyrone 212 via a formal [3+3] cycloaddi-
tion reaction mediated by phosphoric acid 215 to generate cyclized product 216, which was
converted to arisugacin F (145) via chemoselective HAT reduction reaction mediated by
Mn(dpm)3 in the presence of TBHP and PhSiH3. Compound 209 was dehydrated to pro-
vided enal 218, which was coupled with the shown pyrone via formal [3+3] cycloaddition
mediated by piperidium acetate to generate compound 219. The corresponding compound
can be then converted to the natural product pyripyropene E (148) via chemoselective
HAT reduction reaction using their established reaction conditions for these systems in
modest yields and good diastereomeric ratio. In addition, compound 216 was treated with
Mukaiyama hydration chemoselective HAT reaction mediated by Mn(dpm)3 in the presence
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of oxygen gas and PhSiH3, followed by Swern oxidation to provide 5-deoxyterreulactone
C (144) in good yields. Finally, the acyl chloride 220 that arises from aldehyde 209 was
subjected to Fredel-Crafts acylation reaction with pyrone 213 mediated by BF3 etherate fol-
lowed by cyclization reaction. Then, reduction of the ketone system under Luche reduction
conditions provided the natural product phenylpyropene F (147). The total syntheses of
various members of this drimane meroterpenoid family was achieved through the creative
use of strategic enzymatic and chemoselective reactions to provide flexible, modular, and a
generalized synthetic route that may facilitate biological studies of these natural products
and their derivatives.
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Another modular synthetic effort is highlighted in Scheme 17 to access these natural
products, but mainly to stypodiol [84]. The synthesis commenced with the available natural
product sclareol 222, which was converted to intermediate 223 via a 3-step sequential
protocol: acylation with acryloyl chloride, γ-lactone ring formation via intramolecular
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olefin metathesis mediated by Grubbs second generation catalyst, and finally dehydration
reaction mediated by base treatment.
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Next, gram-scale HAT-based intramolecular Giese type coupling reaction was con-
ducted on compound 223 with Fe(acac)3 in the presence of PhSiH3, which goes through the
radical transition state shown to preferentially provide the tetracyclic compound 224. Then,
a two-step sequence mediated by lithium iodide resulted in the opening of the lactone
ring and generation of the corresponding carboxylic acid. This was subjected to enzymatic
hydroxylation using P450BM3 variant BM3 L75A, leading to regioselective hydroxylated
compound 225. The resultant compound could be treated with Barton reaction conditions
to undergo decarboxylation, followed by photocatalyzed halogenation reaction to gen-
erate the corresponding iodide 226, which was then converted to diene 227 under basic
conditions. Then, electrochemical SET-based [3+2] coupling reaction of diene 227 with
phenol 231 via constant potential electrolysis (using reticulated vitreous carbon as cathode
and Ni as the anode) generated advanced intermediate 232. Compound 232 was treated
with Mn(dpm)3 in the presence of TBHP and PhSiH3 to induce diastereoselective HAT
reduction followed by deprotection to generate the natural product stypodiol (170) in
good yield. Using a similar synthetic protocol, diene 227 was coupled with excess pyrone
214 via single-electron-transfer (SET) to promote a formal [3+2] cycloaddition mediated
by cerium ammonium nitrate (CAN) to yield the natural product decaturin (169). The
iodide intermediate 226 was subjected to nickel-catalyzed cross-coupling with arene iodide
228, followed by the redox maneuver mediated by CAN and subsequent acid catalyzed
intramolecular cyclization provided natural product taondiol (157a). Furthermore, iodide
intermediate 226 was subjected to nickel-catalyzed cross-coupling with pyrone iodide
229 to afford compound 230, which upon Lewis acid catalyzed intramolecular cyclization
afforded the desired natural product chevalone A (157) in good yields [84]. This synthetic
strategy offers the opportunity to access many derivatives of these meroterpene natural
product derivatives by fine-tuning the coupling partner.
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The hongoquercins are tetracyclic meroterpenoid natural products with the trans-
transoid decalin-dihydrobenzopyran ring system, which display a range of promising bioac-
tivities. This subgroup of the meroterpenoids natural products incorporates a sesquiterpene
unit to form the unique hongoquercins. These natural products have attracted attention
because they pose a synthetic challenge with four continuous stereocenters and a highly
substituted arene scaffold. Access to a modular synthesis can enable the establishment
of a medicinal chemistry platform to investigate their exact mode of action. Over the
past 25 years multiple synthetic endeavors have been reported towards meroterpenoid
(+)-hongoquercin A (152, Scheme 18) and (+)-hongoquercin B (153, Scheme 19), but a recent
simplified approach was disclosed by the Barrett group [85], featuring a sequential polyke-
tide aromatization and cationic polyene cyclization reaction. The synthesis commenced
with thermolysis of dioxane-4,6-dione dioxanone 236 in the presence of trans, trans-farnesyl
234 or geraniol 235 to provide dioxinone β-keto ester 238 or 237 respectively, which upon
C-acylation generated the corresponding ester systems. The resultant products underwent
highly regioselective decarboxylative allylic rearrangement mediated by Pd2dba3, followed
by in situ aromatization to provide farnesyl resorcylate 233 or the geranyl substituted
analogue 239 respectively. Compound 233 was then treated with SnCl4 complex with
ligand 240 as a dual Bronsted and Lewis acid, in the presence of SnCl4 and trifluoroacetic
acid, which facilitated the enantioselective protonation of the substrate, followed by facile
cationic intramolecular polyene cyclization reaction, leading to meroterpenoid 241. Com-
pound 241 upon saponification provided the natural product (+)-hongoquercin A (152).
Alternatively, O-allylation of farnesyl resorcylate 233 with allylbromide under basic con-
dition provided allyl ether 242, which upon asymmetric dihydroxylation generated diol
244. This step is followed by mesylating the secondary hydroxyl group, which enables the
epoxide formation under a classic SN2 reaction to provide epoxide 245. Compound 245
was then deprotected, followed by biomimetic cationic cyclization of epoxide mediated
by Lewis acid, Iron (III) to generate the advanced meroterpenoid derivative 247 in good
enantioselective excess.
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As shown in Scheme 19, compound 247 was deprotected to yield the corresponding
acid, followed by selective acetylation of the secondary hydroxyl group to provide natural
product 153. Furthermore, halocyclization of farnesyl resorcylate 233 or geranyl-substituted
analogue 239 (Scheme 18) in the presence of halogenating reagents 256 (Bromodiethylsulfo-
nium bromopentachloroantimonate V) or 257 (iodonium reagent), provided halogenated
meroterpenoid 254/255, or 252/253 respectively in good yields [85]. These important inter-
mediates will allow the generation of several derivatives that can further provide insight
into the biological mode of action of these natural products. An interesting meroterpenoid
derivative of hongoquercin was generated geranyl-substituted resorcylate 239. This was
protected with a silyl group followed by regioselective asymmetric epoxidation with Shi
chiral ketone to generate epoxide 249. The resultant system was deprotected under basic
conditions to yield epoxide 250, which underwent cationic polyene cyclization reaction
mediated by boron trifluoride etherate to provide the advanced meroterpenoid derivative
251. This compound should serve as a chemical tool to interrogate the biological properties
of these natural products.

A modular synthetic approach to the tetracyclic meroterpenoids was recently re-
ported [86] and it is as illustrated in Scheme 20. The synthesis featuring sterically demand-
ing sp2-sp3 cross-coupling and acid mediated cyclization/isomerization for installation of
the required cis or trans-decalin stereochemistry of the tetracyclic meroterpenoid scaffold is
highlighted. The total synthesis commenced with a solvent-free Alder-Rickert reaction be-
tween the dimedone-derived bis-trimethylsilyl enol ether 258 and dimethyl 2-butynedioate
(DMAD) provided resorcinol, followed by mono-methylation yielded phenol, which upon
thermal treatment in the presence of 3,4-dimethoxybenzylamine (DMBNH2) yielded imide
259. Regioselective halogenation of imide 259 generated intermediate 259a, which upon
regioselective imide reduction provided key isoindolinone 260. Next diene 263 was gen-
erated from β-hydroxyketone 261 via three step protocol, involving the formation of
benzyl-protected ketone, subsequent vinyltriflate formation, followed by Stille coupling
with vinyl(nBu3)Sn mediated by Pd(PPh3)4. Then, a Lewis acid catalyzed Diels-Alder
[4+2] cycloaddition reaction between diene 263 and dienophile 264 provided intermediate
265 as the major product due to the shown transition state. Compound 265, following a
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two-step sequential reduction reaction, generated alcohol via thioester intermediate 266,
and it was converted to iodide 267 via two linear steps (mesylation of the alcohol followed
by SN2 reaction). Then, the key step was conducted, namely sp2-sp3 Negishi coupling
of isoindolinone 260 with iodide 267 to provided 5,6-dehydrodecalin intermediate 268.
Next compound 268 underwent deprotection, intramolecular cation trapping of the phenol
group, followed by hydrogenation to yield the cyclized product 272. This established the
required meroterpenoid scaffold. Lastly, global deprotection of intermediate 272 provided
the natural product (+)-stachyflin (162).
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Next as shown in Scheme 21, thioester 273 was reduced to the corresponding aldehyde
274 via Pd(II) in the presence of triethylsilane hydride in good yields. Then, aldehyde
was coupled with the anion of arene 275 or 277, followed by 2-step Barton-McCombie
deoxygenation to produce intermediate 276 or 278 respectively. Then, compound 278
was converted to mamanuthaquinone (165) via global acid deprotection and salcomine (a
coordination complex of salen ligand and cobalt) mediated oxidation reaction sequence
in moderate yields. In addition, compound 276 was subjected to deprotection and in-
tramolecular cation trapping with the free phenol group to provide natural product aureol
(279), which was subsequently converted to 5-epi-aureol (166) via epimerization of the
decalin bridge carbon, using HI. Intermediate 166 is known to generate natural product
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cyclosmenospongine 164 [86]. The efficient synthesis provides rapid access to various
family members and the established platform will enable the generation of derivatives for
further biological studies.
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These unique spiromeroterpenoids share a common biosynthetic pathway that pre-
sumably arises from the terpenoid precursor farnesyldiphosphate and display promising
biological properties [87]. The total synthesis of asnovolins and related spiromeroter-
penoids feature a key lithium mediated coupling reaction to establish the carbon-carbon
bond formation that giving rise to the spirocenter, was recently reported by Porco [87],
shown in Scheme 22. The synthesis began with known chiral hydroxy enone 283, which
was converted to the corresponding neopentyl iodide via one-pot triflation, followed by
an SN2 reaction, which upon subsequent Luche reduction, provided allylic alcohol 282.
Coupling reaction between the decalin system 281 and the lithium exchanged form of the
iodide 282 via 1,2-addition reaction afforded compound 284. Next, treatment of the resul-
tant product 284 with MnO2 was converted to spirocycle 280 via tandem allylic oxidation,
followed by oxa-Michael addition reaction sequence. Spirocycle 280 was then transformed
to spirocyclic intermediate 285 via a metal hydride atom transfer (MHAT) process mediated
by Fe(acac)3 in the presence of hydride source PhSiH3, establishing the desired stereochem-
istry. Enolization of spirocyclic intermediate 285 with TMSOTf followed by treatment with
Eschenmoser’s salt, generated exocyclic enone 286. Under various reactions conditions
compound 286 resisted isomerization to the endocyclic enone 287. Therefore, compound
285 was oxidized with 2-iodoxybenzoic acid (IBX) to the spirocyclic enone system, which
was iodinated at the α-carbon to provide the halogenated spirocyclic intermediate 288. This
system was then subjected to Suzuki coupling reaction to generate the desired endocyclic
enone 287, followed by final desaturation, and protecting group removal to generate the
spiromeroterpenoid chermesin B (172). Compound 288 could be further functionalized via
Pd mediated methylation to produce 287 again, which was treated with base to conduct
an enolate acylation and deprotection to access the natural product asnovolin B (168). The
natural product 168 was then subjected to Baeyer-Villiger oxidation in the presence of
Sc(OTf)3 to yield asnovolin A (167). The lactone ring opening of asnovolin A (167) was
conducted using methanolysis conditions to provide natural product asnovolin E (173). In
addition, compound 287 was acylated to generate compound 289, which was desaturated
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and deprotected to afford advanced spirocyclic intermediate 290. Finally, compound 290
was subjected to Meerwein-Ponndorf-Verley reduction conditions to produce simplicissin
(171) as the major product. The powerful linear synthesis enables access to many members
of these natural products
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Asperterpene A and its related family are interesting structures with unique chemistry
and biology. Asperterpene meroterpenoids displays an unprecedented 1,2,5-trimethyl-4,9-
dioxobicyclo [3.3.1]non-2-ene-3-carboxylic acid moiety that is distinct from other similar
meroterpenoids such as berkeleytrione and preaustinoid A. These natural products have
exhibited promising BACE1 inhibitory activities in cell-based assays, with IC50 values of
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60–80 nM. This is more active than LY2811376 (IC50 of 260 nM), a potent clinical BACE1
inhibitor produced by Eli Lilly. Additional in vivo studies of one of these natural products
showed significant decrease of BACE1 activity and Ab42 levels in 3xTg AD mice, similar to
LY2811376 [74]. Therefore, the synthesis of these compounds has clinical relevance, and
more potent derivatives could be generated once a streamlined synthetic endeavor has
been established. An impressive biomimetic synthesis towards these natural products
was recently reported as shown in Scheme 23 [88]. The synthesis began with the coupling
reaction of 3,5-dimethylorsellinic acid 291 with (2E,6E)-10,11-epoxyfarnesyl mesylate 292
as the electrophile under basic condition, followed by in situ methyl esterification to
generate (2E,6E)-10,11-epoxyfarnesyl-5-dimethylorsellinic acid methyl ester 293. Then, a
dearomatization-driven polycyclization reaction was mediated by treatment with alkyl
aluminum-pair as a Lewis acid system to promote the intramolecular polyene cyclization
cascade reaction to afford asperterpene scaffold 177 and related meroterpenoid 149 via
intermediate 297 in a 1 to 3 ratio favoring compound 294. Alternatively, compound 291 was
coupled with electrophile (2Z,6E)-10,11-epoxyfarnesyl mesylate 295 (the stereoisomer of
292) using base treatment, followed by in situ methyl esterification to generate compound
296. The resultant product was treated with alkyl aluminum Lewis acid system to mediate
the intramolecular polyene cyclization cascade reaction, which afforded meroterpenoid
scaffolds 150, 151, and 178. In addition, it was found that compound 149 could be treated
with formic acid to provide natural product 178 in good yields. While the chemical yields
are modest, this synthetic approach is remarkable as several centers are established in a
single step, generating high complexity rapidly.
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Dysiherbols A-C are a set of sesquiterpene hydroquinone meroterpenoids first isolated
and characterized from Dysidea sp., a species of marine sponge found in the South China
Sea first isolated by Lin and co-workers [89]. These natural products are structurally unified
by a sterically compact 6/6/5/6/6 pentacyclic skeleton embracing an impressive oxabi-
cyclo[3.3.1] ring system. There are 5−6 contiguous stereogenic centers in their molecular
scaffold, four of which are quaternary centers. These natural products as extract mixtures
were identified to inhibit NF-κB [89]. Isolation and purification of these compounds demon-
strated that the pure compounds had potent inhibitory values in the low micromolar range
against NF-κB, finding IC50 values of 0.49 to 6 µM for dysiherbols A, B, and C respectively.
Additionally, these compounds were tested against a human myeloma cancer cell line, NCI
H-929, and showed antiproliferation effects in the low micromolar range, with dysiherbols
A being the most active with an EC50 in the 500 nanomolar range. Recent divergent total
syntheses of the revised structures of these sesquiterpene hydroquinone meroterpenoids
(+)-dysiherbols A-E (179–183, Figure 5) was reported as shown in Schemes 24 and 25 [90].
The modular synthetic strategy began with compound 299 which had been reported to
arise from the readily available dimethyl predysiherbol. Compound 299 was treated
with gold to catalyze the tandem intramolecular cyclization reactions providing known
Schmalz’s intermediate 300. Hydroboration/oxidative hydroxylation and subsequent Dess
Martin Periodinane (DMP) oxidation reaction of compound 300 was converted to ketone
301. Then, compound 301 was followed by regioselective deprotonation/o-methylation
under lithium hydride, α,α,α’-tris(4-hydroxyphenyl)-1-ethyl-4-isopropylbenzene (TPPA)
followed by MeI, and subsequent Simmons-Smith cyclopropanation reaction sequence
generated cyclopropane 302, which upon further proteolytic cleavage generated ketone 303.
Then, enol triflate was formed to enable a Stille coupling reaction to afford compound 298.
This compound was subjected to Lewis acid treatment at low temperatures to provide in-
termediate 304 through an intramolecular oxy-cyclization reaction, which upon increasing
of the temperature under the same Lewis acid removed the additional methoxy group to
yield the natural product (+)-dysiherbol A (179). Alternatively, compound 298 was treated
with a 2-step allylic oxidation and reduction reaction sequence, followed by Lewis acid
mono deprotection and subsequent intramolecular oxy-cyclization to provide compound
305. Finally, compound 305 was deprotected to provide natural product (+)-dysherbol
E (183).
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In parallel, as shown in Scheme 25, compound 298 was treated with mCPBA to undergo
cationic 1,2-methyl shift and elimination reaction sequence to provide allylic alcohol 310.
The hydroxyl group geometry in 310 was inverted via a 2 step-reaction transformation.
Namely, oxidation of the hydroxyl group using DMP treatment, followed by DIBAL-H
reduction, which provided allylic alcohol 311. Then, intramolecular oxy-cyclization of
311 mediated by BBr3 generated cyclized ether 306, which was oxidized with DMP to
yield (+)-dysiherbol C (181). Reduction of this enone with DIBAL-H, followed by acid
mediated dehydration reaction provided (+)-dysiherbol D (182). In summary, this synthetic
strategy of the tetracyclic core of dysiherbols through the use of critical acid mediated ring
construction sequences [90]. This unique synthetic strategy serves as the foundation to
access the natural products and their derivatives.

The strongylophorines meroditerpenoids have been isolated from various sources
including the marine sponge Petrosia corticata, and they have been demonstrated to be
promising proteasome inhibitors [91]. Access to these natural products to develop com-
pound libraries is desirable. A recent streamlined total synthesis of strongylophorine-2
(STR-2, 184) is highlighted in Scheme 26 [92]. The synthesis capitalizes on a novel iron
(III)-mediated rearrangement-cyclization cascade reaction. The synthesis commenced with
the esterification of natural product isocuppressic acid 312, followed by treatment with
1,1'-(Azodicarbonyl)dipiperidine (ADDP) under Mitsunobu reaction conditions to etherify
the allylic alcohol, generating compound 314. Next, compound 314 was exposed to Lewis
acid Iron trichloride, which mediated the key acid catalyzed reaction that facilitated the C-O
to C-C [3,3]-Claisen rearrangement, followed by ring closure to afford compound 316 as
the major product as shown in Scheme 26. Benzyl deprotection with Pd/C provided STR-1
(184a), and further deprotection of the methoxy group led to STR-3 (184b). Alternatively,
184a could be subjected to amination conditions to yield compound 317, which was further
functionalized with lead tetraacetate (LTA) and iodine-promoted hypoiodite reaction under
photolysis to provide the di-iodo compound 318. Compound 318 was set for an intramolec-
ular cyclization under basic conditions with elimination of the other iodo-group to provide
1,2-didehydro-STR-9 (184c) as the unique intermediate, which was reduced under Pd/C
to provide STR-9 (184d). Next removal of the methoxy-protection group resulted in the
natural product STR-2 (184) in good yields.
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Finally, a selected number of monoterpene indole alkaloids, which represent a large
group of more than 3000 different compounds and are mainly present in three families:
Rubiaceae, Apocynaceae, and Loganiaceae will be included in this review. Numerous phyto-
chemical studies have led to the discovery of potent bioactive molecules as exemplified by
the anti-cancer natural product vinblastine. Minfiensine, a secoiridoid indole alkaloid-type,
which was isolated from the African plant Strychnos minfiensis by Massiot and co-workers
in 1989 with no structural precedence at the time has since attracted various synthetic
chemists. Extracts containing these meroterpene alkaloids are used throughout the world
in the practice of traditional medicine, with some heightened interest in the medicinal
potential of the pure natural products. A recent short total synthesis of monoterpene
alkaloid (+)-minfiensine (185) via an asymmetric palladium mediated cyclization reaction
was reported [93]. The total synthesis is depicted in Scheme 27, and it commenced with
the coupling reaction of readily available allylic halide 319 and methyltryptamine 320.
The 2-step transformation took place via a N-bromosuccinimide (NBS) mediated radical
methyl-bromination of 320, followed by subsequent coupling with the allyl indium in-
termediate derived from the allylic halide 319 to provide compound 321, which upon
DIBAL-H reduction and subsequent esterification produced allyl carbonate 322. Protect-
ing group maneuver of compound 322 provided intermediate 323, which is subjected
to an indole dearomative asymmetric allylic alkylation reaction mediated by Palladium
(II) and the shown chiral ligand. The tetracyclic product 324 was generated in accept-
able enantiomeric excess and good yields, and was N-protected, followed by epoxidation
with mCPBA to afford a mixture of diastereomers of epoxide 326. Allylic alcohol 327
was subsequently generated from epoxide 326 via an epoxide ring-opening mediated by
2,2,6,6-Tetramethylpiperidine-dimethyl Aluminum complex (TMP-AlMe2). Protection of
the resultant alcohol with a silyl group followed by coupling with vinyl iodide 328 under
basic condition provided N-alkylated intermediate 329. Use of a Pd(OAc)2-catalyzed in-
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tramolecular Heck-type reaction developed by Overman and Wrobleski for this molecule,
followed by a spontaneous β-elimination reaction generated a polycyclic intermediate.
This intermediate was deprotected under basic conditions provided (+)-minfiensine (185).
The synthesis is efficient at generating high complexity.
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The total synthesis of meroterpene indole alkaloid (+)-limaspermidine (186, Scheme 28)
was completed in a unified approach to demonstrate the power of palladium mediated
cyclization reactions [94]. Scheme 28 illustrates an efficient approach to this natural prod-
uct from β-amidoester 332, which was generated from sequential double C-alkylation of
dihydropyrido[1,2-a]indolone 330 first alkylation with allyl cyanoformate in the presence of
LiHMDS, and second alkylation using (2-benzyloxy)ethyl iodide 331 under basic condition
reactions. Then, decarboxylative asymmetric allylation of compound 332 was mediated
by Pd2(pmdba)3 with a chiral ligand to provide compound 333 featuring the required
α-quaternary all-carbon stereocenter in good enantioselective excess and chemical yields.
Next, compound 333 was subjected to a formal anti-Markovnikov hydroamination reaction
to generate the corresponding primary amine, which was directly treated with LiAlH4 and
quenched with aqueous acetic acid to promote intramolecular indole-iminium cyclization
reaction. This furnished the cis-fused tetracyclic system followed by chemoselective piperi-
dine N-alkylation to afford compound 335. Compound 335 was converted to polycyclic
imine 336 via 2-step pyrrolidine annulation by generating the leaving group, followed by
base treatment. Subsequent NaBH4 mediated reduction of polycyclic imine 336 and benzyl
deprotection provided the natural product (+)-limaspermidine 186 in overall good yields.
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In parallel, other similar synthetic strategies to this family of meroterpenoids with
alkaloid features have been reported [94]. The total synthesis of (+)-kopsihainanine A
(187) is shown in Scheme 29 and begins with β-amidoester 337, which was generated via
sequential double α-C-alkylation of dihydropyrido[1,2-a]indolone 330, using allyl cyanofor-
mate in the presence of LiHMDS. This was followed by treatment with methyl acrylate
331 under basic conditions. Further decarboxylative asymmetric allylation of compound
337 in the presence of Pd2(pmdba)3 with a chiral ligand provided an intermediate with
the α-quaternary all-carbon stereocenter, which underwent Rh-catalyzed hydroboration
to yield alcohol 338. Compound 338 was mesylated and displaced by the azide group to
generate compound 339, followed by Staudinger reduction mediated by polymer-bond
PPh3 with concomitant translactamization, which provided δ-lactam 340. Subsequent
Bischler-Napieralski cyclization of δ-lactam 340 furnished trans-fused tetracycle 341. This
was subjected to intramolecular lactamization between the piperidine nitrogen, and the
pendant methyl ester group mediated by bicyclic guanidine base triazabicyclodecene (TBD)
and generated pentacycle 342. Upon α-hydroxylation mediated by lithium dimethylamide
(LDMA) in the presence of HMPA, using bis(trimethylsilyl) peroxide as the oxidant suc-
cessfully afforded the natural product (+)-kopsihainanine A (187). The overall synthetic
maneuvers maximize the chemical yields, and a distinctive feature of this concise syn-
thetic endeavors is the use of palladium-catalyzed reactions to form all the carbon-carbon
bonds in the transformation of simple precursors to highly elaborate natural products with
promising biological properties.

The total synthesis of cymoside, an oxidized derivative of strictosidine with an un-
precedented hexacyclic skeleton which includes a double bridge linking the indole and
the monoterpene moieties was isolated from the leaves of Chimarrhis cymose and pro-
vides a fertile ground for organic chemists as shown in Scheme 30. The total synthesis of
cymoside (188) via biomimetic oxidative cyclization was reported [95]. The synthesis com-
menced with Knoevenagel condensation reaction between aldehyde 345 and 3-formyl-1,1,1-
trichloroacetone 346 which generated enone intermediate, which upon inverse-demand
hetero-Diels-Alder (HDA) reaction with enol ether 347 furnished cyclic intermediate 348
together with other diastereoisomers. Upon methanolysis and sulfoxide elimination, in-
termediate 348 was further converted to olefin intermediate, followed by deprotection
furnished Tietze secologanin aglycon 349. Subsequent Pictet-Spengler reaction between
the secologanin aglycon 349 and tryptamine 356, followed by protection of the secondary
amine furnished the mixture of the protected strictosidine aglycon ethyl ether 350a and its
epimer 350b. The biomimetic cascade reaction sequence of oxidation with oxaziridine 351
and acid catalyzed cyclization reaction of strictosidine aglycon ethyl ether 350a furnished
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the complete framework 352 of cymoside via intermediate 352a, 352b, and 352c, which
was deprotected to generate ethyl ether aglycon 353 of cymoside. Hydrolysis of acetal
352 provided hemiacetal 354, which upon Schmit glycosylation with glycosyl trichloroace-
timidate, generated glycosylated product 355a with its diastereoisomer, together with
glycosylated product 355b. Global deprotection of intermediate 355a furnished the natural
product cymoside 188, global deprotection of compound 355b provided product 188a as
the diastereoisomer of cymoside 188.
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ether 350a and its epimer 350b. The biomimetic cascade reaction sequence of oxidation 
with oxaziridine 351 and acid catalyzed cyclization reaction of strictosidine aglycon ethyl 
ether 350a furnished the complete framework 352 of cymoside via intermediate 352a, 
352b, and 352c, which was deprotected to generate ethyl ether aglycon 353 of cymoside. 
Hydrolysis of acetal 352 provided hemiacetal 354, which upon Schmit glycosylation with 
glycosyl trichloroacetimidate, generated glycosylated product 355a with its 
diastereoisomer, together with glycosylated product 355b. Global deprotection of 
intermediate 355a furnished the natural product cymoside 188, global deprotection of 
compound 355b provided product 188a as the diastereoisomer of cymoside 188.  

Scheme 29. Total synthesis of (+)-kopsihainanine A.
Molecules 2024, 29, x FOR PEER REVIEW 42 of 47 
 

 

 

Scheme 30. Total synthesis of cymoside via biomimetic oxidative cyclization strategy. 

4. Conclusions 
The described monoterpene and meroterpenoid families featured herein display an 

array of impressive biological activities, including antioxidant/anticancer properties. 
Natural resources have been an essential part of human health development for centuries 
and it continues to serve as an invaluable source of inspiration. The medical community 
has made great advances in small molecule development, but there is still a heavy reliance 
on natural products for their pharmaceutical applications. Biological evaluation of these 
natural products provide the scientific community with a larger selection of tools to 
understand biological and chemical systems as well as a strong starting point for the 
production and refinement of these chemical entities as potential therapeutic agents. 
Additionally, the development of synthetic methodology to access these compounds is a 
crucial process in the effort to conduct biological studies and large-scale production and 
derivatization. In order to meet the challenges of generating these complex 

Scheme 30. Total synthesis of cymoside via biomimetic oxidative cyclization strategy.



Molecules 2024, 29, 279 39 of 43

4. Conclusions

The described monoterpene and meroterpenoid families featured herein display an
array of impressive biological activities, including antioxidant/anticancer properties. Natu-
ral resources have been an essential part of human health development for centuries and
it continues to serve as an invaluable source of inspiration. The medical community has
made great advances in small molecule development, but there is still a heavy reliance
on natural products for their pharmaceutical applications. Biological evaluation of these
natural products provide the scientific community with a larger selection of tools to under-
stand biological and chemical systems as well as a strong starting point for the production
and refinement of these chemical entities as potential therapeutic agents. Additionally, the
development of synthetic methodology to access these compounds is a crucial process in the
effort to conduct biological studies and large-scale production and derivatization. In order
to meet the challenges of generating these complex meroterpenoids, several innovative
synthetic strategies were developed including modern chemoenzymatic transformations,
cationic polyene cyclization reaction, dearomatization-driven polycyclization reaction,
metal mediated rearrangement cyclization and photochemical transformations.
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