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Abstract: Three decades ago, dye-sensitized solar cells (DSSCs) emerged as a route for harnessing the
sun’s energy and converting it into electricity. Since then, an impressive amount of work has been
devoted to improving the global photovoltaic efficiency of DSSCs, trying to optimize all components
of the device. Up to now, the best efficiencies have usually been reached with ruthenium(II) pho-
tosensitizers, even if in the last few years many classes of organic compounds have shown record
efficiencies. However, the future of DSSCs is stringently connected to the research and development
of cheaper materials; in particular, the replacement of rare metals with abundant ones is an important
topic in view of the long-term sustainability of DSSCs intended to replace the consolidated fossil-
based technology. In this context, copper is a valid candidate, being both an alternative to ruthenium
in the fabrication of photosensitizers and a material able to replace the common triiodide/iodide
redox couple. Thus, recently, some research papers have confirmed the great potential of copper(I)
coordination complexes as a cheap and convenient alternative to ruthenium dyes. Similarly, the
use of copper compounds as electron transfer mediators for DSSCs can be an excellent way to solve
the problems related to the more common I3

−/I− redox couple. The goal of this mini-review is to
report on the latest research devoted to the use of versatile copper complexes as photosensitizers and
electron shuttles in DSSCs. The coverage, from 2022 up to now, illustrates the most recent studies on
dye-sensitized solar cells based on copper complexes as molecular materials.

Keywords: dye-sensitized solar cells; photosensitizers; electron shuttles; copper complexes

1. Introduction

Dye-sensitized solar cells (DSSCs) are nowadays among the most studied types of
solar cells; they appeared in 1991 thanks to the work of O’Regan and Grätzel [1], and since
then they have received increasing attention [2]. The working principle of such devices is
based on the sensitization of the electrodes through an organic compound or a coordination
complex as dye: the sensitizer is characterized by proper functional groups (for example,
carboxylic and/or phosphonic acid) allowing the anchoring on the semiconductor surface
(usually titanium dioxide, TiO2) that is deposited on the conductive glass, which constitutes
the anode of the cell.

When photons having the suitable energy hit the dye, it is excited to a higher electronic
state and provides an electron to the titania; then, the electron reaches the anode and,
by means of an external circuit, the counterelectrode of the system. Once it reaches the
cathode, the electron participates in a redox cycle with a couple of redox mediators and
finally recombines with the cationic form of the dye, regenerating it in its neutral form and
providing the possibility of starting a new cycle.

Up to now, the traditional most performing dyes involved in DSSCs are the Ru(II)
complex N3 (structure in Figure 1, having two thiocyanate ligands and two anchoring
2,2′-bipyridine-4,4′-dicarboxylic acids) and the related N719, in which two of the four
COOH groups are presented as tetrabutylammonium salts. The problem arising from the
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use of these dyes is that ruthenium is a rare and expensive metal, while the presence of the
labile NCS ligands can lead to the degradation of the complex via their substitution with
other species present in the formulation injected into the cell [3–5].
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Nevertheless, in the last decade, new purely organic or organometallic compounds
have been applied as sensitizers in DSSCs, showing record efficiencies exceeding 13% [6–9].

Moving to the redox mediators, the most employed species are the I−/I3
− couple,

which has some disadvantages such as: (i) I2 in equilibrium with I3
− is volatile, complicat-

ing long-term cell sealing even if it is tightly sealed; (ii) I3
− is darkly colored, thus limiting

the light harvesting efficiency of the sensitizer; (iii) I3
−/I− is corrosive and will corrode

most metals, posing a serious problem for the use of metal grid collectors necessary for
scaling up the solar cells to large areas [10].

To overcome the mentioned problems, many possible solutions have been proposed to
replace both the Ru-based dyes and the iodine-containing electron shuttles, even if, up to
now, it has not been possible to reach photovoltaic performances better than those obtained
by using such species.

One approach is to replace the Ru(II) dyes with complexes based on cheaper metals
such as cobalt and copper; moreover, couples of Cu complexes have also been applied as
redox mediators [11,12].

This review aims to illustrate the research carried out in the last two years regarding
the use of copper complexes as molecular materials for dye-sensitized solar cells as an
important update on some recent excellent reviews [13–17]. In particular, it shows how
the cosensitization strategy is a fruitful way of boosting the photoconversion efficiency of
copper-based DSSCs without the need for complicated organic structure design; it also
reports on the birth, in 2023, of a very appealing novel strategy for efficient sensitizers con-
sisting of homoleptic complexes of the [(DπA)2Cu]+ type, with both electron-withdrawing
(A) and electron-donating (D) moieties on the same ligand. It also highlights the impor-
tance of molecular engineering of photosensitizers toward highly efficient DSSCs with
copper electron shuttles, reporting on a DSSC developed in 2023 and sensitized with a
well-designed organic compound that achieved an efficiency of 13.2%, a record efficiency
for DSSCs based on copper electrolytes with a single sensitizer.

2. Copper Complexes Applied to DSSCs

In the last few years, Cu-based complexes have been proposed as key components of
DSSCs, both as dyes and redox mediators. Here, novel strategies for the preparation of
DSSCs based on copper complexes as molecular materials will be presented; they will be
illustrated by some examples given in chronological order.

2.1. Copper Complexes Employed as Dyes

The first paper on the use of Cu(I) polypyridyl compounds as dyes with large band-gap
semiconductors (TiO2 and ZnO) for DSSCs appeared in 1994 by Sauvage and coworkers [18].
By using a homoleptic copper(I) complex (see compound A, Scheme 1) bearing two 2,9-
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diphenyl-1,10-phenanthrolines substituted in para positions of the phenyl rings with sodium
carboxylate groups (Cu1, Scheme 2) in DSSC with a TiO2 photoanode, an electrolyte based
on I−/I3

−, and a platinum counter electrode, they reached good open-circuit photovoltage
(Voc = 600 mV) and fill factor (FF = 0.6), but the low short-circuit photocurrent density
(Jsc = 0.6 mA cm−2) led to a low efficiency (η = 0.1%). This low photocurrent could be
reasonably due to a considerable steric hindrance and unfavorable electron injection into
the conduction band of TiO2, with the presence of four deprotonated carboxylic moieties,
which could also limit the anchoring to the titania surface.
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dine-4,4′-dibenzoic acid ligands (Cu2, Scheme 2) with an efficiency of 3% (Voc = 590 mV, 
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Scheme 1. General structure of Cu(I) complexes bearing bidentate NˆN ligands: compound A
represents a generical homoleptic complex bearing electron-accepting moieties, compound B an
heteroleptic complex based on a push-pull structure, while C the novel class of complexes presenting
asymmetrical ligands, as proposed in 2023 by Housecroft et al. The electron-withdrawing substituents
are marked with A, while the electron-donating ones are marked with D.
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Since then, many homoleptic copper(I) complexes, mainly with chelating NˆN ligands,
have been studied in order to improve the light-harvesting properties and the ability to
allow more efficient electron transfer in the conduction band of TiO2, leading to better
photoconversion efficiency. The presence of groups such as carboxylic acids allows for good
anchoring to the TiO2 surface. Up to 2021, to our knowledge, the best efficiency has been
obtained for a homoleptic copper(I) complex bearing two 6,6′-dimethyl-2,2′- bipyridine-4,4′-
dibenzoic acid ligands (Cu2, Scheme 2) with an efficiency of 3% (Voc = 590 mV, FF = 0.69,
Jsc = 7.3 mA cm−2) with unmasked cells (ηrel = 33% where ηrel is the efficiency relative to
N719 set at 100%; for a better comparison between the results of various laboratories, a good
practice is to report the performance of the DSSC with the dye under investigation together
with that of a control cell fabricated under similar conditions with N719 or N3 as standard
dye). This efficiency was reduced to 2.5% (ηrel = 28%) after the application of a black
mask, confirming that, for a better comparison of the photoelectrochemical performance of
DSSCs, it is important to specify whether the devices are masked or unmasked, being the
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photocurrents influenced by photons scattered into the TiO2 spot by the reflective surfaces
of the cell [19].

The fact that the high level of symmetry of the homoleptic complexes could hamper an
efficient directional movement of the photogenerated electrons led to the investigation of
heteroleptic copper(I) complexes, with a push-pull structure as photosensitizers for DSSCs.
In these kinds of complexes, one ligand bears an electron-withdrawing group suitable
for anchoring, while the second ligand carries an electron-releasing group to provide
directionality for better electron injection in the TiO2 conduction band (Scheme 1, B).
One of the best efficiencies (η = 2.88%; ηrel = 38.1% with a masked cell) has been obtained
for a heteroleptic copper(I) complex bearing a phosphonic acid anchoring ligand and
2-(6-methylpyridin-2-yl)thiazole) as an ancillary ligand (Cu3, Scheme 2; Voc = 530 mV,
FF = 0.70, Jsc = 7.76 mA cm−2) [20]. The highest efficiency (η =4.66%; ηrel = 63%) has been
reported for a heteroleptic copper(I) complex bearing an anchoring 4,4′-dicarboxylic acid
bipyridine with two mesityl groups in positions 6 and 6′, and an ancillary 4,4′-bis(styryl)-
2,2′-bipyridines with NEt2 donor substituents (Cu4, Scheme 2; Voc = 610 mV, FF = 0.71,
Jsc = 10.86 mA cm−2) in the presence of chenodeoxycholic acid to prevent dye aggregation
on the semiconductor surface [21], but it was not specified if the cell was masked or not.

In this section, examples of homoleptic and heteroleptic copper(I) complexes investi-
gated in the last two years as dyes in DSSCs will be given.

A novel design of push-pull complexes, developed in 2023 by Housecroft and co-
workers, will also be illustrated. In this strategy, a single asymmetrical ligand bears
both electron-withdrawing (acceptor) and electron-donating (donor) substituents (C, see
Scheme 1). Additionally, since cosensitization with dyes that absorb in complementary
parts of the visible spectrum could be a good approach to extending the absorption of solar
light, some authors investigated this strategy to improve the photoconversion efficiency of
copper-based DSSCs. Here, examples, reported in the last two years, of DSSCs cosensitized
with a copper(I) complex will be given.

Copper complexes designed to be applied as dyes in solar cells, and here reported,
generally present chelating ligands belonging to different families, such as the NˆN (phenan-
throlines, bipyridines, and pyridyl-quinolines) or NˆO ones (carboxyl-pyridines, hydroxy-
quinolines, and salicylimine). These kinds of ligands are useful in order to guarantee
stability to the obtained complexes by effectively binding the metal atom and preventing
replacement by other species that may be present in the cell formulation.

In order to obtain high-performing DSSCs, the absorbance of the incident sunlight
must be optimal. The more the absorption range of the dye overlaps with the spectrum of
the incident sunlight, the higher the possibility of having high conversion efficiencies. A
problem with copper(I) dyes is that the related metal-to-ligand charge transfer transitions
typically lie between 430 and 570 nm, a range that can be broadened by increasing the
π-system of the ligands. Cosensitization with dyes that absorb in complementary parts of
the visible spectrum is an appealing approach to solving this problem [22–25]. Following
this strategy, in 2017, Housecroft et al. [26] combined Cu3 (Scheme 2) with a commercially
available squaraine derivative, achieving the highest photoconversion efficiency reported
for a masked copper-based DSSC (η = 4.51%; 65.6% relative to N719 set at 100%). This
high performance achieved by the addition of squaraine led to a large increase in Jsc
(12.26 mA cm−2) but similar Voc (520 mV) and FF (0.71) and showed the great potential of
cosensitization for copper-based DSSCs.

Following the cosensitization approach, in 2022 Campos-Gaxiola and coworkers
published two new Cu(I) complexes (structure in Figure 2) [27] sharing the monoanionic
form of pyridine-2,5-dicarboxylic acid as NˆO bidentate ligand; the two other coordination
sites on the metal were occupied by two triphenylphosphines in the case of 1a and by the
chelating bis [2-(diphenylphosphine)phenyl]ether in 1b.
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The mentioned complexes were tested as cosensitizers in the preparation of DSSCs by
employing an equimolar amount of the copper(I) complex and of the standard dye N719 in
the presence of the traditional I−/I3

− redox couple and with a platinum counterelectrode.
For comparison’s sake, a solar cell having only N719 (twice the quantity with respect to the
devices presenting the sensitizers’ mixture) was also produced.

The 1a/N719 mixture provided a Voc of 652 mV and a Jsc of 1.580 mA cm−2, with an
efficiency of 2.92% (Table 1, entry 1); these values were slightly higher than those obtained
by using 1b as codye, since in that case the open-circuit voltage, the short-circuit current,
and the efficiency were 643 mV, 1.446 mA cm−2 and 2.69%, respectively (entry 2).

Even if, in any case, the best results were the ones achieved by using dye N719 alone,
the application of the Cu(I) compounds 1a and 1b as cosensitizers could reach a relative
efficiency of 63.6% and 58.6%, respectively, when compared to the reference cell with N719
alone; this was a remarkable outcome, since only half the amount of the ruthenium-based
dye was employed in the DSSCs with copper cosensitizers and the resulting efficiency was
more than half of that of the cell containing only N719: 2.92% and 2.69% for 1a and 1b,
respectively, vs. 4.59%. This work confirms the great potential of copper complexes as
cosensitizers [26].

Another example of cosensitization of solar cells is represented by the work published
in the same year by Chauhan and Kumar [28]; here the copper(II) center was bound to a
neutral 1,10-phenanthroline-5,6-dione and to a ferrocene-bearing dithiocarbamate (2). More-
over, the analogous nickel(II) (Ni-Fc) and cobalt(III) (Co-Fc) complexes were synthesized;
the Co(III) compound had an octahedral coordination and presented one phenanthroline
and two dithiocarbamate-based ligands. Figure 2 shows the mentioned compounds.

Not only single complexes 2, Ni-Fc, and Co-Fc were tested as dyes in the preparation
of DSSCs, but also the mixtures composed by 2 + N719, Co-Fc + N719, and by 2 + Co-
Fc + N719. The choice of the cosensitization strategy arises from the fact that the novel dyes
alone cannot efficiently cover the entire absorption region, thus limiting light harvesting
and consequently the device’s performance.

While the results provided by complex 2 alone were not so good, still having low
current, voltage, and efficiency, the three-component mixture provided the best results,
even largely overcoming those obtained by N719 alone in the same experimental conditions,
with a Voc of 733 mV (vs. 718 mV of N719), a Jsc of 12.87 mA cm−2 (v.s 9.68 mA cm−2) and
an efficiency of 6.05% (vs. 4.39%). Promising results were also provided by the combination
of Co-Fc with N719, with a voltage of 730 mV, a photocurrent of 11.41 mA cm−2 and an
efficiency of 5.31%. Complete data are reported in Table 1, entries 4–10.

This experiment clearly shows how the use of mixtures of dyes could be beneficial
for the photovoltaic performances of solar cells, employing less expensive and much more
abundant metals than Ru as cosensitizers, thus reducing the needed amount of a standard
Ru-based sensitizer such as the classical N719.

In 2022, Gardner et al. proposed one homoleptic Cu(I) complex and six new heterleptic
Cu(I) compounds, following the traditional push-pull architecture presented in Scheme 1,
to be tested as dyes in DSSCs [29]. The latter compounds shared the same bidentate
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ligand, i.e., a 6,6′-dimethyl-2,2′-bipyridine-4,4′-dibenzoic acid (dbda, whose role was to
bind the molecule to the TiO2 surface), while the second NˆN bidentate ligand was a
1,10-phenanthroline, a 2,2′-bipyridine, or a 2,2′-biquinoline (see Figure 3 for the structure
of complexes 3a–3g).

In particular, the authors tested the following ancillary ligands: 2,9-dimethyl-1,10-
phenanthroline (dmp, in 3b); 5-bromo-2,9-dimethyl-1,10-phenanthroline (Br-dmp, in 3c);
2,9-di(secbutyl)-3,4,7,8-tetramethyl-1,10-phenanthroline (dsbtmp, in 3d); 2,9-dimethyl-4,7-
diphenyl-1,10-phenanthroline (bcp, in 3e); 2,2′-biquinoline (biq, in 3f); and 2,9-dianisyl-
1,10-phenanthroline (dap, in 3g).

After finding out that the iodine-based electrolyte was the most suitable, all the copper
complexes were used to prepare solar cells; moreover, a reference cell sensitized with N719
was assembled.

For all dyes 3a–3f, the open-circuit voltage was in the range 550–566 mV, with a
photocurrent between 2.87 mA cm−2 (for 3a, Table 1, entry 11) and 4.79 mA cm−2 (in the
case of 3d and 3e, entries 14–15); only for one sensitizer (namely 3e, entry 15), the efficiency
reached a value of 2%. Considering the photovoltaic results of the cell having compound
N719 (entry 18), they were in all cases much more relevant than the tested new complexes,
with a Voc of 700 mV, a Jsc of 17.81 mA cm−2, and an efficiency of 7.60%. Table 1 summarizes
all the detailed results for the prepared cells. The performance of the device sensitized with
the reference dye N719 was remarkably better than that of those having the new Cu dyes,
this being due to the greater light harvesting ability of the Ru complex (in agreement with
the molar extinction coefficients: ~7500 M−1 cm−1 for the copper complexes and ~15,000
for N719) and broader absorption spectra (350–800 nm vs. 350–650 nm).

As a general consideration, the authors pointed out that the design of the ancillary
ligand to be included in the heteroleptic complex together with the binding dbda is of
crucial importance; in general, push-pull structures provided better results, so a more
electron-donating bidentate ligand could be beneficial for the performances, together with
higher molar extinction coefficients and a broader absorption region, to enhance the electron
injection onto the titania surface.
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Table 1. Photovoltaic data of solar cells produced with copper-based dyes 1a–1b, 2 and 3a–3g a.

Entry Dye Redox Couple Voc (V) Jsc (mA cm−2) FF η (%) ηrel (%) CE Ref.

1 1a + N719 b I−/I3
− 0.652 1.580 0.566 2.92 63.6 Pt [26]

2 1b + N719 b I−/I3
− 0.643 1.446 0.579 2.69 58.6 Pt [26]

3 N719 b I−/I3
− 0.708 2.265 0.572 4.59 - Pt [26]

4 2 c I−/I3
− 0.616 5.78 0.64 2.27 51.7 Pt [28]

5 Ni-Fc c I−/I3
− 0.610 3.83 0.63 1.48 33.7 Pt [28]

6 Co-Fc c I−/I3
− 0.620 7.65 0.63 3.01 68.5 Pt [28]

7 2 + N719 c I−/I3
− 0.728 10.67 0.63 4.91 112 Pt [28]

8 Co-Fc + N719 c I−/I3
− 0.730 11.41 0.64 5.31 121 Pt [28]

9 2 + Co-
Fc + N719 c I−/I3

− 0.733 12.87 0.64 6.05 138 Pt [28]

10 N719 c I−/I3
− 0.718 9.68 0.63 4.39 - Pt [28]

11 3a d I−/I3
− 0.550 2.87 0.74 1.17 15.4 Pt [29]

12 3b d I−/I3
− 0.563 3.31 0.74 1.38 18.1 Pt [29]

13 3c d I−/I3
− 0.555 3.17 0.70 1.23 16.2 Pt [29]

14 3d d I−/I3
− 0.563 4.79 0.68 1.81 23.8 Pt [29]

15 3e d I−/I3
− 0.565 4.79 0.73 2.05 27.0 Pt [29]

16 3f d I−/I3
− 0.553 3.35 0.67 1.24 16.3 Pt [29]

17 3g d I−/I3
− 0.566 4.16 0.72 1.73 22.7 Pt [29]

18 N719 d I−/I3
− 0.700 17.81 0.61 7.60 - Pt [29]

a under AM 1.5 simulated light source; TiO2 employed as semiconductor; ηrel = efficiency relative to reference
dye N719, set to 100%; CE: counterelectrode. b 0.3 mM dye in 1:1 (v/v) CH3CN/tBuOH. Electrolyte composed
of 0.05 M I2 + 0.1 M LiI + 0.5 M TBP + 0.6 M NBu4I in 1:1 (v/v) CH3CN/3-methoxypropionitrile (TBP = 4-tBu-
pyridine). c dye solution in 1:1 (v/v) DMF/EtOH, concentration not specified. Electrolyte composed of 0.05 M
I2 + 0.05 M LiI + 0.5 M TBP in CH3CN. d the titania substrates were soaked in a 1.0 mM MeOH solution of
ligand dbda for 24 h; then each functionalized electrode was soaked for 24 h in a 1 mM CH3CN solution of
the desired homoleptic complexes [Cu(dmp)2]+, [Cu(Br-dmp)2]+, [Cu(bcp)2]+, [Cu-(dsbtmp)2], and [Cu(dap)2]+,
or in a CH3CN solution containing 1 mM [Cu(CH3CN)4]PF6 and 2 mM biq ligand or alternatively in a MeOH
solution containing 1 mM [Cu(CH3CN)4]PF6 and 2 mM of the dbda ligand. Electrolyte composed of 0.65 M
1-butyl-3-methylimidazolinium iodide + 0.025 M LiI + 0.04 I2 + 0.28 M TBP in 85:15 (v/v) CH3CN/valeronitrile.

Falaras and Philippopoulos published, in 2022, their results concerning new ho-
moleptic copper(I) complexes tested as dyes in solar cells [30]. Compound 4a had a
2-(2′-pyridyl)quinoline with a carboxylic group in position 4, with the addition of a methyl
group in position 6′ in the case of 4b; complexes 4c and 4d had, respectively, the same struc-
ture as 4a and 4b, but with the carboxylic group converted into its methyl ester. Finally, in
4e, the NˆN ligand was a 6,6′-dimethyl-2,2′-bipyridine bearing COOH groups in positions
4 and 4′. Figure 4 shows the molecular structure of dyes 4a–4e.

The aforementioned complexes were tested as sensitizers for the preparation of some
DSSCs, employing the I−/I3

− couple as redox shuttles and a counterelectrode composed
of platinum. The best results were achieved by compound 4b, providing a Voc of 591 mV, a
Jsc of 2.94 mA cm−2 and an efficiency of 1.20% (Table 2, entry 6); in the case of complexes
4a and 4b, also different architectures of the semiconductor component were tested, as
reported in the footnotes of Table 2.

Research on DSSCs based on coordination polymers is less developed than on mononu-
clear metal complexes, probably because the process of preparing thin films of coordination
polymers has not been well studied yet [31].

This approach was followed by Zhong and coworkers in 2022 [32], involving the
use of polymeric copper(II) (5a and 5b) and cadmium(II) (PPV-SF-Cd and PBDTT-SF-
Cd) complexes as dyes in DSSCs. The proposed compounds were characterized by a
D-A-π-A structure (where D and A stand for an electron-donor or electron-accepting
group, respectively, and π for a π-conjugated bridge) by adding an auxiliary electron-
accepting unit in the sensitizer’s molecular structure. Figure 5 shows the structures of the
discussed complexes.

In the discussed dyes, the role of the additional A-moiety was played by the metal
complex, whose electron-withdrawing ability could be tuned by modifying the ligands and
their substituents.
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The Cu(II) and Cd(II) compounds shared the same coordination around the metal
center; the first ligand was an 8-hydroxy-quinoline with a cyanoacrylic group in position 5,
employed to bind the compound to the titania surface of the device; the second bidentate
NˆO ligand was an N-aryl-salicylimine bearing an aromatic moiety, this being a di-octyloxy
benzene in the case of 5a and PPV-SF-Cd and a substituted di-thienyl-benzo(dithiophene)
in 5b and PBDTT-SF-Cd.

Molecules 2024, 29, x FOR PEER REVIEW 8 of 18 
 

 

solution containing 1 mM [Cu(CH3CN)4]PF6 and 2 mM of the dbda ligand. Electrolyte composed 
of 0.65 M 1-butyl-3-methylimidazolinium iodide + 0.025 M LiI + 0.04 I2 + 0.28 M TBP in 85:15 (v/v) 
CH3CN/valeronitrile. 

Falaras and Philippopoulos published, in 2022, their results concerning new homo-
leptic copper(I) complexes tested as dyes in solar cells [30]. Compound 4a had a 2-(2′-
pyridyl)quinoline with a carboxylic group in position 4, with the addition of a methyl 
group in position 6′ in the case of 4b; complexes 4c and 4d had, respectively, the same 
structure as 4a and 4b, but with the carboxylic group converted into its methyl ester. Fi-
nally, in 4e, the N^N ligand was a 6,6′-dimethyl-2,2′-bipyridine bearing COOH groups in 
positions 4 and 4′. Figure 4 shows the molecular structure of dyes 4a–4e. 

The aforementioned complexes were tested as sensitizers for the preparation of some 
DSSCs, employing the I−/I3− couple as redox shuttles and a counterelectrode composed of 
platinum. The best results were achieved by compound 4b, providing a Voc of 591 mV, a 
Jsc of 2.94 mA cm−2 and an efficiency of 1.20% (Table 2, entry 6); in the case of complexes 
4a and 4b, also different architectures of the semiconductor component were tested, as 
reported in the footnotes of Table 2. 

 
Figure 4. Structure of dyes 4a–4e. 

Research on DSSCs based on coordination polymers is less developed than on mon-
onuclear metal complexes, probably because the process of preparing thin films of coor-
dination polymers has not been well studied yet [31]. 

This approach was followed by Zhong and coworkers in 2022 [32], involving the use 
of polymeric copper(II) (5a and 5b) and cadmium(II) (PPV-SF-Cd and PBDTT-SF-Cd) 
complexes as dyes in DSSCs. The proposed compounds were characterized by a D-A-π-
A structure (where D and A stand for an electron-donor or electron-accepting group, re-
spectively, and π for a π-conjugated bridge) by adding an auxiliary electron-accepting 
unit in the sensitizer’s molecular structure. Figure 5 shows the structures of the discussed 
complexes. 

In the discussed dyes, the role of the additional A-moiety was played by the metal 
complex, whose electron-withdrawing ability could be tuned by modifying the ligands 
and their substituents. 

The Cu(II) and Cd(II) compounds shared the same coordination around the metal 
center; the first ligand was an 8-hydroxy-quinoline with a cyanoacrylic group in position 

Figure 4. Structure of dyes 4a–4e.

Concerning the solar cells prepared with the described polymers, 5a provided an
open-circuit voltage of 0.69 V, a Jsc of 9.80 mA cm−2, and an efficiency of 4.77% (Table 2,
entry 10); much more remarkable was the performance of the cell sensitized by testing 5b,
since it provided a Voc of 0.79 V, a Jsc of 14.86 mA cm−2, and an efficiency of 8.45% (entry 11).

The performances of the cells sensitized with the cadmium-containing polymers were
slightly better when compared with those of the devices based on copper (entries 12–13),
this being probably due to the bigger radius of the metal cation, which could explain a
greater electron-withdrawing ability of the auxiliary acceptor and charge transfer between
donor and acceptor.

These data show how the accurate design of the dye, together with the possibility of us-
ing polymeric species combined with coordination compounds, could provide encouraging
results for the production of solar cells based on nonexpensive metals such as copper.
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Table 2. Photovoltaic data of solar cells produced with copper-based dyes 4a–4e and 5a–5b a.

Entry Dye Redox Couple Voc (V) Jsc (mA cm−2) FF η (%) CE Ref.

1 4a b,c I−/I3
− 0.446 0.26 0.66 0.08 Pt [30]

2 4a b,d I−/I3
− 0.470 0.60 0.55 0.15 Pt [30]

3 4b b,c I−/I3
− 0.465 0.41 0.56 0.11 Pt [30]

4 4b b,d I−/I3
− 0.585 2.87 0.68 1.15 Pt [30]

5 4b b,e I−/I3
− 0.549 2.42 0.64 0.85 Pt [30]

6 4b b,f I−/I3
− 0.591 2.94 0.69 1.20 Pt [30]

7 4c b,f I−/I3
− 0.576 2.90 0.63 1.05 Pt [30]

8 4d b,d I−/I3
− 0.480 0.37 0.57 0.10 Pt [30]

9 4e b,d I−/I3
− 0.443 0.28 0.43 0.05 Pt [30]

10 5a g I−/I3
− 0.69 9.80 0.7054 4.77 Pt [32]

11 5b g I−/I3
− 0.79 14.86 0.7198 8.45 Pt [32]

12 PPV-SF-Cd g I−/I3
− 0.73 10.28 0.7086 5.30 Pt [32]

13 PBDTT-SF-Cd g I−/I3
− 0.79 14.94 0.7261 8.59 Pt [32]

a under AM 1.5 simulated light source; TiO2 employed as semiconductor; CE: counterelectrode. b dye solutions
approximately 1.2·10−4 M in acetone (MeOH for 4e). Electrolyte composed of 1 M 1,3-dimethyilimidazolium
iodide + 50 mM LiI + 0.5 M TBP + 0.1 M guanidinium thiocyanate in 85:15 (v/v) CH3CN/butyronitrile. c on
a photoanode consisting of transparent titania paste. d on a photoanode consisting of active opaque titania
paste + scattering layer. e on a photoanode consisting of a 3-µm transparent titania layer + active opaque titania
paste + scattering layer. f on a photoanode consisting of a compact layer + active opaque titania paste + scattering
layer. g dye solution of 0.2 mM in DMF. The electrolyte is composed of 0.1 M 1,2-dimethyl-3-propylimidazolium
iodide + 0.05 M LiI + 0.6 M I2 + 0.5 M TBP in CH3CN.

Additionally, an interesting aspect investigated in 2023 was the possibility of obtaining
stable devices using compounds prepared from natural sources.

Thus, Özaydın and Gözel published the copper(II) complex 6 (Figure 6) derived
from the reaction of CuSO4·5H2O with quercetin [33]. Quercetin (3,5,7-trihydroxy-2-(3,4-
dihydroxyphenyl)-4Hchromen-4-one) is a flavonoid naturally occurring in many plants,
such as tomato and onion; the presence of carbonyl and hydroxyl groups allows for its
binding to metal cations to form transition metal complexes. The resulting compounds are
colored and often fluorescent, so a possible application in electronic devices could be tested.

In this paper, both compound 6 and the standard Ru-based sensitizer N3 were em-
ployed in the preparation of DSSCs, whose photovoltaic properties were recorded not only
immediately after the production but also every week for five consecutive weeks.

The best performance was in any case provided by N3, with a starting Voc of 0.76 V, a
Jsc of 1.05 mA cm−2 and an efficiency of 0.199% (Table 3, entry 7); such values remained
substantially stable even after the 5-week period. Concerning the Cu-quercetin complex,
the starting voltage of 0.60 V remained unchanged, while it is interesting to point out that
the short-circuit current and the efficiency increased during the 5 weeks, reaching values of
0.41 mA cm−2 and 0.082%, respectively (entry 6).

Considering the important photovoltaic difference between the Cu-quercetine dye
and the standard complex N3, the authors claim that this is due to the fact that the devices
sensitized with the copper-based compounds present a slower recombination.

Even if the reported results were not competitive with those of the cells sensitized
with classical dyes based on ruthenium, this work shows how it is possible to obtain stable
devices using compounds prepared from natural sources.

In the same year, Chauhan, Kumar, and coworkers published new homoleptic Cu(II)
and Co(III) complexes (compounds 7 and Co-Sal, structure in Figure 6) having a bidentate
NˆO ligand obtained by the condensation of salicylaldehyde with ethanolamine [34].

Complex 7 was employed to sensitize a solar cell, providing a Voc of 0.632 V, a Jsc of
7.84 mA cm−2 and an efficiency of 3.00% (Table 3, entry 7).

Better results were given by the device having Co-Sal as dye, since the open-circuit
voltage reached 0.648 V, the short-circuit current was 9.75 mA cm−2 and the efficiency had
a value of 3.84%. As stated by the authors, the higher photovoltaic performance of the
cobalt-based complex arose from its higher ability to absorb light.
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After their cosensitization work in 2022, in the following year, Campos-Gaxiola and
coworkers presented a similar strategy using the new dinuclear Cu(I) complex 8 as a codye
together with the well-known compound N719 [35].

In this new complex, each copper center was bound to a chelating pdpt (3-(2-pyri-
dyl)-5,6-diphenyl-1,2,4-triazine), to a monodentate pdpt ligand, and to a bridging dppm
(dppm = bis(diphenylphosphino)methane), as shown in Figure 6.

The authors described the preparation of two DSSCs; the first having a 1:1 mixture
of dyes 8 and N719, and the latter sensitized only with N719 (Table 3, entries 15 and
16); the photovoltaic results were important since, by using half the amount of Ru com-
plex, a relative yield of 92% (when compared to N719 alone) was achieved, with a Jsc of
5.095 mA cm−2 and an efficiency of 2.03%.
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Table 3. Photovoltaic data of solar cells produced with copper-based dyes 6, 7, and 8 a.

Entry Dye Redox Couple Voc (V) Jsc (mA cm−2) FF η (%) ηrel (%) CE Ref.

1 6 b,c I−/I3
− 0.60 0.35 0.32 0.067 33.7 Pt [33]

2 6 b,d I−/I3
− 0.58 0.40 0.32 0.074 38.4 Pt [33]

3 6 b,e I−/I3
− 0.60 0.45 0.30 0.081 44.2 Pt [33]

4 6 b,f I−/I3
− 0.58 0.43 0.32 0.080 42.8 Pt [33]

5 6 b,g I−/I3
− 0.60 0.44 0.35 0.093 48.2 Pt [33]

6 6 b,h I−/I3
− 0.58 0.41 0.35 0.082 42.0 Pt [33]

7 N3 b,c I−/I3
− 0.76 1.05 0.25 0.199 - Pt [33]

8 N3 b,d I−/I3
− 0.74 1.04 0.25 0.193 - Pt [33]

9 N3 b,e I−/I3
− 0.74 0.99 0.25 0.183 - Pt [33]

10 N3 b,f I−/I3
− 0.74 1.01 0.25 0.187 - Pt [33]

11 N3 b,g I−/I3
− 0.76 1.01 0.25 0.193 - Pt [33]

12 N3 b,h I−/I3
− 0.76 1.04 0.25 0.195 - Pt [33]

13 7 i I−/I3
− 0.632 7.84 0.60 3.00 - Pt [34]

14 Co-Sal i I−/I3
− 0.648 9.75 0.61 3.84 - Pt [34]

15 8 + N719 j I−/I3
− 0.757 5.095 0.527 2.03 92.3 Pt [35]

16 N719 j I−/I3
− 0.770 6.030 0.473 2.2 - Pt [35]

a under AM 1.5 simulated light source; TiO2 employed as semiconductor; ηrel = efficiency relative to reference dyes
N3 or N719, set to 100%; CE: counterelectrode. b dye solutions 0.01 M, solvent not specified. Electrolyte formulation
not specified. c measurements performed immediately after the preparation of the cell. d measurements performed
after 1 week. e measurements performed after 2 weeks. f measurements performed after 3 weeks. g measurements
performed after 4 weeks. h measurements performed after 5 weeks. i dye solutions in 1:1 (v/v) CH2Cl2/EtOH,
concentration not specified. Electrolyte composed of 0.05 M I2 + 0.05 M LiI + 0.5 M TBP in CH3CN. j Dye solutions
0.3 mM in in 1:1 (v/v) CH3CN/tBuOH. Electrolyte composed of 0.05 M I2 + 0.1 M LiI + 0.5 M TBP + 0.6 M NBu4I
in 1:1 (v/v) CH3CN/3-methoxypropionitrile.

In 2023, Constable et al. published a paper [36] describing new substituted 2,2′-
bipyridines employed as chelating ligands for the synthesis of copper(I) complexes to be
tested as dyes in DSSCs. In this case, a new approach aimed at modifying the direction
of the push-pull architecture usually present in most sensitizers, i.e. not by having het-
eroleptic complexes with electron-withdrawing groups on the anchoring ligand and donor
substituents on the ancillary one (see Scheme 1, compound C), but by testing homoleptic
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compounds in which the two functionalities are both present on the same chelating ligand
(Scheme 1, C), also having an anchoring group such as a phosphonate (D-π-A-type scaffold).

As it can be seen in Figure 7, in 9b and 9d the two pyridyl units of the ligand pre-
sented an electron-withdrawing anchoring 4-PO3H2-phenyl and a donating di(4-OMe-
phenyl)amino-phenyl, respectively, while in 9a and 9c the pyridines of the same ligand had
a symmetrical structure with the same substituents.

Moreover, for comparison’s sake, the moieties in positions 6 and 6′ (having the aim
to hamper the molecular flattening upon excitation by solar light) were modified, being
a simple methyl in 9a and 9b and a vinyl-triphenylamine in 9c and 9d; this different
functionalization was introduced to observe the effects of further expansion of the aromatic
system of the ligand.

Dyes 9a–9d were tested as sensitizers in solar cells, having a Pt counterelectrode and
an iodine-based electrolytic mixture; the Cu(I) complexes were deposited and anchored
onto the electrodes through different techniques, as explained in detail in the paper.

As a reference, a cell sensitized with standard N719 was also prepared. Photovoltaic
data resumed in Table 4 (entries 1–5) show how the highest Voc was provided by complex
9b (599 mV), while the best short-circuit current (6.81 mA cm−2) and efficiency (2.54%)
were provided by complex 9d. This is an important result to confirm the usefulness of
the new strategy, which has heteroleptic compounds of the [(DπA)2Cu]+ type with both
“anchoring” and “ancillary” characters on the same molecule.

Even if such new dyes provide interesting features for application in DSSCs, the best-
performing sensitizer was still the Ru-based N719 (entry 5), reaching a Jsc > 15 mA cm−2

and an efficiency of 5.42%. This result was mainly due to the broader absorption region
when compared to the copper(I) complexes; dyes 9c and 9d were able to improve the
absorption by extending it thanks to the presence of the alkenyl-NPh3 moieties on the
pyridine rings, but still not reaching the results of N719.
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Table 4. Photovoltaic data of solar cells produced with copper-based dyes 9a–9d a.

Entry Dye Redox Couple Voc (V) Jsc (mA cm−2) FF η (%) ηrel (%) CE Ref.

1 9a b I−/I3
− 0.531 4.90 0.68 1.78 32.8 Pt [36]

2 9b c I−/I3
− 0.599 4.77 0.64 1.82 33.6 Pt [36]

3 9c b I−/I3
− 0.503 4.90 0.71 1.76 32.5 Pt [36]

4 9d c I−/I3
− 0.564 6.81 0.66 2.54 46.9 Pt [36]

5 N719 d I−/I3
− 0.615 15.02 0.59 5.42 - Pt [36]

a under AM 1.5 simulated light source; TiO2 employed as semiconductor; ηrel = efficiency relative to refer-
ence dye N719, set to 100%; CE: counterelectrode. Electrolyte composed of 0.05 M I2 + 0.1 M LiI + 0.5 M
1-methylbenzimidazole + 0.6 M 1-butyl-3-methylimidazolinium iodide in 3-methoxypropionitrile. b electrodes
sensitized via method c as explained in ref. [36]. c electrodes sensitized via method b as explained in ref. [36].
d dye solution 0.3 mM in EtOH.
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2.2. Copper Complexes Employed as Redox Mediators

The redox mediator is an essential element in DSSCs since it allows for the regeneration
of the fundamental state of the dye. In the last couple of decades, the I−/I3

− redox
couple has dominated, however, despite disadvantages such as the loss of Voc, some
complementary absorption with the sensitizer, and its volatile nature. In addition, for the
I−/I3

− redox couple, the redox potential is almost fixed, thus choosing an appropriate
photosensitizer is imperative.

Metal complexes with variable oxidation states are the best alternative as redox shuttles
due to the change in their redox potentials when varying the ligands in order to suit
different photosensitizers.

Cobalt complexes as redox mediators have some drawbacks associated with slow
mass transport in the electrolyte solution and large internal reorganization energy between
the high-spin d7 and low-spin d6 states. In addition, cobalt can cause health hazards,
such as breathing problems, and severely affect the lungs, causing pneumonia, asthma,
and wheezing.

The limitations caused by the reorganization energy are minimized by using well-
designed Cu(I)/(II) complexes with a distorted tetragonal geometry, thanks to a proper
steric hindrance in the alfa positions. These alternative electron shuttles are of particular
interest since copper is a low-cost and environmentally friendly metal [37–39].

Here, three very recent examples of research on solar cells containing copper-based
redox mixtures are described.

In the paper published in 2023 by Yeh, Wei, and coworkers [40], the authors explored
different kinds of CE to find the most suitable to couple with the copper-containing redox
mixture represented by complexes [Cu(dmp)2]+/2+, where dmp is a 2,9-dimethyl-1,10-
phenanthroline (Figure 8). In fact, it is important to point out that the proper selection of
the CE could bring about remarkable effect on the efficiency of the device, so the same
system is not always suitable for every kind of redox shuttles. As a sensitizer, the authors
employed the organic compound TY6 (structure in Figure 8).
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Figure 8. Structure of dye TY6 and of the redox couple [(dmp)2Cu]+/2+.

The counterelectrodes tested by the authors presented various compositions as a
consequence of the different preparation techniques, resulting in different loading and
distibution of platinum onto the FTO surface: the lowest and highest amounts of the metal
were obtained in the case of TR-Pt_1 and TR-Pt_10 (0.98 and 9.81 µg cm−2, respectively),
but there the metal was randomly distributed in between the FTO grains, thus limiting its
effectiveness. Better situations were those with PVA or PVO polymers, since no excessive
aggregation was observed on the conductive glass.

Considering the photovoltaic performances, all CE showed similar Voc, ranging from
1.07 to 1.09 V, and a similar Jsc of ~10.4 mA cm−2; the best efficiencies were achieved
by PVA-Pt (8.47%) and PVP-Pt (8.32%), confirming the usefulness of employing the dis-
cussed polymers in the preparation of the counterelectrodes. Table 4 summarizes the data
concerning the presented devices.
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In conclusion, PVA-Pt offered the best performances, not only because of the high
efficiency but also because of the very low platinum amount (1.07 µg cm−2) needed.

A different approach was followed by Shanmugam et al. in 2022 [41], with the
realization of an aqueous DSSC with the organic compound MK-2 as a sensitizer, and
copper and cobalt complexes as redox mediators (see Figure 9 for the structure of both dye
and redox mediators).

Molecules 2024, 29, x FOR PEER REVIEW 14 of 18 
 

 

 
Figure 9. Structure of dye MK-2 and of redox couples [(mbpbi)2Cu]+/2+, [(tbbpbi)2Cu]+/2+, 
[(mbpbi)3Co]2+/3+ and [(tbbpbi)3Co]2+/3+. 

The Cu- and Co-based complexes shared the same bidentate chelating ligand, namely 
a benzyl-substituted pyridyl-benzimidazole, with different alkylic substituents in para 
position on the phenyl ring: a methyl in the case of couples [(mbpbi)2Cu]+/2+ and 
[(mbpbi)3Co]2+/3+, while a tert-butyl was present in [(tbbpbi)2Cu]+/2+ and [(tbbpbi)3Co]2+/3+. 

The solar cells in which the mentioned complexes were applied were aqueous-based, 
thanks to the use of xanthan gum gel to disperse the electrolytic couples. 

By comparing the photovoltaic performances of the prepared cells, it turned out that 
the best redox mediators were the Cu(I/II) ones, with [(mbpbi)2Cu]+/2+ reaching a voltage 
of 0.74 V, a Jsc of 11.02 mA cm−2 and an efficiency of 4.08%, and [(tbbpbi)2Cu]+/2+ presenting 
values of 0.73 V, 8.98 mA cm−2 and 3.04%, respectively (Table 4, entries 6–7). These results 
were remarkably higher than those provided by the cobalt-containing electrolytes (as re-
ported in entries 8–9) because of the lower inner sphere reorganization energy typical of 
the discussed copper-based compounds. 

The authors found out that the presence of the tBu substituents instead of the simple 
methyl group on the benzyl moiety was beneficial for the photovoltaic data since it al-
lowed for reduced recombination and lower reorganization energy; moreover, these com-
plexes showed higher power conversion efficiency due to an increased redox potential 
(0.80 V vs. 0.60 V in the case of the Cu complexes). 

The best results achieved for a solar cell presenting a copper-based redox couple and 
a single sensitizer were published in 2022 by Shen, Grätzel, and coworkers [42]. In this 
work, the redox mediators were the [(tmby)2Cu]+/2+ couple (where tmby = 2,2′,4,4′-tetra-
methyl-1,1′-bipyridine), tested together with the new dyes ZS4 and ZS5 (dyes and redox 
couple are reported in Figure 10). 

The new sensitizers were designed by considering the moieties that could lead to 
better photovoltaic performances of the final products, i.e. a dithieno[3,2-b:2″,3″-d]pyrrole 
as a linker and a quinoxaline as an additional electron-withdrawing unit in between the 
anchoring cyanoacrylic group and the triphenylamine moiety bearing ethyl-hexyloxy 
chains to prevent aggregation on the titania surface. The difference in the structure of the 
two compounds was in the substituents on the quinoxaline unit: two 4-OHex-phenyl rings 
in ZS4, while a fused naphthalene was present in ZS5. 

As a result of such a design, very remarkable performances were achieved, in partic-
ular in the case of ZS4: a Jsc of 16.3 mA cm−2, a voltage of 1.05 V, and an efficiency of 13.2% 
(Table 5, entry 10). 

Moreover, as a further positive aspect, the solar cell sensitized with the discussed dye 
retained 95% of its initial efficiency under continuous light soaking at 45 °C for 1000 h. 

Figure 9. Structure of dye MK-2 and of redox couples [(mbpbi)2Cu]+/2+, [(tbbpbi)2Cu]+/2+,
[(mbpbi)3Co]2+/3+ and [(tbbpbi)3Co]2+/3+.

The Cu- and Co-based complexes shared the same bidentate chelating ligand, namely a
benzyl-substituted pyridyl-benzimidazole, with different alkylic substituents in para position
on the phenyl ring: a methyl in the case of couples [(mbpbi)2Cu]+/2+ and [(mbpbi)3Co]2+/3+,
while a tert-butyl was present in [(tbbpbi)2Cu]+/2+ and [(tbbpbi)3Co]2+/3+.

The solar cells in which the mentioned complexes were applied were aqueous-based,
thanks to the use of xanthan gum gel to disperse the electrolytic couples.

By comparing the photovoltaic performances of the prepared cells, it turned out that
the best redox mediators were the Cu(I/II) ones, with [(mbpbi)2Cu]+/2+ reaching a voltage
of 0.74 V, a Jsc of 11.02 mA cm−2 and an efficiency of 4.08%, and [(tbbpbi)2Cu]+/2+ presenting
values of 0.73 V, 8.98 mA cm−2 and 3.04%, respectively (Table 4, entries 6–7). These results
were remarkably higher than those provided by the cobalt-containing electrolytes (as
reported in entries 8–9) because of the lower inner sphere reorganization energy typical of
the discussed copper-based compounds.

The authors found out that the presence of the tBu substituents instead of the simple
methyl group on the benzyl moiety was beneficial for the photovoltaic data since it allowed
for reduced recombination and lower reorganization energy; moreover, these complexes
showed higher power conversion efficiency due to an increased redox potential (0.80 V vs.
0.60 V in the case of the Cu complexes).

The best results achieved for a solar cell presenting a copper-based redox couple and a
single sensitizer were published in 2022 by Shen, Grätzel, and coworkers [42]. In this work,
the redox mediators were the [(tmby)2Cu]+/2+ couple (where tmby = 2,2′,4,4′-tetramethyl-
1,1′-bipyridine), tested together with the new dyes ZS4 and ZS5 (dyes and redox couple
are reported in Figure 10).

The new sensitizers were designed by considering the moieties that could lead to
better photovoltaic performances of the final products, i.e. a dithieno[3,2-b:2′′,3′′-d]pyrrole
as a linker and a quinoxaline as an additional electron-withdrawing unit in between the
anchoring cyanoacrylic group and the triphenylamine moiety bearing ethyl-hexyloxy
chains to prevent aggregation on the titania surface. The difference in the structure of the
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two compounds was in the substituents on the quinoxaline unit: two 4-OHex-phenyl rings
in ZS4, while a fused naphthalene was present in ZS5.

As a result of such a design, very remarkable performances were achieved, in particular
in the case of ZS4: a Jsc of 16.3 mA cm−2, a voltage of 1.05 V, and an efficiency of 13.2%
(Table 5, entry 10).

Moreover, as a further positive aspect, the solar cell sensitized with the discussed dye
retained 95% of its initial efficiency under continuous light soaking at 45 ◦C for 1000 h.
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Table 5. Photovoltaic data of solar cells produced with copper-based redox mediators 
[(dmp)2Cu]+/2+, [(mbpbi)2Cu]+/2+, [(tbbpbi)2Cu]+/2+, [(mbpbi)3Co]2+/3+, [(mbpbi)3Co]2+/3+, and 
[(tmby)2Cu]+/2+ a. 

Entry Dye Redox Couple Voc (V) Jsc (mA cm−2) FF η (%) CE Ref. 
1 TY6 b [(dmp)2Cu]+/2+ 1.08  9.8 0.67 7.06 TR-Pt_1 c [40] 
2 TY6 b [(dmp)2Cu]+/2+ 1.08 10.4 0.70 7.84 TR-Pt_10 c [40] 
3 TY6 b [(dmp)2Cu]+/2+ 1.09 10.4 0.72 8.17 PVP-Pt c [40] 
4 TY6 b [(dmp)2Cu]+/2+ 1.09 10.4 0.73 8.26 PVA-Pt c [40] 
5 TY6 b [(dmp)2Cu]+/2+ 1.07 10.1 0.73 7.95 PEDOT c [40] 
6 MK-2 d [(tbbpbi)2Cu]+/2+ e 0.73 8.98 0.46 3.04 Pt [41] 
7 MK-2 d [(mbpbi)2Cu]+/2+ e 0.74 11.02 0.50 4.08 Pt [41] 
8 MK-2 d [(tbbpbi)3Co]2+/3+ f 0.73 1.83 0.46 0.61 Pt [41] 
9 MK-2 d [(mbpbi)3Co]2+/3+ f 0.78 3.92 0.53 1.62 Pt [41] 

10 ZS4 g [(tmby)2Cu]+/2+ 1.05 16.3 0.771 13.2 PEDOT [42] 
11 ZS5 g [(tmby)2Cu]+/2+ 0.95 14.7 0.750 10.5 PEDOT [42] 

a under AM 1.5 simulated light source; TiO2 employed as a semiconductor; CE: counterelectrode. b 
0.15 mM dye in 1:1 (v/v) tBuOH/CH3CN, with 0.3 mM chenodeoxycholic acid. Electrolyte com-
posed of 0.2 M [(dmp)2Cu]TFSI + [(dmp)2Cu](TFSI)2 + 0.1 M LiTFSI + 0.6 M TBP in CH3CN (TFSI = 
trifluoromethansulfonimide). c the procedure followed to obtain the various Pt-based CE is 
described in ref. [40]. d 0.04 M dye in toluene. e electrolytes prepared by stirring an aqueous 
xanthan gum (3% weight) with a solution containing 0.2 M [(tbbpbi)2Cu]+ + 0.02 M [(tbbpbi)2Cu]2+ 
+ 0.5 M TBP + 0.1 M LiClO4 in DMF. f electrolytes prepared by stirring an aqueous xanthan gum 
(3% weight) with a solution containing 0.2 M [(tbbpbi)3Co]2+ + 0.02 M [(tbbpbi)3Co]3+ + 0.5 M TBP + 
0.1 M LiClO4 in DMF. g 0.06 mM dye in 3:7 (v/v) CHCl3/EtOH, with 1.5 mM chenodeoxycholic acid. 
Electrolyte composed of 0.2 M [(tmby)2Cu]TFSI + 0.09 M [(tmby)2Cu](TFSI)2 + 0.1 M NaTFSI + 0.6 
M N-methylbenzimidazole in CH3CN. 

3. Conclusions 
Through this review, we have shown the important developments in the last two 

years regarding copper complexes as molecular materials for dye-sensitized solar cells. 
The discussed works not only confirm the great potential of well-designed copper com-
plexes as efficient dyes, but they also provide evidence, for the first time since the pioneer-
ing work of Housecroft and co-workers in 2017, that the cosensitization strategy is a fruit-
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Figure 10. Structure of dyes ZS4 and ZS5 and of the redox couple [(tmby)2Cu]+/2+.

Table 5. Photovoltaic data of solar cells produced with copper-based redox mediators [(dmp)2Cu]+/2+,
[(mbpbi)2Cu]+/2+, [(tbbpbi)2Cu]+/2+, [(mbpbi)3Co]2+/3+, [(mbpbi)3Co]2+/3+, and [(tmby)2Cu]+/2+ a.

Entry Dye Redox Couple Voc (V) Jsc (mA cm−2) FF η (%) CE Ref.

1 TY6 b [(dmp)2Cu]+/2+ 1.08 9.8 0.67 7.06 TR-Pt_1 c [40]
2 TY6 b [(dmp)2Cu]+/2+ 1.08 10.4 0.70 7.84 TR-Pt_10 c [40]
3 TY6 b [(dmp)2Cu]+/2+ 1.09 10.4 0.72 8.17 PVP-Pt c [40]
4 TY6 b [(dmp)2Cu]+/2+ 1.09 10.4 0.73 8.26 PVA-Pt c [40]
5 TY6 b [(dmp)2Cu]+/2+ 1.07 10.1 0.73 7.95 PEDOT c [40]
6 MK-2 d [(tbbpbi)2Cu]+/2+ e 0.73 8.98 0.46 3.04 Pt [41]
7 MK-2 d [(mbpbi)2Cu]+/2+ e 0.74 11.02 0.50 4.08 Pt [41]
8 MK-2 d [(tbbpbi)3Co]2+/3+ f 0.73 1.83 0.46 0.61 Pt [41]
9 MK-2 d [(mbpbi)3Co]2+/3+ f 0.78 3.92 0.53 1.62 Pt [41]

10 ZS4 g [(tmby)2Cu]+/2+ 1.05 16.3 0.771 13.2 PEDOT [42]
11 ZS5 g [(tmby)2Cu]+/2+ 0.95 14.7 0.750 10.5 PEDOT [42]

a under AM 1.5 simulated light source; TiO2 employed as a semiconductor; CE: counterelectrode. b 0.15 mM
dye in 1:1 (v/v) tBuOH/CH3CN, with 0.3 mM chenodeoxycholic acid. Electrolyte composed of 0.2 M
[(dmp)2Cu]TFSI + [(dmp)2Cu](TFSI)2 + 0.1 M LiTFSI + 0.6 M TBP in CH3CN (TFSI = trifluoromethansulfon-
imide). c the procedure followed to obtain the various Pt-based CE is described in ref. [40]. d 0.04 M dye in
toluene. e electrolytes prepared by stirring an aqueous xanthan gum (3% weight) with a solution containing
0.2 M [(tbbpbi)2Cu]+ + 0.02 M [(tbbpbi)2Cu]2+ + 0.5 M TBP + 0.1 M LiClO4 in DMF. f electrolytes prepared
by stirring an aqueous xanthan gum (3% weight) with a solution containing 0.2 M [(tbbpbi)3Co]2+ + 0.02 M
[(tbbpbi)3Co]3+ + 0.5 M TBP + 0.1 M LiClO4 in DMF. g 0.06 mM dye in 3:7 (v/v) CHCl3/EtOH, with 1.5 mM
chenodeoxycholic acid. Electrolyte composed of 0.2 M [(tmby)2Cu]TFSI + 0.09 M [(tmby)2Cu](TFSI)2 + 0.1 M
NaTFSI + 0.6 M N-methylbenzimidazole in CH3CN.

3. Conclusions

Through this review, we have shown the important developments in the last two years
regarding copper complexes as molecular materials for dye-sensitized solar cells. The
discussed works not only confirm the great potential of well-designed copper complexes as
efficient dyes, but they also provide evidence, for the first time since the pioneering work
of Housecroft and co-workers in 2017, that the cosensitization strategy is a fruitful way of
enhancing the photoconversion efficiency of copper-based DSSCs without the need for too
complicated organic structures.
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In particular, it turned out that copper complexes can be used as cosensitizers in the
presence of N719, allowing for better photovoltaic performances with a small amount of
N719; this cosensitization with copper, a much less expensive and much more abundant
metal when compared to ruthenium, is beneficial not only for the photovoltaic perfor-
mances but also for the cost of solar cells. The work conducted in the last two years
confirmed that the design of novel push-pull heteroleptic complexes is more suitable than
the “traditional” homoleptic complexes, bearing only electron-withdrawing groups, in
order to reach better efficiencies.

However, in 2023, a novel strategy for efficient sensitizers was born: the use of
homoleptic complexes of the [(DπA)2Cu]+ type, with both electron-withdrawing and
electron-donating moieties on the same ligand. This novel route for copper(I) dyes is very
appealing and is sure to be developed in the future.

Additionally, the review confirmed the potential of copper complexes as electron
shuttles for iodine-free electrolytes, putting into evidence the importance of the nature
of the counterelectrodes. Remarkably, a DSSC sensitized with a well-designed organic
compound (ZS4) achieves an efficiency of 13.2% under AM1.5G sunlight and keeps 95% of
its initial efficiency under continuous light soaking for 1000 h. This represents a record
efficiency for copper-electrolyte-based DSSCs with a single sensitizer; it highlights the
importance of molecular engineering of photosensitizers toward highly efficient DSSCs
with copper electron shuttles.

To conclude, in the future, copper complexes are expected to play an increasingly
important role both as dyes and electron shuttles in the fabrication of low-cost and stable
dye-sensitized solar cells. Further studies are necessary to optimize the photovoltaic results,
taking into account not only the proper molecular design of the dye but also the use of
cosensitizers and the suitable choice of the electrolyte mixture, of the additives, and of
the counterelectrode.
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