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Abstract: TRPV1 channel agonists and antagonists, which have powerful analgesic effects without
the addictive qualities associated with traditional analgesics, have become a focus area for the
development of novel analgesics. In this study, quantitative structure–activity relationship (QSAR)
models for three bioactive endpoints (Ki, IC50, and EC50) were successfully constructed using four
machine learning algorithms: SVM, Bagging, GBDT, and XGBoost. These models were based on 2922
TRPV1 modulators and incorporated four types of molecular descriptors: Daylight, E-state, ECFP4,
and MACCS. After the rigorous five-fold cross-validation and external test set validation, the optimal
models for the three endpoints were obtained. For the Ki endpoint, the Bagging-ECFP4 model had a
Q2 value of 0.778 and an R2 value of 0.780. For the IC50 endpoint, the XGBoost-ECFP4 model had a
Q2 value of 0.806 and an R2 value of 0.784. For the EC50 endpoint, the SVM-Daylight model had a
Q2 value of 0.784 and an R2 value of 0.809. These results demonstrate that the constructed models
exhibit good predictive performance. In addition, based on the model feature importance analysis,
the influence between substructure and biological activity was also explored, which can provide
important theoretical guidance for the efficient virtual screening and structural optimization of novel
TRPV1 analgesics. And subsequent studies on novel TRPV1 modulators will be based on the feature
substructures of the three endpoints.

Keywords: machine learning; QSAR; TRPV1 channel; TRPV1 regulators; activity prediction

1. Introduction

TRPV1 channels are nociceptors found on C and Aδ fibers [1]. They detect various
noxious stimuli, such as high temperatures (>42 ◦C), acidity (H+), and a range of endoge-
nous and exogenous ligands [2]. These channels are crucial in pain management. TRPV1
modulators, including agonists and antagonists, have demonstrated significant efficacy in
the treatment of neuropathic pain, osteoarthritis, and cancer pain [3]. Among them, TRPV1
agonists produce long-lasting and reversible analgesia through calcium-dependent desen-
sitization, rendering TRPV1-expressing nerve fibers unresponsive to noxious stimuli [4].
TRPV1 antagonists, on the other hand, reduce nociceptive hypersensitivity by inhibiting
TRPV1 channels, thus inhibiting the production of noxious sensations. Traditional anal-
gesics, such as opioid narcotic analgesics and nonsteroidal anti-inflammatory analgesics,
while initially providing temporary or partial pain relief, are associated with dose-limiting
side-effects, lack of tolerance, and decreased efficacy over time, particularly impacting
the treatment of chronic pain in the elderly [5]. However, existing TRPV1 modulators
have side effects like strong irritation and hyperthermia, limiting their long-term clinical
application [6,7]. Therefore, it is still necessary to develop novel TRPV1 modulators.

The agonistic or inhibitory activity of TRPV1 modulators is generally quantified using
the concentration for 50% of maximal effect (EC50) or half maximal inhibitory concentration
(IC50). Ki is the inhibition constant, which is a more precise indicator than IC50. The
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experimental approach to detect the effect of TRPV1 regulators on the opening (agonism)
or closing (antagonism) of TRPV1 channels commonly involves the use of FLIPR [8] and
electrophysiological membrane clamp [9]. Although intuitively clear, these experimental
methods require the synthesis of the compound to be tested first and later assayed on
TRPV1-expressing cells. Moreover, the speed of drug discovery is limited by the experimen-
tal methods, although high-throughput screening and combinatorial chemistry have been
developed. Both the in vitro experiments, especially electrophysiological assays, require
significant time and high investment costs.

The discovery of hits is a mandatory pathway to the discovery of novel TRPV1 modu-
lators. However, high-throughput screening based on wet assays, combinatorial chemistry,
and fragment-based drug design requires significant labor, material, and time costs and
consumes a lot of effort on inactive compounds [10,11]. In recent years, computer-aided
drug design, represented by quantitative structure–activity relationships (QSARs), has been
rapidly developed due to the rise of artificial intelligence and big data [11]. QSAR modeling
is a mathematical or statistical methodology that establishes a quantitative mapping be-
tween molecular structure and biological activity that can be used to predict the biological
activity of new compounds on specific targets [11]. This methodology has been widely
used in the discovery of various drug hits. There have been some structural modification
studies of TRPV1 regulators based on 3D-QSAR models. For instance, Kristam et al. [12]
constructed a 3D-QSAR model using 62 piperazine-aryl derived TRPV1 compounds with
good predictive performance (Q2 = 0.9, R2 = 0.75). Then, they used a Topomer-CoMFA
method to construct a new 3D-QSAR model [13]. However, the predictive performance of
the new model did not improve. Similarly, Wang et al. [14] constructed a 3D-QSAR model
with good predictive performance (Q2 = 0.522, R2 = 0.839) using the CoMSIA method based
on 236 TRPV1 antagonists. Although these 3D-QSAR models showed promising results,
they require the superposition of molecular 3D conformations. Unfortunately, the effect
of conformation overlap of 3D-QSAR method could seriously affect the robustness of the
models. Furthermore, 3D-QSAR models are often limited to predicting the properties of
compounds with similar structures, thus having poor generalization ability [15].

To address the above problems and build a model with good generalization ability
and stability, this study successfully constructed several QSAR models based on multiple
machine learning algorithms for the three activity endpoints (EC50 of TRPV1 agonists,
IC50 of TRPV1 antagonists, and Ki). The internal and external validation showed that the
models have good predictive performance and generalization ability, which can provide
high-quality virtual screening models for the development of novel TRPV1 modulators.

2. Results and Discussion
2.1. Chemical Space and Scaffold Analysis

To construct the QSAR model, it is important for the dataset to encompass a wide range
of activity. The Ki dataset ranges from 5.76 to 10.00 in terms of pKi values, the EC50 dataset
ranges from 3.95 to 8.72 in terms of pEC50 values, and the IC50 dataset ranges from 4.04 to
9.40 in terms of pIC50 values. Therefore, the datasets for the three activity endpoints cover a
broad span of activity, ranging from µM to nM. The activity distributions of the training and
testing sets for the three activity endpoints, as indicated by the histograms (Figure 1A–C),
closely resemble those of the total dataset. This suggests that the division of the dataset is
reasonable with respect to activity distribution. In addition, principal component analysis
(PCA) was utilized to represent the scaffold distribution of the compounds in both the
training and test sets (Figure 1). Notably, the compound scaffolds representing the test
set of the three endpoints were mainly distributed within the compound scaffolds of their
corresponding training sets, and no more outliers appeared. Hence, the scaffold division of
the test set proved suitable for evaluating the predictive performance and generalization
capability of the QSAR model.
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Figure 1. Distribution histograms (A–C) and principal component analysis plots (D–F) for the EC50,
IC50, and Ki data sets.

Table 1 lists the top ten carbon scaffolds with the highest numbers, the vast majority of
which include an isobutane carbon scaffold structure corresponding to the neck group of the
TRPV1 modulator, typically an amide, ureido, or thiourea, among others. The analysis of
compound structures in the datasets showed 77 carbon scaffolds in the Ki dataset, 275 in the
IC50 dataset, and 97 in the EC50 dataset. This indicates a significant diversity in structural
composition across the datasets for the three endpoints. In contrast, the head and tail in
the backbone are mostly cyclic structures, corresponding to the tail moiety that forms a
hydrophobic interaction in TRPV1 modulators and the head moiety that mostly contains
an aromatic ring. It is noteworthy that some special carbon scaffolds appear in the scaffold
of EC50. First, the cyclohexane carbon scaffold, ranked in terms of content, is quite different
from the generic structure of TRPV1 modulators, and can be designed as a head group
to provide ideas for fragment-based drug design. Secondly, the carbon scaffolds ranked
fifth and sixth in terms of content both appear to have a bridging ring structure and can
be designed as a tail moiety that can provide strong van der Waals interactions and help
increase binding affinity [16].
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Table 1. Top 10 carbon scaffolds and corresponding numbers of Ki, IC50, and EC50 data sets.

No.
Ki IC50 EC50

Carbon Scaffold Number Carbon Scaffold Number Carbon Scaffold Number

1
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2.2. Feature Selection

To enhance the interpretability and accuracy of the model while minimizing training
costs, a method known as recursive feature elimination based on random forest (RFE-RF) is
employed for feature selection. Initially, RFE-RF utilizes the complete set of features from a
descriptor or molecular fingerprint for modeling. Subsequently, it proceeds to eliminate
the least significant feature iteratively, employing the remaining features for subsequent
modeling steps. Finally, it selects the combination of features with the lowest RMSECV.

As shown in Figure 2, the performance of the model gradually improves as the number
of features increases, eventually reaching a plateau. The number of features selected varies
across the three active endpoints for different descriptors or molecular fingerprints. The
red dots identified by orange dashed lines in each subplot of Figure 2 indicate the selected
feature combinations. In Ki, the optimal number of features for Daylight, E-state, ECFP4,
and MACCS was 53 (2.6% of original features), 30 (27.3% of original features), 82 (8.0%
of original features), and 50 (30.1% of original features), respectively; in IC50, the optimal
number of features for Daylight, E-state, ECFP4, and MACCS was 183 (8.9% of original
features), 33 (30.0% of original features), 293 (28.6% of original features), and 68 (41.0% of
original features), respectively; and in EC50, Daylight, E-state, ECFP4, and MACCS have the
optimal number of features of 168 (8.2% of original features), 25 (22.7% of original features),
55 (5.4% of original features), and 22 (13.3% of original features), respectively. These 12 sets
of features will be used as independent variables to construct 48 active prediction models
using four machine learning algorithms, i.e., 16 models for each endpoint.
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2.3. Evaluation of Ki Activity Prediction Models

The evaluation results of the 16 Ki activity prediction models are presented in Table 2.
It can be observed that the internal validation results of different algorithms under the same
descriptor are similar. Furthermore, there is a consistent trend in the internal validation
results of different descriptors under the same algorithm, with ECFP4 showing the highest
performance, followed by Daylight, MACCS, and E-state. The model constructed using
the Bagging algorithm and ECFP4 descriptors demonstrates the highest performance
(Q2 = 0.778, R2 = 0.780), while the models constructed using SVM and E-state descriptors
exhibit the lowest performance (Q2 = 0.502, R2 = 0.536). The MAECV and MAET of the
vast majority of the models were in the range of 0.3–0.4, indicating that the difference
between the predicted results and the experimental values was not more than half an order
of magnitude. Thus, the predicted values of these models are of practical significance.
Subsequently, the external validation results of the 16 models align with the internal
validation results, reaffirming their good generalization ability and reliable prediction
capability for the Ki activity values of new chemical entities. Figure 3 displays the scatter
plot of the predicted values of the optimal model against the experimental values. The
green dots represent the training set, while the orange dots represent the test set.

Table 2. The results of internal and external validation of Ki prediction models.

Algorithm Descriptor Q2 RMSECV MAECV R2 RMSET MAET

SVM

Daylight 0.725 ± 0.012 0.408 ± 0.009 0.317 ± 0.005 0.766 0.419 0.320
E-state 0.502 ± 0.010 0.550 ± 0.005 0.417 ± 0.006 0.536 0.590 0.448
ECFP4 0.744 ± 0.008 0.394 ± 0.006 0.318 ± 0.004 0.761 0.424 0.325

MACCS 0.684 ± 0.006 0.438 ± 0.004 0.344 ± 0.004 0.687 0.485 0.362

Bagging

Daylight 0.742 ± 0.018 0.395 ± 0.013 0.307 ± 0.009 0.779 0.408 0.312
E-state 0.677 ± 0.018 0.442 ± 0.012 0.348 ± 0.008 0.642 0.519 0.393
ECFP4 0.778 ± 0.012 0.367 ± 0.010 0.291 ± 0.008 0.780 0.407 0.305

MACCS 0.697 ± 0.024 0.428 ± 0.016 0.334 ± 0.013 0.750 0.433 0.323

GBDT

Daylight 0.723 ± 0.010 0.410 ± 0.007 0.326 ± 0.005 0.755 0.429 0.332
E-state 0.671 ± 0.013 0.447 ± 0.009 0.356 ± 0.007 0.623 0.532 0.410
ECFP4 0.759 ± 0.007 0.382 ± 0.005 0.309 ± 0.004 0.757 0.427 0.329

MACCS 0.686 ± 0.011 0.437 ± 0.008 0.340 ± 0.007 0.703 0.472 0.371

XGBoost

Daylight 0.723 ± 0.022 0.410 ± 0.015 0.317 ± 0.011 0.766 0.419 0.316
E-state 0.683 ± 0.032 0.438 ± 0.020 0.342 ± 0.014 0.648 0.514 0.385
ECFP4 0.771 ± 0.014 0.373 ± 0.011 0.301 ± 0.009 0.816 0.371 0.292

MACCS 0.696 ± 0.020 0.429 ± 0.013 0.337 ± 0.011 0.745 0.437 0.330
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2.4. Evaluation of IC50 Activity Prediction Models

Table 3 presents the evaluation results of 16 IC50 activity prediction models. Among
SVM, Bagging, and XGBoost, the prediction performance of the four descriptors is ranked
as follows: ECFP4 > Daylight > MACCS > E-state. However, in GBDT, the prediction
performance of Daylight is stronger than ECFP4. Comparing the internal validation results
of Ki with those of the four algorithms in the IC50 dataset, there are significant differences.
Specifically, the internal validation performance of GBDT is significantly lower than that
of the other three algorithms. It is worth noting that, although the SVM model using
E-state descriptors has the worst internal validation performance (Q2 = 0.487 ± 0.008,
RMSECV = 0.424 ± 0.005, and MAECV = 0.338 ± 0.004) among all the models, the model
constructed by XGBoost and ECFP4 is considered the optimal model for IC50 activity predic-
tion. This model performs the best for both internal and external validation, demonstrating
good generalization performance. Furthermore, the MAE of the IC50 model is comparable
to that of the Ki prediction model, with errors within half an order of magnitude. Figure 4
illustrates the scatterplot of predicted versus experimental values for the optimal model,
with green dots indicating the training set and orange dots representing the test set. The
green solid line represents the trend line for the training set, while the orange solid line
corresponds to the trend line for the test set. Notably, the trend lines of the training and
test sets resemble those of the Ki prediction model, further confirming the model’s strong
generalization ability.

Table 3. The results of internal and external validation of IC50 prediction models.

Algorithm Descriptor Q2 RMSECV MAECV R2 RMSET MAET

SVM

Daylight 0.726 ± 0.006 0.424 ± 0.005 0.338 ± 0.004 0.744 0.443 0.353
E-state 0.487 ± 0.008 0.580 ± 0.004 0.455 ± 0.003 0.545 0.590 0.455
ECFP4 0.759 ± 0.006 0.398 ± 0.005 0.318 ± 0.004 0.763 0.426 0.342

MACCS 0.639 ± 0.005 0.487 ± 0.004 0.381 ± 0.003 0.682 0.494 0.391

Bagging

Daylight 0.719 ± 0.016 0.429 ± 0.012 0.343 ± 0.008 0.712 0.469 0.366
E-state 0.642 ± 0.020 0.485 ± 0.013 0.376 ± 0.010 0.628 0.534 0.426
ECFP4 0.757 ± 0.015 0.399 ± 0.012 0.318 ± 0.008 0.722 0.462 0.362

MACCS 0.674 ± 0.017 0.462 ± 0.011 0.364 ± 0.008 0.681 0.494 0.396

GBDT

Daylight 0.685 ± 0.007 0.455 ± 0.005 0.368 ± 0.003 0.706 0.475 0.378
E-state 0.555 ± 0.006 0.540 ± 0.003 0.428 ± 0.002 0.584 0.564 0.449
ECFP4 0.673 ± 0.004 0.463 ± 0.003 0.374 ± 0.003 0.703 0.477 0.386

MACCS 0.579 ± 0.005 0.525 ± 0.003 0.418 ± 0.003 0.610 0.546 0.437

XGBoost

Daylight 0.742 ± 0.020 0.411 ± 0.015 0.325 ± 0.011 0.746 0.441 0.347
E-state 0.660 ± 0.022 0.472 ± 0.014 0.368 ± 0.011 0.664 0.507 0.389
ECFP4 0.806 ± 0.013 0.357 ± 0.011 0.290 ± 0.007 0.784 0.407 0.328

MACCS 0.699 ± 0.020 0.444 ± 0.014 0.349 ± 0.009 0.727 0.457 0.367

2.5. Evaluation of EC50 Activity Prediction Models

Table 4 presents the performance evaluation results for the 16 EC50 activity prediction
models. It is evident that the internal validation of the same descriptors varies less across
different algorithms. However, the performance of the E-state descriptor in the SVM
model is noticeably inferior to the other three algorithms. Additionally, the performance
of the four descriptors in the Bagging, GBDT, and XGBoost algorithms follows the order
of ECFP4 > Daylight > MACCS > E-state. Conversely, in the SVM algorithm, the internal
validation of Daylight outperforms that of ECFP4, making it the optimal model among
the EC50 activity prediction models with an external validation R2 exceeding 0.8, thus
highlighting its exceptional predictive capability. Figure 5 illustrates the scatter plots
comparing the predicted and experimental values for the SVM and Daylight models.

The results of internal and external validation for our models demonstrate a signif-
icantly reduced difference (less than 0.03) between Q2 and R2 compared to the previous
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3D-QSAR model [12–14] (Table 5), which exhibited a difference of more than 0.25. This in-
dicates a significant improvement in the generalization ability of the model. The enhanced
performance can be attributed, primarily, to the larger dataset utilized in this study, as well
as the robust stability of the machine learning algorithms employed. Notably, the model
proposed by Kristam was developed using only 62 molecules, making it challenging to
ensure generalizability.
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Bagging

Daylight 0.765 ± 0.015 0.527 ± 0.016 0.415 ± 0.013 0.718 0.647 0.492
E-state 0.725 ± 0.022 0.570 ± 0.022 0.454 ± 0.015 0.735 0.626 0.474
ECFP4 0.782 ± 0.017 0.507 ± 0.018 0.400 ± 0.016 0.844 0.480 0.367

MACCS 0.746 ± 0.025 0.547 ± 0.025 0.431 ± 0.020 0.766 0.589 0.450

GBDT

Daylight 0.772 ± 0.014 0.518 ± 0.015 0.408 ± 0.013 0.745 0.614 0.465
E-state 0.731 ± 0.019 0.563 ± 0.019 0.458 ± 0.012 0.777 0.575 0.428
ECFP4 0.775 ± 0.012 0.515 ± 0.013 0.402 ± 0.011 0.832 0.499 0.404

MACCS 0.742 ± 0.012 0.552 ± 0.012 0.432 ± 0.012 0.759 0.597 0.475

XGBoost

Daylight 0.771 ± 0.030 0.519 ± 0.030 0.409 ± 0.023 0.777 0.575 0.443
E-state 0.729 ± 0.026 0.566 ± 0.025 0.439 ± 0.022 0.772 0.581 0.445
ECFP4 0.778 ± 0.021 0.512 ± 0.022 0.395 ± 0.017 0.840 0.487 0.380

MACCS 0.751 ± 0.019 0.542 ± 0.019 0.422 ± 0.016 0.699 0.668 0.501
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Table 5. The results of internal and external validation of prediction models and previous studies.

Ki Model IC50 Model EC50 Model Kristam et al. [12] Wang et al. [14]

Q2 0.778 0.806 0.784 0.9 0.522
R2 0.780 0.784 0.809 0.75 0.839
n 661 1894 367 62 236

2.6. Y-Randomization Test

Feature selection involves selecting the best performing feature combinations from
high-dimensional descriptors and molecular fingerprints to build models that are highly
fitted to experimental values. However, it is possible to obtain such models by chance,
without any real correlation between the descriptors and experimental values. To assess
the chance correlation of the model, we applied the Y-randomization test. During the
Y-randomization test, the experimental values of pKi, pIC50, and pEC50 are randomly
disrupted, destroying the original relationship between the descriptors or molecular finger-
prints and the activity values, but the distribution of the activity values does not change [17].
We then re-modeled the disrupted data using the algorithm of the three optimal models
and the molecular fingerprints, repeating the process 1000 times. The results of evaluating
the 1000 randomized models using Q2 are shown in Figure 6. In this figure, the horizontal
coordinate represents Q2, and the vertical coordinate represents the number of frequen-
cies. The green bars on the left side of the three subfigures represent the histograms of
the distribution of Q2 for the 1000 randomized models, while the orange vertical lines
indicate the Q2 of the original models. From Figure 6, it is evident that all the Q2 of the
randomized models fall between −1 and 0, indicating no correlation between the true
value of the randomized model and the descriptor or molecular fingerprints. According to
the paired-sample t-test, the confidence level of the randomized model compared to the
original model is 99% (p < 0.001), which is statistically significant. Therefore, in the three
optimal activity prediction models constructed in this paper, there exists a real correlation,
rather than a chance correlation, between the modeled molecular fingerprints and Ki, IC50,
or EC50.
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2.7. Model Interpretation

In this paper, we aim to interpret the three optimal models by ranking the importance
of features. To select the features, we employ the RFE-RF method, which calculates the Gini
index for each feature to indicate its significance. Figure 7 displays the five features with the
highest importance among the three optimal models. Additionally, it is worth mentioning
that the optimal models of Ki and IC50 utilize the ECFP4 fingerprint, whereas the optimal
model of EC50 utilizes the Daylight fingerprint. Notably, the sum of the importance of all
the features in the models is equal to 1.
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Figure 7. Descriptor importance of the top 5 features of 3 optimal models. The vertical coordinate
represents the bit encoding of the molecular fingerprint, while the horizontal coordinate corresponds
to the feature importance.

The first five features of Ki had a cumulative importance of 0.493. Out of the dataset,
349 compounds had these features in the following descending order: 200, 667, 573, 316,
and 997. This accounted for 52.80% of the total Ki dataset. Figure 8A displays the histogram
of pKi distribution for compounds containing the top 5 features. It is evident that the
pKi of these compounds is shifted one unit to the right compared to other compounds.
The structure of the first five features is shown in Figure 9A. The structure of TRPV1
modulators typically comprises three parts: the head, the neck, and the tail. Generally,
the head serves as a hydrogen bond acceptor, while the neck acts as a hydrogen bond
acceptor and is commonly an amide, urea, or thiourea. On the other hand, the tail is a
hydrophobic group [18,19]. In the case of these compounds, the first five characteristics
correspond to the head (positions 667, 316, 997) and neck (positions 200, 573), with the
head being a methylsulfonamide attached to a benzene ring and the neck being an amide
group. Referring to the activity distribution in Figure 8A, it is reasonable to assume that
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compounds containing such a structure tend to exhibit high Ki activity and hold potential
for modification.
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structures for pIC50 endpoint; (C) Histogram of activity distribution of compounds with and without
feature structures for pEC50 endpoint.
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Figure 9. Feature structures and their position in the molecules. The blue structure on the left side of
the molecule is the sum of the sub-structures corresponding to the features. On the right side, the
featured structures are depicted, with the central atoms marked by purple dots. The atoms within the
bonding radius are represented in black, while the green color is used to indicate the environments of
the featured structures within the molecule. An asterisk indicates an unknown atom, which could be
carbon, nitrogen, or something else. (A) The representative compound in Ki is shown on the left, and
5 substructures with the most importance are shown on the right. (B) The representative compound
in IC50 and 3 substructures with the most importance. (C) The representative compound in EC50 and
one substructure with the most importance.

The first three features of IC50 have been found to be significantly more important than
the last two, with the order of importance being 672 bits > 128 bits > 378 bits. Therefore, the
first three features are selected for model interpretation, as illustrated in Figure 7. In the
IC50 dataset, there were 273 compounds (14.41% of the dataset) that demonstrated the first
three features. The cumulative importance of these features amounted to 0.225. Figure 8B
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highlights that compounds possessing the first three features exhibited a rightward shift
in pIC50 compared to other compounds, suggesting a higher level of antagonistic activity.
As illustrated in Figure 9B, positional markers 672 and 128 correspond to the aromatic
ring of the head and the urea group of the neck, respectively, while position 378 signifies
the indole ring of the head. The indole in the head acts as both a hydrogen bond donor
and acceptor, facilitating specific interactions for antagonist binding to TRPV1 channels.
Therefore, compounds that incorporate 1H-indole in the head may potentially possess
highly active antagonistic properties.

The Daylight fingerprint is different from ECFP4 in that it represents the molecular
structure as a linear path from atoms, and thus has no central atom. The importance of
the 67-position feature is 0.311, which is much higher than that of the other features, and
the number of compounds with this feature is 205, which accounts for 55.86% of the EC50
dataset, thus this feature is used to interpret the model. In Figure 8C, the compounds
with position 67 have a significant rightward shift in pEC50 compared to the other com-
pounds, and the IC50 activity is nearly two orders of magnitude different. As can be seen in
Figure 9C, the 67-position feature indicates the ureido group in the neck and the benzene
ring in the head. This indicates that most of the highly active TRPV1 agonists have pheny-
lurea at the neck and head, and thus compounds containing phenylurea are potentially
highly active TRPV1 agonists.

3. Materials and Methods
3.1. Data Collection and Processing

Data on the Ki, IC50, and EC50 activities of human TRPV1 channels were collected
from the ChEMBL [20] and PubChem [21] databases. The data were processed according
to the following steps: 1. compounds without a clear type of activity and activity value
were removed; 2. the units of nanomoles (nM) or micromoles (µM) in the original data
were converted to M and the negative logarithms with a base of 10 were taken (i.e., pKi,
pIC50, and pEC50); 3. the compounds with multiple activity values were de-weighted,
following the rule that if the maximum difference of the negative logarithm is less than
or equal to 1, the mean value is taken as the activity value of the compound, and the
compound is discarded otherwise; 4. salt ions and metal ions were removed from the
dataset. After processing, three activity datasets were obtained, consisting of 661 Ki, 1894
IC50, and 367 EC50 values. Based on these datasets, three QSAR models were constructed.

3.2. Descriptor Generation

This paper utilizes four different methods to extract features and build QSAR models:
Daylight fingerprints, molecular access system (MACCS) [22] fingerprints, electrotopologi-
cal state indices (E-state) molecular descriptors [23], and Extended-Connectivity Finger-
prints (ECFPs) [24]. MACCS fingerprints are substructure-based molecular fingerprints,
and this paper selects the commonly used 166-bit fingerprints. Daylight fingerprints, also
known as path-based molecular fingerprints, characterize molecules through different
atomic paths represented by a total of 2048 bits. E-state molecular descriptors simulta-
neously characterize the molecular structure and electrical characteristics with a total of
110 features. ECFP fingerprint is a circular topological fingerprint based on Morgan’s
algorithm. This study uses ECFP4 with a diameter of 4 and 1024 bits. These descriptors of
compounds in databases were calculated through the Scopy [25] and rdkit [26] toolkit.

3.3. Data Set Segmentation

In order to avoid training bias or overfitting and to maintain similar structural distri-
bution of compounds in each subset close to each other, this paper divides the dataset into
training and test sets according to the carbon scaffold. The carbon scaffold is determined
by removing all R groups from the molecule and retaining only the connecting groups
between the ring systems, while converting heteroatoms to carbon atoms and bonding
sequences to single bonds. The Scopy toolkit [25] is employed to calculate the carbon
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scaffold of the compounds in this study. If there are less than five molecules with the same
carbon scaffold, one molecule is randomly assigned to the training set and the remaining
molecules are assigned to the test set. On the other hand, if there are five or more molecules
with the same carbon scaffold, 80% of them are randomly assigned to the training set while
the remaining 20% are assigned to the test set.

3.4. Machine Learning Methods

In this study, four machine learning algorithms are used for the construction of QSAR
models, namely support vector machine (SVM), gradient boosting decision tree (GBDT),
extreme gradient boosting (XGBoost) and bagging. The models of the 4 algorithms were
implemented via the scikit-learn toolkit [27].

SVM [28] is a statistical learning algorithm based on the principle of Vapnik structural
risk minimization. Originally developed for classification problems, SVM can also be
extended to regression tasks by introducing slack variables. In the regression task, the
objective is to find a hyperplane with a small number of paradigms, while minimizing the
sum of the distances from the data to the hyperplane [29]. Its high degree of generalization
ability has contributed to its increasing popularity in the QSAR/QSPR species.

GBDT [30] is a machine learning algorithm based on the idea of Boosting integra-
tion. GBDT updates the strong learner by decreasing the loss function, fitting the loss
approximation for each round of iteration with the negative gradient of the loss function.
A disadvantage of GBDT is that it is difficult to train in parallel and is less efficient.

XGBoost was developed by Tianqi Chen et al. [31]. Other Boosting algorithms develop
their models in a sequential phase manner like other Boosting algorithms. However,
XGBoost enables parallel computation and also has improved handling of missing values
compared to GBDT. In addition, XGBoost is highly resistant to overfitting due to the
inclusion of regular terms.

Unlike Boosting, each base learner in Bagging [32] is independent and can be computed
in parallel. Bagging samples n sample sets using an autonomous sampling method and
training a base learner for each sample set. Afterwards, the learners are combined. Hence,
approximately 36.8% of the samples in the initial dataset do not appear in the sampling
set. These samples can be used as a validation set to test the training performance and
generalization ability of the model. The Bagging algorithm focuses on the reduction in
variance and is known for its integration and efficiency.

The grid search in scikit-learn was used for parameter tuning. The key parameters
of SVM are C (the penalty coefficient) and gamma (the coefficient of the kernel function).
In grid search, the values of C were set as 0.01, 0.1, 1, 10, 100, and 1000; the values of
gamma were set as 0.0001, 0.001, and 0.01; and the kernel was chosen as RBF. The number
of decision trees is the parameter of Bagging, XGBoost, and GBDT ranging from 100 to
1000, with a step size of 50.

3.5. Performance Evaluation Indicators

To ensure the good generalization ability of the QSAR model in predicting the bio-
logical activity of new chemical entities, internal validation and external validation were
conducted. The model was internally validated using five-fold cross-validation (CV) and
independent test sets. In five-fold CV, the training set was divided into five equal parts,
with four parts used for constructing the model and one part used for model validation.
This process was repeated five times, allowing each part of the data to serve as a validation
set. Four main statistical parameters were employed to evaluate the model’s performance:
the coefficient of determination (Q2), the root mean square error (RMSECV), and the mean
absolute error (MAECV) for CV and the coefficient of determination (R2), the root mean
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square error (RMSET), and the mean absolute error (MAET) for the test set. The formulas
for Q2 (R2), RMSE, and MAE are given below:

Q2
(

R2
)
= 1 − ∑n

i=1(ŷi − yi)
2

∑n
i=1(yi − yi)

2 (1)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (2)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (3)

where ŷi is the predicted value, yi is the true value, and yi is the average value of yi in the
sample. From the formula, it can be seen that the smaller the value of RMSE and MAE, the
better the performance of the model; while the larger the value of Q2 or R2, the better the
performance of the model.

4. Conclusions

To accelerate the discovery of novel TRPV1 modulators, QSAR models that can quanti-
tatively predict Ki, IC50, and EC50 were constructed using four machine learning algorithms
based on 2922 biological activity data. After rigorous internal and external validation, the
constructed models exhibited excellent external prediction performance and generalization
ability. The model feature importance analysis revealed that the key feature structures of
the three endpoints were concentrated in the head and neck of the molecule, aligning with
the conclusion that the polar interactions between the TRPV1 regulator and TRPV1 only
existed in their head and neck region. Specifically, a higher Ki activity tended to be observed
in molecules with a methylsulfonamide attached to a benzene ring in the head and an
amide group in the neck. Additionally, molecules containing 1H-indole in the head showed
potential as highly active antagonists, while those containing phenylurea have a likely
potential to be highly active TRPV1 agonists. These findings pertaining to the influence
of the microstructure of TRPV1 modulators on their biological activities are expected to
provide guidance for the rational design and efficient screening of novel analgesic drugs.
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