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Abstract: Chelating agents are commonly employed in microelectronic processes to prevent metal ion
contamination. The ligand fragments of a chelating agent largely determine its binding strength to
metal ions. Identification of ligands with suitable characteristics will facilitate the design of chelating
agents to enhance the capture and removal of metal ions from the substrate in microelectronic
processes. This study employed quantum chemical calculations to simulate the binding process
between eleven ligands and the hydrated forms of Ni2+, Cu2+, Al3+, and Fe3+ ions. The binding
strength between the metal ions and ligands was quantified using binding energy and binding
enthalpy. Additionally, we explored the binding interaction mechanisms and explained the differences
in binding abilities of the eleven ligands using frontier molecular orbitals, nucleophilic indexes,
electrostatic potentials, and energy decomposition calculations based on molecular force fields.
Based on our computational results, promising chelating agent structures are proposed, aiming to
guide the design of new chelating agents to address metal ion contamination issues in integrated
circuit processes.

Keywords: microelectronic process; chelating agent; quantum chemical calculations; metal ion;
ligand; deprotonation

1. Introduction

Metal impurities in silicon substrates are a critical factor that must be rigorously
controlled during silicon wafer fabrication. Metal particles in ionic form exhibit high
mobility within semiconductor silicon substrates, which can cause significant damage
to the electrical performance and long-term reliability of silicon-based semiconductor
devices [1–3].

Stringent control measures are essential at various stages of silicon wafer fabrication
processes. Currently, the most common and effective approach is to incorporate chelat-
ing agents into the liquid environment during the fabrication process. Chelating agents
enable metal ions to exist in the form of chelate complexes, effectively preventing metal
ion contamination.

Chelating agents are composed of multiple ligands with electron-donating properties.
These ligands coordinate with metal ions through their electron-donating atoms, resulting
in the formation of highly stable cyclic chelates that resist dissociation [4]. In the realm
of integrated circuits and microelectronics, chelating agents play a critical role and find
widespread applications in various processes, including substrate polishing, cleaning, and
even thin film layer etching [5,6].

As integrated circuit fabrication processes continue to advance, the requirements for
reducing metal contamination on silicon substrate surfaces are raised. The demand for
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lower surface metal concentrations decreases by approximately one order of magnitude
every decade [7]. By the 2010s, to manufacture 1 Gb DRAM, the criteria necessitated silicon
wafer surfaces to exhibit metal impurity concentrations lower than 1.0 × 109 atom/cm2 [7].
Presently, the pursuit of enhanced metal impurity cleanliness has emerged as a paramount
challenge within the realm of integrated circuit fabrication processes.

Hence, within various processes of semiconductor silicon wafer fabrication, researchers
and industry professionals are diligently engaged in the detection, control, reduction, elim-
ination, and prevention of metal impurities. This places higher demands on chelating
agents used in semiconductor manufacturing. Presently, the selection of chelating agents
in semiconductor processes is predominantly guided by experimental screening. For in-
stance, Fujimi Corporation [8,9] applied amino carboxylic acids and amino-phosphorous
acid acid-based chelating agents in chemical mechanical polishing processes for silicon
wafers. Hyun Soo Roh [10] proposed a series of carboxylic acid chelating agents for pre-
cision polishing. Additionally, Liu Yuling introduced specialized chelating agent FA/O
for microelectronics and conducted research on its applications and impacts in silicon
wafer polishing [5], cleaning [11], copper interconnect layer polishing [12], as well as im-
proving the electrochemical corrosion between cobalt and copper in copper interconnect
layer polishing processes [13]. The aforementioned chelating agents share analogous func-
tional ligands, such as carboxyl groups, phosphorous acid groups, hydroxyl groups, amino
groups, and others. However, there is a paucity of theoretical investigations and empirical
evidence to comprehensively elucidate their mechanisms of action and the underlying
rules governing their chelation strengths.

Quantum chemical calculations extensively investigate the characteristics and mech-
anisms of interactions between metal ions and ligands. Leonardo M. da Costa et al. [14]
conducted a comprehensive analysis involving geometric, electronic, and energetic param-
eters to quantitatively assess the coordination affinities of 32 ligands, including phosphine,
amine, and thiocarbonyl ligands, with [Ni(H2O)5]2+ complex. The ligand coordination
strengths were found to follow the order of carbonyl < thiocarbonyl < amine < phosphine.
Daniel S. G. Quattrociocchi et al. [15] computed the affinities of pentahydrated-Ni2+ ions
for 16 different neutral ligands with distinct functional groups. Ligands containing the P=O
structure exhibited the highest binding affinity, and their coordination bonds with nickel
ions had a significant electrostatic component. This conclusion is valuable for optimizing
chelating agents used in the treatment of wastewater containing nickel ions. Marcos. V.
M. Meuser et al. [16] investigated the affinities of three-hydrated Pb2+ ions for 14 different
ligands. The results indicate that the interaction between phosphorus oxide ligands and
metal cations is the strongest. Next are ligands with double bond structures, and finally,
ligands containing single bond structures. Sambath Baskaran et al. [17] conducted an anal-
ysis of the bonding properties and chemical hardness of Cu(III) alkyl complexes. They also
performed energy decomposition analysis (EDA) calculations on the complexes to explore
the relationship between the stability of the complexes and their bonding components. The
conclusion drawn is that the stabilization energy of the Cu (III)–Ettrans bond is relatively
higher, the bond order is also higher, and it is more ionic in nature.

R. López et al. [18] presented a comprehensive computational database of the com-
plexes involving alkali metal cations (Li+, Na+, K+) and alkaline earth metal cations (Be2+,
Mg2+, and Ca2+). This database includes accurate geometric structures and binding ener-
gies for interactions between these metal cations and the 25 small ligands with different
charges and donor atoms (“O”, “N”, and “S”). The results were rigorously validated against
experimental data, providing valuable insights into the interactions of metal cations with
ligands in proteins and nucleic acids. Similar studies on the interaction strength between
ligands and metal ions have also been reported in other works [19,20].

However, these studies have certain limitations in the application of microelectronics
processes. Firstly, they did not account for the deprotonation behavior of the ligands. In the
application scenarios of chelating agents in microelectronics processes, the environment
is often alkaline, leading to deprotonation of the ligands’ acidic side groups. Research
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in this aspect is currently lacking. Secondly, metal ion contamination in microelectronics
processes is not limited to a single metal ion. It typically involves various metal ions such
as iron, nickel, copper, and aluminum. The differences in binding mechanisms between
different types of metal ions and ligands remain unclear and warrant a comparative
investigation. Therefore, this study explores the binding characteristics and underlying
driving forces of 11 ligands, including four deprotonated acidic ligands featuring various
functional groups. Among these ligands, some are recognized as “chelators” that have
been applied in microelectronic processes, but their mechanisms are not clear. Other
ligands are selected based on previous studies on chelating agents in different fields
or our own rational choices. The research delves into the binding characteristics and
potential driving forces in the interactions of these ligands with Ni2+, Cu2+, Al3+, and Fe3+—
representative metal cations notorious for causing failures in silicon-based semiconductor
devices. Quantum chemical calculations were conducted to quantify binding strength
through binding enthalpy and binding energy calculations. In addition, we analyzed
the frontier molecular orbitals, nucleophilic indexes, and electrostatic potentials of the
ligands, as well as the electrostatic potential of the resulting coordination complexes. We
also introduced energy decomposition calculations based on molecular force fields to
examine the nature of the interactions between ligands and metal ions, thereby revealing
the fundamental driving forces in the binding process. Finally, promising chelating agent
structures are proposed, which exhibit the strongest binding affinity with each of the four
metal cations.

2. Calculation Methods

All calculations were performed using the density functional theory (DFT) within the
Gaussian16 [21] and GaussianView6 [22] software. The TPSSH [23,24] functional combined
with the DFT-D3 [25] correction was employed. For structure optimization, the SDD basis
set [26,27] was used for the metal ions, while the def2tzvp [28] basis set was used for
other atoms (C, N, O, H, S, P). Single-point energy calculations were carried out using the
def2tzvpp [28] basis set. These methods have been demonstrated to effectively describe
the interactions between Ni/Cu/Al/Fe ions and organic molecules [29–32].To simulate the
molecular systems in a solvent-like environment, the calculations were performed using the
polarizable continuum model (PCM) [33] for solvation. Additionally, vibrational frequency
calculations were performed to ensure the absence of imaginary frequencies and confirm
that the optimized structures correspond to the true energy minima. For the analysis of
the system’s frontier molecular orbitals [34] and electrostatic potential [35], we performed
calculations and processing using Multiwfn [36]. The obtained data were then visualized
using VMD [37].

Three types of ligands were investigated in this study, as depicted in Figure 1. Four
acidic ligands, including phosphorous acid, carboxylic acid, sulfonic acid, and sulfuric
acid, as well as their deprotonated forms (the deprotonation process is mentioned in
References [38,39]), are shown in Figure 1a–h. Additionally, three amine ligands containing
C-N single bond shown in Figure 1i–k, namely, amine, dimethylamine, and trimethylamine,
were also examined.

To better mimic the aquatic environment, this study employed fully hydrated metal
ions for binding simulations, as shown in Figure S1. Specifically, these included a hexa-
coordinated octahedral nickel ion hydrate, a tetra-coordinated square planar copper ion
hydrate, a hexa-coordinated octahedral trivalent aluminum ion hydrate, and a hexa-
coordinated trivalent iron ion hydrate. Following testing, each metal ion adopted its
respective most stable spin state (Ni2+ as a triplet, Cu2+ as a doublet, Al3+ as a singlet, and
Fe3+ as a sextet). The binding mode of the nickel ion hydrate is depicted as Equation (1)
(where U denotes the ligand) and illustrated in Figure 2. In this mode, a monodentate
ligand molecule replaces a water molecule from the nickel ion hydrate, and the electron-
deficient atom in the ligand occupies the position originally held by the oxygen atom of the
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water molecule, forming a coordination bond with the metal ion. The other three metal
ions follow a similar binding mode, as described in Equations (2)–(4):

[Ni(H2O)6]
(2+) + U → [Ni(H2O)5U](2+) + H2O (1)

[Cu(H2O)4]
(2+) + U → [Cu(H2O)3U](2+) + H2O (2)

[Al(H2O)6]
(3+) + U → [Al(H2O)5U](3+) + H2O (3)

[Fe(H2O)6]
(3+) + U → [Fe(H2O)5U](3+) + H2O (4)
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Figure 2. Substitution reaction for the change of a water molecule in the nickel ion hydrate by the
ligands shown in Figure 1.

The optimized structures of metal ion hydrates are depicted in Figure S1. The coordina-
tion bond lengths of the post-optimization structures of the four metal ion hydrates closely
resemble the theoretical values, indicating the accuracy of our computational methods
(refer to Table S1). The optimized structure of the coordination compound of the nickel
ion with the ligands is shown in Figure 3, and the optimized structures of the remaining
coordination compounds are shown in Figure S2. Following structural optimization, there
is a slight displacement in the ligand positions. However, the relative positions between
the coordinating atoms and the metal atoms remain essentially unchanged. In other words,
the geometric shape of the atoms surrounding the metal cation remains mostly unaltered.
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2.1. Binding Strength

We used binding enthalpy and binding energy as metrics to measure the strength of
chemical interactions in our study.

Binding enthalpy (∆Hbinding) has been used to quantify the affinity between metal
ions and ligands [14,19,39,40]. Binding enthalpy reflects the magnitude of non-covalent
interactions such as hydrogen bonds and van der Waals forces between molecules. It can be
used to evaluate the affinity and selectivity between ligands, metal ions, and solvents [41].
In our study, we have utilized thermally corrected computations to determine binding
enthalpy at 298 K, which accurately represents the affinity between metal ions and ligands.
The formula for calculating binding enthalpy is as follows (Equation (5)):

∆Hbinding = Hcompound + Hion_hydration − (Hwater + Hligand) (5)

∆Hbinding represents the enthalpy change associated with the binding process, where
Hcompound, Hion_hydration, Hwater, and Hligand denote the enthalpies of the complex formation,
ion hydration, water molecule, and ligand, respectively. A negative ∆Hbinding indicates a pre-
ferred affinity of the metal cation for the monodentate ligand compared to water molecules.

Binding energy refers to the energy released when two or more chemical particles
(atoms) undergo a binding reaction to form new particles. The magnitude of binding
energy is a key metric specific to binding (chemical) reactions, used to quantify the ease or
difficulty of the occurrence of a reaction. Since the energy changes in the systems described
in this paper result from electronic interactions, electronic energy is employed as a measure
of binding energy. The formula for calculating binding energy in the context is provided in
Equation (6):

∆Ebinding = Ecompound + Eion_hydration − (Ewater + Eligand) (6)

Ecompound, Eion_hydration, Ewater, and Eligand represent the system energies of the substi-
tuted complex, hydrated metal ion, water molecule, and ligand, respectively. ∆Ebinding
denotes the energy change during the combination process, which reflects the strength of
the binding between the ligand and the metal ion.
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2.2. Frontier Molecular Orbitals (FMOs) and Energy Gaps

Frontier molecular orbitals refer to the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) within a molecule. The HOMO
typically exhibits a relatively loose electron-binding nature, characterized as an electron-
donating entity. Conversely, the LUMO possesses a strong electron affinity, serving as an
electron-accepting entity. These two orbitals play an extremely crucial role in chemical
reactions [42].

The ∆E (ELOMO-EHOMO) energy gap represents the energy difference between the
HOMO and LUMO orbitals, which is a critical reference value for the reactivity of chemi-
cal reactions.

2.3. The Electrophilicity ω Index and the Nucleophilicity N Index

The electrophilicity index and nucleophilicity index are among the commonly used
analysis methods in Conceptual Density Functional Theory (DFT) [43,44]. The electrophilic-
ity index (ω) is related to the molecule’s strong electron-accepting ability, while the nu-
cleophilicity index (N) is the opposite, related to the molecule’s strong electron-donating
ability [45]. The electrophilicity ω scale allowed the classification of organic molecules as
strong electrophiles with ω > 1.5 eV, moderate electrophiles with 0.8 < ω < 1.5 eV, and
marginal electrophiles with ω < 0.8 eV [46], akin, the nucleophilicity N scale allowed a
further classification of organic molecules as strong nucleophiles with N > 3.0 eV, moderate
nucleophiles with 2.0 < N < 3.0 eV, and marginal nucleophiles with N < 2.0 eV [47].

The local electrophilicity ωk [48] and the local nucleophilicity Nk [49] indexes, which
permit the distribution of the global electrophilicity ω and nucleophilicity N indexes at
the atomic sites k, enable the activity information of individual atoms in the molecule to
be examined very clearly. Numerous experimental and theoretical studies have proven
the feasibility of these local descriptors to study regio- and chemoselectivities [43,44]. This
paper examines the nucleophilic nature of ligand molecules.

2.4. Electrostatic Potential

The electrostatic potential refers to the work done when moving a unit of positive
charge from infinity to a specific point in the space surrounding a molecule. It can also be
seen as the interaction energy between a unit positive charge located at a point r and the
current system [50]. Its calculation formula is given by Equation (7) [51]:

vtot(r) = vnuc(r) + vele(r) = ∑
A

ZA

|r − RA|
−

∫
ρ(r′)
|r − r′|dr′ (7)

The electrostatic potential is composed of two parts: the nuclear charge of atom A
(denoted as Z) and the electron density (denoted as ρ). The former contributes a positive
value, while the latter contributes a negative value. A positive (or negative) electrostatic
potential indicates that the potential is dominated by the charge of the nucleus (electrons)
at that point. The electrostatic potential distribution on molecular van der Waals surfaces
has long been used to analyze the charge distribution of various organic molecules [52,53],
organic molecules interacting with metals, and inorganic molecular systems [53]. It is
employed to predict properties such as reaction sites, aiding researchers in gaining a deeper
understanding of the nature of chemical reactions and interactions between molecules.

2.5. Energy Decomposition Analysis Based on Forcefield (EDA-FF)

Energy decomposition is a crucial component of quantum chemical calculations. It
allows for the total inter-fragment interaction energy to be decomposed into physically
meaningful energy terms, facilitating the examination of the nature of interactions. In fact,
compared to mainstream wave function-based energy decomposition methods such as
Morokuma and SAPT, molecular force fields (forcefield), which are based on a very simple
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form, can also decompose components of weak interactions. This is referred to as energy
Decomposition Analysis based on forcefield (EDA-FF) [54].

In molecular force fields, non-bonding interactions include electrostatic interactions
and van der Waals forces. The latter can be divided into a “repulsion term” that causes
repulsion and a “dispersion term” that causes attraction. This method is extremely time-
efficient and yields results with clear physical meanings. In many cases, it can replace
more expensive wave function-based energy decomposition methods and can conveniently
examine weak interactions within molecules qualitatively. Currently, many articles have
used the EDA-FF method to study problems and have obtained meaningful results [55–60].
In the present study, the more precise AMBER force field [61] was used to probe the
composition of the metal center and ligand interactions.

3. Results

We quantified the binding strength between metal ions and ligands using bind-
ing energy and enthalpy. The binding enthalpies and energies for the substitution pro-
cesses involve four types of metal ion hydrates and ligands, which are summarized in
Tables S2 and S3.

N and O atoms are often the electron-donating atoms in the ligand. Some of the
ligands in this study system contain both single-bonded oxygen and double-bonded oxygen
structures. In order to clarify the functions of the single-bonded oxygen and double-bonded
oxygen in the binding process, we separately performed binding simulations for them.
Figure 4 presents the bar graph of the binding enthalpies and binding energies, respectively,
for copper ions with the four ligands at their single and double-bond oxygen sites. The
results indicate that, prior to deprotonation, the double-bond oxygen sites of the ligands
exhibit stronger binding with copper ions than the single-bond oxygen sites. Similar results
can be found in other studies [12,40,51]. The binding characteristics of the single-bonded
and double-bonded oxygen atoms with the other three metal ions also show similar trends,
as shown in Figure S3.
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We visualized the electrostatic potential of the oxygen-containing ligands before
and after deprotonation in Figure 5 (the remaining nitrogen ligand electrostatic potential
visualization is shown in Figure S4). As can be seen from the figure, before deprotonation,
the minimum point of the ligand’s electrostatic potential is located on the van der Waals
surface of the double-bond oxygen, indicating a stronger electron loss potential at the
double-bond oxygen site. After deprotonation, however, the minimum point of the ligand’s
electrostatic potential is located at the intersection of the van der Waals surfaces between
single and double-bond oxygen, suggesting similar electron loss tendencies at both sites.
Figure S5 displays the local electrophilicity and nucleophilicity indexes, reduced to each
atom, for eleven ligands. Similar to the results of the electrostatic potential, in neutral
oxygen ligands, the atom with the highest nucleophilicity index is always the double-
bonded oxygen atom of the ligand. After deprotonation, the nucleophilicity index of the
deprotonated oxygen atom in the oxygen ligand increases sharply, and the difference in the
nucleophilicity indexes of its single and double-bonded oxygen is very small. Therefore,
we used the double-bond oxygen site for binding simulations of the neutral ligands and
switched to using the deprotonated single-bond oxygen site for binding simulations of
deprotonated ligands. This approach will be consistently applied in subsequent results and
discussions without further elaboration.
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In microelectronic processes, chelating agents can be used in various chemical prod-
ucts, such as acidic or alkaline slurries and cleaning agents. Therefore, both the effects of
ligand types and deprotonation have been explored in this study. Figure 6a,b show the
binding enthalpies and binding energies, respectively, of the eleven ligands in this study for
the hydrides of four metal ion hydrides. As shown in the figure, anionic ligands, including
deprotonated phosphoric acid, carboxylic acid, sulfonic acid, and sulfuric acid, show very
high binding strength with metal ions, significantly superior to other non-deprotonated
ligands (increase in the binding energy by more than 1 eV). For the divalent ion Cu2+,
the binding strength of the four anionic ligand acids is in the order carboxylic acid ion
> phosphoric acid ion > sulfuric acid ion > sulfonic acid ion. For the trivalent metal ion
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Fe3+, the binding strength of phosphite exceeds that of carboxylate, with the order being
phosphoric acid ion > carboxylic acid ion > sulfonic acid ion > sulfuric acid ion. For all four
types of metal ions, phosphoric acid ion and carboxylic acid ion ligands have much higher
binding strengths than the sulfonic acid ion and sulfuric acid ion.
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Among the neutral ligands, significant differences can be found in their binding
features. For oxygen ligands, as shown in Figure 6a,b, phosphite ligands exhibit strong
binding with metal ions. The binding strength of the remaining three oxygen ligands with
the studied metal ions is not significantly better than that of a water molecule. In fact,
sulfate ligands are noticeably inferior to water molecules. Some oxygen ligands binding
systems have inconsistent trends in binding enthalpy and binding energy (A complex
system involving neutral carboxylate ligands, sulfate ligands, and deprotonated sulfonate
ligands), which may be due to relatively high reaction barriers for these systems.

All three nitrogen-containing ligand systems exhibit high binding strength. Compared
to oxygen ligands, nitrogen ligands have exceptionally high binding strength with copper
ions. In fact, the binding strength of Cu2+ with amine even surpasses its binding strength
with deprotonated sulfonic acid ligand, which may reflect its selectivity to some extent.
The binding strengths of the three nitrogen ligands with metal ions are ranked as follows:
amine > dimethylamine > trimethylamine. The binding strength decreases as the number
of hydrogen atoms connected to the nitrogen atom decreases. This trend may be due to the
-H structure enhancing the charge on the electron-losing N atom, which is consistent with
the previous research results [40,51].

There are some differences in the binding trends between trivalent and divalent metal
ions with ligands. For oxygen ligands, the binding strength with trivalent metal ions is
generally higher than that with divalent metal ions. This is particularly true for the four
deprotonated ligands: phosphorous acid ion, carboxylic acid ion, sulfonic acid ion, and
sulfuric acid ion. Their binding energies with Fe3+ are 1.12, 0.444, 0.664, and 0.382 eV higher
than those with Cu2+, respectively.

4. Discussion

In order to explore the potential mechanisms influencing binding strength, we have
linked the binding strength of metal ions and ligands with frontier molecular orbitals,
nucleophilic indexes, and electrostatic potentials and conducted energy decomposition
analysis based on forcefield on some binding systems.

4.1. Effect of Deprotonation on Binding Properties of Ligand

The computational results from the previous section revealed that the deprotonation
process has a significant impact on the binding ability of the ligands. Consequently,
we employed frontier molecular orbitals and molecular electrostatic potential for an
in-depth exploration of its mechanism. We have calculated and summarized the fron-
tier molecular orbitals energy values and energy gaps (∆E) of the ligands as shown in
Table S4. Figure 7a,b depict the trend graphs of the energy values of the highest occupied
molecular orbitals (HOMO) and the energy gaps (∆E) of the ligands before and after
deprotonation, respectively. High HOMO orbital energy values are associated with high
electron-donating properties, while small energy gap values are related to stronger reac-
tivity. The results show that after deprotonation, the EHOMO values of the four ligands
increase by 2.15, 1.59, 2.30, and 2.05 eV, respectively, while the energy gaps (∆E) decrease
by 0.14, 0.92, 1.00, and 0.43 eV, respectively. These significant differences indicate that
after deprotonation, the ability of the ligands to bind electrons in their HOMO orbitals
weakens, and their reactivity increases, making them more prone to electron loss and
nucleophilic substitution reactions.

We have calculated the electrostatic potential of the ligands, and the results are shown
in Table S5. Figure 7c presents a schematic representation of the changes in the electrostatic
potential of the ligands before and after deprotonation. The results show that after depro-
tonation, the electrostatic potential of the ligands significantly decreases, with all values
falling into the negative range.
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We have calculated the electrophilic and nucleophilic indexes of the ligands, and
the results are shown in Table S6. Figure S6a presents a schematic representation of
the changes in nucleophilic indexes of the ligands before and after deprotonation. The
results showed that the nucleophilic index (N) value of the ligands increased dramatically
after deprotonation.

This indicates that the deprotonation process increases the electron density of the
ligands and significantly enhances their electron loss potential. These results suggest
that the deprotonation process strongly influences the electronic properties of the ligands,
including EHOMO values, energy gaps, electrostatic potentials, and nucleophilic indexes.
These changes enable the deprotonated ligands to have stronger binding energies when
binding with metal ions.
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4.2. Differences in Binding Properties of Neutral Ligands

The computational results from the previous chapter also indicated that the binding
strengths of phosphorous acid and nitrogen ligands are higher than those of the other
neutral ligands. We further investigated the mechanism behind this observation. Figure 8
presents the bar graph of the highest occupied molecular orbital (HOMO) energy values
and energy gaps for the seven neutral ligands. The results show that the three nitrogen
ligands, namely amine, diamine, and triamine, not only have the highest HOMO orbital
values (at −6.20, −5.78, and −5.55 eV, respectively) but also have smaller energy gaps (at
7.22, 6.87, and 6.61 eV, respectively). Figure S6b shows the bar chart of the nucleophilicity
of the neutral ligands. Compared with other ligands, the three nitrogen ligands exhibit
stronger nucleophilic properties. These results suggest that they have higher electron
loss capabilities and reactivity. Therefore, nitrogen ligands are typically excellent electron
donors. The results are consistent with similar research findings, where nitrogen ligands
with similar structures are often observed to be superior to oxygen ligands [12,40].
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Figure 8. Bar chart of the highest occupied molecular orbital energy value (EHOMO) and energy gap
of the neutral ligands.

Figure 9 shows the histogram of the minimum electrostatic potential values for the
seven neutral ligands. Among the non-deprotonated ligands, phosphoric acid has the
most negative electrostatic potential (−50.3 kcal/mol), indicating the highest free electron
density. Therefore, it also has a strong binding with metal ions.



Molecules 2024, 29, 308 13 of 18
Molecules 2024, 29, x FOR PEER REVIEW 14 of 20 
 

 

 

Figure 9. Bar chart of the minimum electrostatic potential values of the seven neutral ligands. 

To more accurately explore the binding mechanism between neutral ligands and 

metal ions, we conducted energy decomposition calculations on the interactions of the 

seven neutral ligands and one water molecule with copper and iron ions. The results are 

shown in Table S7. The results indicate that in all systems, electrostatic interactions make 

a decisive contribution to the binding strength. Therefore, there is no doubt that the main 

nature of the coordination bond between metal ions and organic ligands is electrostatic 

interaction. Dispersion effects also contribute to some systems, but they are second to elec-

trostatic interaction. The main role of exchange repulsion is to offset the attractive effects 

produced by electrostatic and dispersion interactions. 

Figure 10a,b are bar graphs representing the increase in electrostatic forces and total 

energies between the seven neutral ligands with copper and iron ions compared to the 

value of one water molecule, respectively. The data reveals that the nitrogen ligands and 

the phosphite ligand exhibit pronounced electrostatic forces with the metal ions, signifi-

cantly surpassing the other neutral ligands. Moreover, their total energies are also mark-

edly higher than the remaining neutral ligands. A notable distinction is that the iron ion 

and the phosphite ligand demonstrate a stronger electrostatic force and total energy, 

whereas the copper ion and the nitrogen ligands present more potent electrostatic forces 

and total energies. This observation aligns with the selectivity trend discussed in the pre-

ceding section. It is important to note that in all seven instances, the exchange repulsion 

between copper ions and ligands exceeds that of iron ions. This discrepancy is likely at-

tributable to the valence state of the metal ions. 

Figure 9. Bar chart of the minimum electrostatic potential values of the seven neutral ligands.

To more accurately explore the binding mechanism between neutral ligands and metal
ions, we conducted energy decomposition calculations on the interactions of the seven
neutral ligands and one water molecule with copper and iron ions. The results are shown in
Table S7. The results indicate that in all systems, electrostatic interactions make a decisive
contribution to the binding strength. Therefore, there is no doubt that the main nature of
the coordination bond between metal ions and organic ligands is electrostatic interaction.
Dispersion effects also contribute to some systems, but they are second to electrostatic
interaction. The main role of exchange repulsion is to offset the attractive effects produced
by electrostatic and dispersion interactions.

Figure 10a,b are bar graphs representing the increase in electrostatic forces and total
energies between the seven neutral ligands with copper and iron ions compared to the
value of one water molecule, respectively. The data reveals that the nitrogen ligands and the
phosphite ligand exhibit pronounced electrostatic forces with the metal ions, significantly
surpassing the other neutral ligands. Moreover, their total energies are also markedly
higher than the remaining neutral ligands. A notable distinction is that the iron ion and
the phosphite ligand demonstrate a stronger electrostatic force and total energy, whereas
the copper ion and the nitrogen ligands present more potent electrostatic forces and total
energies. This observation aligns with the selectivity trend discussed in the preceding
section. It is important to note that in all seven instances, the exchange repulsion between
copper ions and ligands exceeds that of iron ions. This discrepancy is likely attributable to
the valence state of the metal ions.

4.3. Differences in Electrostatic Properties of Divalent and Trivalent Metal Ion Complexes

We have also calculated the electrostatic potentials of the complexes formed by the
metal ions and ligands, which are shown in Table S8. Figure 11 shows the electrostatic
potential trend graph of Fe3+ and Cu2+ binding products in this study system. The results
show that compared to divalent copper ion binding products, trivalent iron ion binding
products have a more “positive” electrostatic potential. This can be explained by the fact
that trivalent iron ions have a higher positive charge and can, therefore, bind electrons more
strongly. This may be consistent with the result in energy decomposition calculations where
divalent copper ions always have stronger exchange repulsion than trivalent iron ions.
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and iron ions.

In summary, based on our series of computational results and mechanistic investiga-
tions, we selected the optimal ligands for each of the four metal ions, as shown in Table 1.
According to the binding strength and structural characteristics of the ligands, we can
divide them into edge ligands and bridging ligands. Finally, we speculated the chelating
agent structures suitable for each metal ion based on the theoretical calculation results
of this paper, which are shown in Figure 12. The chelating agent that can achieve strong
binding with divalent metal ions may be an amino carboxylic acid chelating agent (such as
Figure 12a), which is an EDTA-type chelating agent. So far, the EDTA-type chelating agent
is still a very widely used type of chelating agent, which also verifies the rationality of our
calculation results. Combined with the calculations in this paper, we have extended the
structure of this class of chelators to give the strongest metal ion binding efficiency. For
trivalent metal ions, the strong chelating agent type may be a chelating agent with more
phosphorous acid ligands (such as Figure 12b). In addition, if it is necessary to use one
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chelator to achieve strong chelation of all types of metal ions, we recommend the amino
phosphite chelator as in Figure 12c. It should be noted that with the change of chelating
agent application scenarios, strong chelating agents may change. We hope that the results
of this paper can help researchers and practitioners to choose appropriate chelating agents
in microelectronic processes.

Table 1. Summary of good ligands for each metal ion.

Metal Ions Edge Position Ligand Center Position Ligand

Ni2+ carboxylic acid ion phosphorous acid ion sulfonic acid ion amine dimethylamine trimethylamine

Cu2+ carboxylic acid ion phosphorous acid ion sulfonic acid ion amine dimethylamine trimethylamine

Al3+ phosphorous acid ion carboxylic acid ion sulfonic acid ion phosphorous acid amine dimethylamine

Fe3+ phosphorous acid ion carboxylic acid ion sulfonic acid ion phosphorous acid amine dimethylamine
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Chelator structure suitable for trivalent metal ions, (c) Chelator structure with strong binding capacity
for all metal ions.

5. Conclusions

This paper presents the quantum chemical calculations of the binding process between
eleven ligands and four metal ion hydrates (Cu2+, Ni2+, Al3+, Fe3+) and analyzes the
molecular orbitals and electrostatic potential of the ligands to explore the main causes of
the difference in ligand binding strength. According to our results, we found that firstly,
the double-bonded oxygen of neutral oxygen ligands is more likely to be the binding site.
Secondly, the binding of deprotonated ligands with four metal ions increased sharply,
significantly better than all the non-deprotonated ligands, which may be due to the increase
of HOMO orbital value, decrease of energy gaps, increase of nucleophilic indexes, and
decrease of electrostatic potentials of deprotonated ligands. In addition, among the non-
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deprotonated ligands, nitrogen ligands and phosphorous acid ligands usually have stronger
binding with metal ions, which may be because nitrogen ligands have higher HOMO orbital
energy values, lower energy gaps and higher nucleophilicity indexes, and phosphorous
acid ligands have the most negative electrostatic potential. Finally, the results of the energy
decomposition calculations indicate that the primary nature of the coordination bond
between metal ions and organic ligands is undoubtedly electrostatic interaction. The main
role of exchange repulsion is to offset the attractive forces generated by electrostatic and
dispersion interactions. Compared to trivalent iron ions, divalent copper ions usually have
stronger covalent repulsion with ligands. However, the electrostatic interaction between
copper ions and nitrogen ligands is exceptionally high, leading to a higher total binding
energy. This may reflect its selectivity to some extent. These conclusions can guide us to
find new and stronger chelating agents to solve the problem of metal ion contamination in
microelectronic processes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29020308/s1. Figure S1: Geometrically optimized structure
of four metal ionic hydrates; Table S1: Table of theoretical and calculated values for metal ion
coordination bond lengths; Figure S2: Computationally simulated geometries of binding products
generated by the binding of three metal ions to eleven ligands with their different sites; Table S2: Table
of metal ions and ligands binding enthalpies (eV); Table S3: Table of metal ions and ligands binding
energies (eV); Figure S3: (a) Bar chart of the binding enthalpies and binding energies between nickel
ions and four ligands at single and double bond oxygen sites, (b) Bar chart of the binding enthalpies
and binding energies between aluminum ions and four ligands at single and double bond oxygen
sites, (c) Bar chart of the binding enthalpies and binding energies between ferrous ions and four
ligands at single and double bond oxygen sites; Table S4: Table of ligands frontier molecular orbital
values and energy gap (eV); Table S5: Ligands electrostatic potential range table (kcal/mol); Figure S4:
Electrostatic potential diagrams of the three nitrogen ligands (The blue point in the graph indicates
the point of electrostatic potential minimum); Figure S5: Local electrophilic indexes and nucleophilic
indexes(e*eV) plots for eleven ligands, where the atoms possessing the strongest nucleophilic indices
for each ligand have been bolded; Table S6: The electrophilicity ω index and nucleophilicity N
index(eV); Figure S6: (a) Graph of the change in nucleophilic indexes of ligands before and after
deprotonation, (b) Histogram of the nucleophilic indexes of the neutral ligand; Table S7: Energy
decomposition data based on molecular force field for the coordination bonds of copper ions and
iron ions with neutral ligands (KJ/mol); Table S8: The electrostatic potential range of the complexes
(kcal/mol).
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