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Abstract: The Bland–Altman approach is one of the most widely used mathematical approaches for
method comparison and analytical agreement. This work describes, for the first time, the application
of Bland–Altman to study 14N/15N and 1H/2H (D) chromatographic isotope effects of endogenous
analytes of the L-arginine/nitric oxide pathway in human plasma, serum and urine samples in
GC-MS. The investigated analytes included arginine, asymmetric dimethylarginine, dimethylamine,
nitrite, nitrate and creatinine. There was a close correlation between the percentage difference of the
retention times of the isotopologs of the Bland–Altman approach and the area under the curve (AUC)
values of the receiver operating characteristic (ROC) approach (r = 0.8619, p = 0.0047). The results of
the study suggest that the chromatographic isotope effects in GC-MS result from differences in the
interaction strengths of H/D isotopes in the derivatives with the hydrophobic stationary phase of the
GC column. D atoms attenuate the interaction of the skeleton of the molecules with the lipophilic GC
stationary phase. Differences in isotope effects in plasma or serum and urine in GC-MS are suggested
to be due to a kind of matrix effect, and this remains to be investigated in forthcoming studies using
Bland–Altman and ROC approaches.
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1. Introduction

In gas chromatography (GC) and reversed-phase liquid chromatography (LC), iso-
topologs differ in their retention times, with deuterated compounds having, as a rule,
smaller retention times (tR) than their protiated analogs [1]. The slightly reduced molecular
volume of 2H-labeled compounds compared to their non-labeled analogs is assumed to
be responsible for this phenomenon [2]. The tR of the isotopologs is the main parameter
for quantitate H/D isotope effects [3]. One method to calculate the H/D isotope effect
(IE) is to divide the tR of the protiated analyte tR(H) by the tR of the deuterated analyte
tR(D) (Formula (1)). The difference in the retention times can be used to estimate the extent
of the isotope effect δ(H/D) (Formula (2)). The closer the IE value to the unity (1.0000),
the lower/weaker the isotope effect between the isotopologs. The smaller the difference
δ(H/D) in the retention times tR(H) and tR(D), the higher/stronger the isotope effect between
the isotopologs. These issues are also valid for isotopes of other elements, including 14N
and 15N.

IE = tR(H)/tR(D) (1)

δ(H/D) = tR(H) − tR(D) (2)
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µ(H/D) = 1/2 × (tR(H) + tR(D)) (3)

δ (%) = 2 × ([tR(H) − tR(D)]/[tR(H) + tR(D)]) × 100 (4)

The Bland–Altman approach is useful for the comparison of methods with comparable
analytical performance [4,5]. It is a graphical approach which examines the relationship
between the difference (δ) of the values obtained by two methods and the average (µ) of the
methods. In a variant of the Bland–Altman method, the percentage difference δ (%) of the
two methods is plotted versus the average of these methods (Formulas (3) and (4)). One
may expect that the Bland–Altman approach would be useful in calculating the absolute
and percentage difference of the retention times of isotopologs as measures of isotope effects.
The Bland–Altman method has been sporadically used in this area, including δ(18O) isotope
ratios [6–8]. The receiver operating characteristic (ROC) approach is another graphical plot
that is widely used in several disciplines, notably including clinical chemistry [9,10]. The
utility of the ROC approach in comparison to methods in analytical chemistry has been
demonstrated [5]. The ROC approach is useful for evaluating the agreement/disagreement
between the isotopologs.

In the present work, the Bland–Altman and ROC approaches were used for the first
time to investigate the H/D and 14N/15N isotope effects of endogenous substances in
human plasma, serum and urine samples. The analytes considered in the study belong
to the L-arginine/nitric oxide pathway [11]. They include nitrite and nitrate, the ma-
jor metabolites of nitric oxide (NO), L-arginine (Arg) and asymmetric dimethylarginine
(ADMA), the endogenous substrate and inhibitor of NO synthase, respectively [11], and
dimethylamine (DMA), the major urinary metabolite of ADMA [12]. In addition, creatinine
serves as an analyte that is commonly used to correct for the excretion of endogenous
substances in urine collected by spontaneous micturition. The above-mentioned analytes
were measured by gas chromatography–mass spectrometry (GC-MS) after proper chemical
derivatization. The chemical structures of the derivatives of the protiated (unlabeled) and
2H- or 15N-labelled analytes are shown in Scheme 1.
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Scheme 1. Chemical structures of the unlabeled analytes (left) and their 15N and 2H (D) isotopologs 
(right) investigated in the present work. Nitrite, nitrite and creatinine were derivatized with 
pentafluorobenzyl bromide in aqueous acetone (e.g., 60 min at 50 °C). Arginine and asymmetric 
dimethylarginine were first methylated in 2 M HCl in CH3OH or 2 M HCl in CD3OD (e.g., 30 min at 
80 °C) and then acylated by pentafluoropropionic anhydride in ethyl acetate (e.g., 60 min at 65 °C). 
Metformin was derivatized with pentafluoropropionic anhydride only. Dimethylamine was 
derivatized with pentafluorobenzoyl chloride at room temperature. PFB, pentafluorobenzyl; PFP, 
pentafluoropropionyl. Blue color indicates 14N and 1H isotopes; red color indicates 15N and 2H (D) 
isotopes. 

2. Methods 
2.1. GC-MS Analyses in Human Plasma, Serum and Urine Samples 

The human plasma, serum and urine samples analyzed in the present work were 
collected in previous clinical studies of the author’s group and cooperating groups after 
approval by the local ethics committees [13–19]. The studies were conducted in line with 
the ethical principles of the Declaration of Helsinki [20]. The COVID-19 study [17] was 
approved by the local ethics committees (9948_BO_K_2021 Hannover Medical School; 
29/3/21 University Medical Center Göttingen). The ASOS study was approved by the 
Health Research Ethics Committee of North-West University (NWU-00007-15-A1) [18].  

Nitrite and nitrate were analyzed simultaneously by GC-MS as described previously, 
using commercially available 15N-nitrite and 15N-nitrate as internal standards, respectively 
[13]. Creatinine was analyzed via GC-MS as described elsewhere using commercially 
available [methylo-2H3] creatinine as internal standard [14]. Arg and ADMA were analyzed 
by GC-MS, using in situ prepared trideuteromethyl ester as described previously [15]. 

Scheme 1. Chemical structures of the unlabeled analytes (left) and their 15N and 2H (D) isotopologs
(right) investigated in the present work. Nitrite, nitrite and creatinine were derivatized with pentaflu-
orobenzyl bromide in aqueous acetone (e.g., 60 min at 50 ◦C). Arginine and asymmetric dimethylargi-
nine were first methylated in 2 M HCl in CH3OH or 2 M HCl in CD3OD (e.g., 30 min at 80 ◦C) and
then acylated by pentafluoropropionic anhydride in ethyl acetate (e.g., 60 min at 65 ◦C). Metformin
was derivatized with pentafluoropropionic anhydride only. Dimethylamine was derivatized with
pentafluorobenzoyl chloride at room temperature. PFB, pentafluorobenzyl; PFP, pentafluoropropi-
onyl. Blue color indicates 14N and 1H isotopes; red color indicates 15N and 2H (D) isotopes.

2. Methods
2.1. GC-MS Analyses in Human Plasma, Serum and Urine Samples

The human plasma, serum and urine samples analyzed in the present work were
collected in previous clinical studies of the author’s group and cooperating groups after
approval by the local ethics committees [13–19]. The studies were conducted in line with
the ethical principles of the Declaration of Helsinki [20]. The COVID-19 study [17] was
approved by the local ethics committees (9948_BO_K_2021 Hannover Medical School;
29/3/21 University Medical Center Göttingen). The ASOS study was approved by the
Health Research Ethics Committee of North-West University (NWU-00007-15-A1) [18].

Nitrite and nitrate were analyzed simultaneously by GC-MS as described previously,
using commercially available 15N-nitrite and 15N-nitrate as internal standards, respec-
tively [13]. Creatinine was analyzed via GC-MS as described elsewhere using commercially
available [methylo-2H3] creatinine as internal standard [14]. Arg and ADMA were analyzed
by GC-MS, using in situ prepared trideuteromethyl ester as described previously [15]. DMA
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was analyzed by GC-MS using [dimethylo-2H3]DMA (d6-DMA) as the internal standard [16].
Metformin (METF) was analyzed by GC-MS using [dimethylo-2H3]metformin (d6-METF) as
the internal standard [19]. The isotopic purity in the stable-isotope-labeled analogs was
at least 99% at 2H and 15N. The concentrations of the internal standards were 1 µM for
ADMA in plasma and serum; 20 µM in urine; 50 µM for Arg in plasma and serum; 10 mM
and 1 mM for creatinine in urine and serum, respectively; 1 mM for DMA in urine; 4 µM
for nitrite in plasma and serum and 8 µM in urine; 40 µM for nitrate in plasma and 800 µM
in urine.

GC-MS analyses were performed on the apparatus model ISQ from ThermoFisher
(Dreieich, Germany), which was equipped with a fused silica capillary OPTIMA-17 column
(15 m× 0.25 mm, 0.25 µm film thickness) from Macherey-Nagel (Düren, Germany). Helium
and methane were, respectively, used as carrier and reagent gases for negative-ion chemical
ionization. Analyses were performed by selected-ion monitoring (SIM) for nitrite, nitrate,
creatinine, DMA, ADMA and Arg. Aliquots of 1 µL toluene (for amino acids, DMA and
metformin) or ethyl acetate (for nitrite, nitrate and creatinine) extracts of the derivatives
were injected in the splitless mode. Ions were detected after conversion to electrons by
using an electron multiplier. Different oven temperature programs were used, starting
either at 40 ◦C or 70 ◦C (for nitrite, nitrate and creatinine).

2.2. Calculations

Isotope effect values were calculated using Formula (1). The difference (in min)
between the retention times was calculated by Formula (2). The difference in the retention
times was multiplied by 60 to obtain the outcome in seconds. In the Bland–Altman
approach, the percentage difference (δ (%)) was plotted versus the average (µ(H/D)). The
term bias (%) in the regular Bland–Altman approach corresponds to δ (%). The receiver
operating characteristic (ROC) approach was used to determine the area under the curve
(AUC) values by using the retention times of the isotopologs. The ratios of the peak areas
(PAR) of endogenous analytes and the respective internal standards were calculated and
used to test for potential correlations between the difference δ and the PAR values. The
Wilcoxon matched-pairs signed-rank test was used to test statistical differences in the
retention times of isotopologs.

2.3. Statistical Analyses and Data Presentation

GraphPad Prism Version 7 for Windows (GraphPad Software, San Diego, CA, USA)
was used for statistical analyses and preparation of graphs, including the Bland–Altman
and ROC plots. The ROC approach was used to calculate AUC values and evaluate
agreement/disagreement between the isotopologs. AUC values are reported as mean
with standard error. The Wilcoxon matched-pairs signed-rank test was used in two-tailed
paired analyses. A p-value of <0.05 was considered significant. Chemical structures of the
investigated derivatives of the isotopologs were drawn using ChemDraw 15.0 Professional
(PerkinElmer, Germany).

3. Results
3.1. Bland–Altman and ROC Approaches to Study Isotope Effects in GC-MS in Biological Samples

The primary results of the present study are listed in Table 1. The secondary results
obtained from the application of the Bland–Altman and ROC approaches are summarized
in Table 2 and shown in Figure 1.

The retention times of all derivatives were measured with high precision (Table 1). The
2H and 15N isotopologs had smaller retention times than their 1H and 14N counterparts.
Yet, the differences in the retention times were larger for the 2H analogs. The IE values for
the 15N derivatives of nitrite and nitrate in plasma and urine were practically 1.0000, and
the difference in the retention times was not higher than 0.18 s. The highest IE and δ values
were observed for the PFBz derivative of d6-DMA, i.e., 1.007 and 1.5 s, respectively. The
concentrations of the stable-isotope labeled analogs, which were added to the plasma and
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urine samples, were all relevant for the respective biological samples. This is indicated
by the measured PAR values for all analytes, which ranged between 0.2 and 2.4. Weak
correlations after Spearman between the PAR and δ values were observed for some analytes,
indicating a very weak dependence of δ upon the endogenous analyte concentrations in
the plasma and urine samples analyzed.

Table 1. Summary of the results of the GC-MS (ISQ) analyses of the investigated analytes in human
plasma and urine samples in the present work. The coefficients of variation are reported in paren-
theses. Me, methyl; PAR, peak area ratio; PFB, pentafluorobenzyl; PFBz, pentafluorobenzoyl; PFP,
pentafluoropropionyl; P, plasma; U, urine. The dwell time was 50 ms or 100 ms. The Wilcoxon test
p-values were <0.0001. See also: Scheme 1.

Analyte Derivative m/z Retention
Time (min) IE ∆ (s) PAR Spearman

PAR vs. δ
14N-Nitrite-U PFB 46 4.517 (0.05) 1.00000

(0.05)
0.07839

(115) 0.227 ± 0.232 none
15N-Nitrite-U PFB 47 4.516 (0.00)
14N-Nitrate-U PFB 62 4.325 (0.02) 1.00000

(0.05)
0.10450

(165) 0.947 ± 0.575
r = 0.265
p = 0.03715N-Nitrate-U PFB 63 4.323 (0.05)

14N-Nitrite-P PFB 46 4.521 (0.02) 1.00000
(0.03)

0.0228
(342) 0.234 ± 0.175

r = 0.217
p = 0.03015N-Nitrite-P PFB 47 4.520 (0.03)

14N-Nitrate-P PFB 62 4.328 (0.06) 1.00100
(0.06)

0.1794
(82) 0.69 ± 0.42 none

15N-Nitrate-P PFB 63 4.325 (0.01)
1H-Creatinine-U PFB 112 6.913 (0.02) 1.00100

(0.02)
0.6022

(13) 0.602 ± 0.081
r = 0.316
p = 0.0192H3-Creatinine-U PFB 115 6.903 (0.01)

1H-Arg-P d0Me-PFP 586 5.729 (0.05) 1.00200
(0.03)

0.699
(13) 2.14 ± 1.27 none

2H3-Arg-P d3Me-PFP 589 5.718 (0.05)
1H-ADMA-P d0Me-PFP 634→ 378 10.85 (0.02) 1.00100

(0.02)
0.9168

(12) 0.493 ± 0.96 none
2H3-ADMA-P d3Me-PFP 637→ 378 10.84 (0.02)
1H-ADMA-U d0Me-PFP 634→ 378 10.97 (0.09) 1.00100

(0.02)
0.8538

(13) 2.35 ± 1.26 none
2H3-ADMA-U d3Me-PFP 637→ 378 10.95 (0.09)
1H-DMA-U PFBz 240 3.520 (0.17) 1.007

(0.14)
1.502
(20) 0.436 ± 0.348

r = −0.183
p = 0.0412H6-DMA-U PFBz 246 3.495 (0.17)

Table 2. Summary of the results of the GC-MS (ISQ) analyses of the investigated analytes in hu-
man plasma and urine samples in the present work as obtained by the (A) Bland–Altman and (B)
AUC-ROC approaches. P, plasma; U, urine; LOA, limit of agreement; SD, standard deviation; SE,
standard error.

(A) Bland–Altman (B) ROC

Analyte δ (%) SD (%) 95%
Lowest LOA

95%
Highest LOA

AUC
(Mean ± SE)

DMA-U
(n = 62) 0.714 0.143 0.4333 0.9946 0.9951 ± 0.0024

p < 0.0001

Arginine-P
(n = 100) 0.2035 0.02725 0.1501 0.2570 0.9932 ± 0.0054

p < 0.0001
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Table 2. Cont.

(A) Bland–Altman (B) ROC

Analyte δ (%) SD (%) 95%
Lowest LOA

95%
Highest LOA

AUC
(Mean ± SE)

Creatinine-U
(n = 55) 0.1453 0.01949 0.1071 0.1835 1.000 ± 0.000

p < 0.0001

ADMA-P
(n = 50) 0.1409 0.01698 0.1076 0.1742 1.000 ± 0.000

p < 0.0001

ADMA-U
(n = 52) 0.1298 0.01630 0.0979 0.1618 0.8299 ± 0.0384

p < 0.0001

Nitrate-P
(n = 100) 0.06909 0.05674 −0.0421 0.1803 0.7951 ± 0.033

p < 0.0001

Nitrate-U
(n = 62) 0.04029 0.04625 −0.0504 0.1309 0.7177 ± 0.0469

p < 0.0001

Nitrite-U
(n = 52) 0.02891 0.04768 −0.0646 0.1224 0.6371 ± 0.050

p = 0.008

Nitrite-P
(n = 100) 0.00841 0.02879 −0.0480 0.0648 0.5414 ± 0.041

p = 0.311
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Table 2. Summary of the results of the GC-MS (ISQ) analyses of the investigated analytes in human 
plasma and urine samples in the present work as obtained by the (A) Bland–Altman and (B) AUC-
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(A) Bland–Altman (B) ROC 

Analyte δ (%) SD (%) 95% 
Lowest LOA 

95% 
Highest LOA 

AUC 
(Mean ± SE) 

DMA-U 0.714 0.143 0.4333 0.9946 0.9951 ± 0.0024 

Figure 1. Comparison of the ROC and Bland–Altman approaches. (A) The mean AUC-ROC values
are plotted versus the percentage differences δ (%) of the retention times of the isotopologs of the
indicated analytes in plasma (P) and urine (U). There is a close correlation after Spearman among the
two approaches. (B) The mean AUC-ROC values are plotted versus the percentage differences δ (%)
in the retention times of the isotopologs of the investigated analytes in plasma and urine; the value of
DMA was not considered.

The application of the Bland–Altman approach resulted in δ (%) values ranging
between 0.714% for DMA in urine and 0.00841% for the PFB derivative of nitrite in plasma
(Table 2). The application of the ROC approach resulted in AUC values ranging between
1.0000 for creatinine in urine and ADMA in plasma and 0.5414 for nitrite in plasma. The
AUC values for ADMA and nitrate were higher in the plasma compared to urine samples,
whereas the AUC value for nitrite was lower in plasma compared to urine. In urine, the
δ (%) values (y) increased linearly with the average retention time (x) of the 14N/15N
isotopologs (y = −200 + 44 × x, r2 = 1.000, p < 0.0001), indicating positive proportional
error [5].

We tested for potential correlation between the AUC-ROC and Bland–Altman δ (%)
values. We found a strong correlation after Spearman between these approaches: r = 0.862,
p = 0.005 (Figure 1A). This Figure also illustrates the AUC-ROC and δ (%) differences for
ADMA, nitrate and nitrite in the plasma and urine samples. Omitting the DMA values, a
linear regression analysis between the AUC (y) and δ (%) (x) values resulted in a straight
line with the regression equation y = 0.59 + 2.38 × x, r2 = 0.8673 (Figure 1B).
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In a further, recently performed study [17], we analyzed paired serum and urine
samples of 85 volunteers who formerly had COVID-19 or were living with long-COVID-19.
Nitrate, nitrite and creatinine were simultaneously analyzed by GC-MS on the apparatus
ISQ and a 15 m long GC OPTIMA-17 column, as described previously [18]. The concentra-
tions of the internal standards were 10 mM for creatinine in urine and 100 µM in serum,
4 µM for nitrite in serum and 8 µM in urine as well as 40 µM for nitrate in serum and
800 µM in urine. Instead of toluene [13,14], ethyl acetate [21] was used for the extraction of
the PFB derivatives, and 1 µL aliquots of ethyl acetate extracts were injected in the splitless
mode. The results of these analyses are summarized in Table 3.

The retention times of the corresponding isotopologs differed statistically significantly
from each other. The values of IE, δ and AUC differed for the isotopologs in urine and
serum, as well as when compared to urine with serum. The highest IE, δ and AUC values
were observed for creatinine and the lowest were observed for nitrite in serum (Table 3).
Figure 2 shows the relationship between the AUC-ROC and Bland–Altman values with
respect to the retention times of the isotopologs in the serum and urine samples.
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Figure 2. Comparison of the AUC-ROC values and the percentage difference values in the Bland–
Altman approach with respect to the retention times in urine (U) and serum (S) samples of the
isotopologs. There is a close correlation after Spearman between the two approaches and high
linearity when the paired values for creatinine in urine are excluded.

3.2. Isotope Effects as a Measure of Matrix Effects in GC-MS: Proof-of-Concept Studies

Matrix effects are very common in LC-MS/MS, and methods have been proposed,
with their measurements implemented in bioanalysis [22–26]. Matrix effects have been
sporadically reported in GC-based methods, including GC-MS and GC-MS/MS [27–30].
Matrix-induced ion suppression effects occur both in electron ionization (EI) and NICI,
yet the underlying mechanisms have not yet been explained thus far [26]. Stable-isotope-
labeled analogs have been used in GC [31] and LC-MS/MS [32] to minimize matrix effects.
To the best of our knowledge, isotopologs have not been used to quantify matrix effects
in GC-MS or GC-MS/MS [26]. Given the observations of different IE and δ values for
some analytes in serum and urine samples in the present study, we tested the utility of
isotopologs to quantify matrix effects in GC-MS.
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Table 3. Summary of the results of the GC-MS (ISQ) analyses of the indicated analytes in paired samples in the present work obtained in urine (U) and serum (S) of
85 volunteers with long- or former COVID-19 infection. GC column, OPTIMA-17 (15 m × 0.25 mm I.D., 0.25 µm film thickness).

Analyte
Retention

Time
(min)

Wilcoxon
Test (tR) IE

Wilcoxon
Test (IE)
(U vs. S)

δ(s)
Wilcoxon

Test (δ)
(U vs. S)

AUC
(tR)

AUC
(IE)

(U vs. S)

AUC
(δ)

(U vs. S)

Bland–
Altman

Percentage
(tR)

Bland–Altman
Percentage (IE)

(U vs. S)

Bland–
Altman

Percentage (δ)
(U vs. S)

14N-Nitrate-U 3.183 (0.18)
p < 0.0001 1.0010

(0.14) Nitrate
p < 0.0001

0.1482
(176) Nitrate

p < 0.0001

0.6037 ± 0.0432
p = 0.0196 Nitrate

0.8131 ± 0.0352
p < 0.0001

Nitrate
0.7894 ± 0.0352

p < 0.0001

0.078 ± 0.136
Nitrate

−0.228 ± 0.257
Nitrate
−128 ± 126

15N-Nitrate-U 3.180 (0.18)
14N-Nitrite-U 3.398 (0.20)

p < 0.0001 1.0010
(0.17)

0.3025
(117)

0.6874 ± 0.0271
p < 0.0001 0.149 ± 0.17415N-Nitrite-U 3.393 (0.19)

14N-Nitrate-S 3.203 (0.16)
p < 0.0001 1.0030

(0.20) Nitrite
p = 0.0036

0.5859
(67) Nitrite

p < 0.0001

0.8756 ± 0.0432
p < 0.0001 Nitrite

0.6184 ± 0.0437
p = 0.0077

Nitrite
0.6485 ± 0.0422

p = 0.0008

0.305 ± 0.203
Nitrite

0.099 ± 0.200
Nitrite

99 ± 159

15N-Nitrate-S 3.193 (0.03)
14N-Nitrite-S 3.408 (0.13)

p = 0.0005 1.0000
(0.12)

0.0988
(245)

0.5814 ± 0.0434
p = 0.652 0.048 ± 0.11815N-Nitrite-S 3.406 (0.15)

1H-Creatinine-U 7.133 (0.07)
p < 0.0001 1.0060

(0.11) Creatinine
p < 0.0001

2.675
(18) Creatinine

p < 0.0001

0.9959 ± 0.0047
p < 0.0001 Creatinine

0.8727 ± 0.0263
p < 0.0001

Creatinine
0.8694 ± 0.0268

p < 0.0001

0.627 ± 0.114
Creatinine

0.217 ± 0.195
Creatinine

47 ± 51

2H3-Creatinine-U 7.089 (0.10)
1H-Creatinine-S 7.130 (0.02)

p < 0.0001 1.0040
(0.17)

1.751
(41)

0.9943 ± 0.0066
p < 0.0001 0.412 ± 0.1672H3-Creatinine-S 7.101 (0.17)
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3.2.1. GC-MS Analysis of Dimethyl Amine

We analyzed, via GC-MS, d0-DMA and d6-DMA after extractive derivatization with
pentafluorobenzoyl chloride/toluene (Scheme 1) [16]. Human urine samples (U, n = 80),
a 67 mM potassium phosphate buffer of pH 7.0 (B, n = 33), a 20 mM Na2CO3 solution (C,
n = 33) and deionized water (W, n = 33) were treated as follows:

(1) A total of 10 µL of a 1 mM d6-DMA solution was introduced into autosampler glass vials;
(2) A total of 10 µL of U, B, C or W was added (B, C and W contained d0-DMA at 0, 100

and 500 µM);
(3) A total of 90 µL of W was added;
(4) A total of 100 µL of 20 mM Na2CO3 was added.

d6-DMA was used as the internal standard at a fixed final concentration of 1000 µM
in all matrices. The d0-DMA concentrations in B, C and W were 0, 100 and 500 µM. After
derivatization, 1 µL aliquots of toluene extracts were injected splitless, and SIM of m/z
240 for d0-DMA and m/z 246 for d6-DMA was performed (ISQ apparatus, 15 m long
OPTIMA-17 column). The results of this experiment are summarized in Table 4.

Table 4. Summary of the results of the GC-MS (ISQ) analyses of d0-DMA in urine (U), buffer (B),
carbonate (C) and deionized water (W) after extractive derivatization with pentafluorobenzoyl
chloride and toluene. GC column: OPTIMA-17 (15 m × 0.25 mm I.D., 0.25 µm film thickness).

Analyte,
Matrix

Retention
Time
(min)

W or M-W
Test (tR) IE M-W

Test (IE) δ(s) M-W
Test (δ)

Bland–
Altman

(δ)

AUC
(δ)

d0-DMA-U 7.166
(0.12)

p < 0.0001 1.004
(0.06)

1.765
(16)

d6-DMA-U 7.136
(0.16)

d0-DMA-B 7.154
(0.07)

p < 0.0001 1.004
(0.04)

U vs. B
0.1863

1.690
(10)

U vs. B
p < 0.0001

U vs. B
5.896 (15) %

(−24–36)

U vs. B
0.7287 ± 0.0594

p < 0.0001d6-DMA-B 7.125
(0.079

d0-DMA-C 7.155
(0.07)

p < 0.0001 1.004
(0.08)

U vs. C
0.3131

1.891
(18)

U vs. C
p = 0.2984

U vs. C
−4.076 (21) %

(−45–36)

U vs. C
0.5577 ± 0.0590

p = 0.3173d6-DMA-C 7.123
(0.07)

d0-DMA-W 7.118
(0.06)

p < 0.0001 1.004
(0.04)

U vs. W
0.1413

1.715
(10)

U vs. W
p = 0.0017

U vs. W
4.493 (14) %

(−24–33)

U vs. W
0.6681 ± 0.0621

p = 0.0036d6-DMA-W 7.090
(0.02)

The PA of m/z 246 for d6-DMA-PFBz varied by 7.3%. In the urine samples (n = 80),
the PAR of m/z 240 for d0-DMA to m/z 246 for d6-DMA ranged between 0.1 and 1.6 (mean,
0.608 ± 0.26).

The retention times of the isotopologs differed in all matrices but did not result in
different IE values. This parameter was not further investigated. Statistically significant
differences with respect to δ were found between urine (U) and buffer (B), as well as
between urine (U) and water (W) by the Mann–Whitney test and the ROC approach. The
highest δ value was observed for the carbonate solutions of DMA (C). The DMA solutions
in B, C and W are more comparable among themselves than with the U samples, which
were diluted 10-fold with water and carbonate. The experiment described above is a very
simple simulation of potential matrix effects on isotope effects in GC-MS. A modification of
this simulation, for instance, by using undiluted urine or urine diluted to varying degrees,
would be more meaningful. Whether the Bland–Altman approach or the ROC approach
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is able to provide more definite results remains to be investigated. The Bland–Altman
approach is expected to be more promising because of its higher versatility.

3.2.2. GC-MS Analysis of Metformin

Standard curves were prepared for d0-metformin (d0-METF) in human urine (U) and
serum (S) samples in relevant metformin concentration ranges, i.e., 0 to 25 mM in urine
and 0 to 25 µM in serum, using the internal standard at a fixed concentration of 1000 µM
for d6-metformin (d6-METF) in urine and 20 µM in serum. SIM of m/z 383 for d0-METF
and m/z 383 for d6-METF was performed as described previously [19]. The results of this
experiment are summarized in Table 5. A typical GC-MS chromatogram from the analysis
of metformin in a human serum sample is shown in Figure 3.
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Figure 3. GC-MS chromatogram from the quantitative analysis of metformin in a human serum
sample as pentafluoropropionyl (PFP) derivative on an ISQ instrument directly interfaced with a Trace
1310 series gas chromatograph. Selected ion monitoring of m/z 383 for d0-metformin and m/z 389 for
d6-metformin (20 µM) was performed (dwell time, 100 ms for each ion). Methane (2.4 mL/min) was
used as the reagent gas for negative-ion chemical ionization. A fused-silica capillary column Optima
17 (15 m × 0.25 mm I.D., 0.25 µm film thickness) was used. The oven temperature was kept at 40 ◦C
for 0.5 min, then increased to 210 ◦C at a rate of 15 ◦C/min and to 320 ◦C at a rate of 35 ◦C/min,
respectively, and held at 320 ◦C for 1 min. Helium was the carrier gas at a constant flow rate of
1 mL/min. The GC-MS method for metformin has been reported in detail elsewhere [19]. The symbol
δ indicates the difference between the retention times of d0-metformin (3.60 min) and d6-metformin
(3.57 min).

The PA of m/z 389 for d6-METF-PFP varied by 31% in U and by 30% in S. The retention
times of the isotopologs differed in both matrices. The IE and δ values differed statistically
significantly between U and S.
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Table 5. Summary of the results of the GC-MS (ISQ) analyses of d0-metformin (d0-METF) and d6-metformin (d6-METF) in human urine (U) and serum (S) samples
after derivatization with pentafluoropropionic anhydride in ethyl acetate. GC column: OPTIMA-17 (15 m × 0.25 mm I.D., 0.25 µm film thickness).

Analyte-
Matrix

tR
(min)

W
Test (tR) IE M-W

Test (IE) δ(s) M-W
Test (δ)

tR
Bland–Altman

tR
ROC

IE
U vs. S

δ

U vs. S

d0-METF-U 3.628
(0.22)

p = 0.0002 1.014
(0.42)

U vs. S
p < 0.0001

3.046
(30)

U vs. S
p = 0.0003

U
1.409 (0.4157) %

(0.59–2.22)

U
1.000 ± 0.000%

(1 to 1)
p < 0.0001

Bland–Altman
0.4889 (0.4291) %

(−0.35–1.33)

Bland–Altman
39 (31) %

(−23–101)
d6-METF-U 3.589

(0.23)

d0-METF-S 3.630
(0.00)

p = 0.0005 1.009
(0.11)

1.90
(12)

S
0.8762 ± 0.1083%

(0.66–1.09)

S
1.000 ± 0.000%

(1 to 1)
p < 0.0001

ROC
0.9679 ± 0.0297

p < 0.0001

ROC
0.8846 ± 0.0709

p = 0.0011d6-METF-S 3.598
(0.11)
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4. Discussion

The Bland–Altman approach has been proposed for testing agreement between two
measurements [4]. The graphical Bland–Altman approach is frequently used in analytical
chemistry to compare two analytical methods for the quantitative determination of analytes
in biological samples [5]. The ROC approach is also a graphical plot that is often used
to measure differences between two methods of measurement of analytes, although the
main aim of this approach is testing disagreement between two approaches, especially in
clinical diagnosis [33]. Given the potentially very small differences in the retention times of
isotopologs in chromatography [1–3], we investigated, in the present study, the utility of
the Bland–Altman and ROC approaches in the GC-MS analyses of selected endogenous
analytes in human plasma, serum and urine samples. The focus of the study was on the
main members of the L-arginine/nitric oxide pathway [11] and creatinine, which is an
important clinical biochemical parameter.

Nitrate and nitrite and the externally added 15N isotopologs were analyzed by GC-
MS after derivatization with PFB bromide to their PFB-ONO2 and PFB-NO2 derivatives,
respectively (Scheme 1). PFB-ONO2 and PFB-NO2 are separated completely by GC as
well as by MS. Being a nitric acid ester, PFB-ONO2 eluted in front of PFB-NO2, which
is a nitro derivative [13]. Virtually, both the Bland–Altman and the ROC approach are
not able to discriminate 14N/15N isotopologs of PFB-ONO2 and PFB-NO2, respectively.
Yet, small differences were detected in plasma, serum and urine samples, independent
of the extraction solvent that contained the derivatives, i.e., toluene and ethyl acetate. In
contrast, both the Bland–Altman approach and the ROC approach clearly discriminated
the respective H/D isotopologs of DMA (PFBz-DMA), ADMA (Me-PFP), Arg (Me-PFP)
and creatinine (PFB-creatinine) (Scheme 1), yet with some differences for ADMA between
plasma and urine. The strong correlation found between the Bland–Altman and the ROC
approaches suggests that both methods are virtually equally suitable to investigate isotope
effects in GC-MS.

The two methyl groups of DMA in its PFBz derivative, the methyl group of creatinine
in its PFB derivative and the methyl ester groups of Arg and ADMA in the methyl ester PFP
derivatives are most likely responsible for the considerably stronger H/D isotope effects
compared to the 14N/15N isotope effects observed in PFB-ONO2 and PFB-NO2 derivatives.
The greater differences in physical properties between H and D (a 100% increase in mass)
compared to the differences between 14N and 15N (a 7% increase in mass) are a likely
explanation for the stronger H/D isotope effects.

The charge radius of D is 2.5 times higher compared to the charge radius of H
(https://physics.nist.gov/cuu/Constants/index.html, assessed on 10 December 2023).
The gravest factor that causes the stronger H/D isotope effects is likely to be a stronger
interaction of the methyl groups with the lipophilic stationary phase of the GC column
(50% methylpolysiloxane, 50% phenylpolysiloxane) in the present study. H/D effects were
observed for non-derivatized methylxanthine isotopologs in GC-MS on a 14% cyanopropy-
lphenyl methylpolysiloxane fused silica column [34]. In that study, H/D isotopic effects
were found to depend not only on the number of D atoms but also on the position of the
CD3 groups in the molecules (IE range, 1.00147 to 1.00668) [34]. The rate of a reaction
involving a C–H bond is typically 6–10 times faster than the corresponding C–D bond [35].

In the case of PFB-ONO2 and PFB-NO2, the central N atoms seem to be strongly
sterically hindered from interacting with the stationary phase. The differences seen be-
tween PFB-ONO2 and PFB-NO2 suggest that the N atom in PFB-ONO2 is somewhat more
accessible to interaction with the stationary phase than the N atom in PFB-NO2, which is
closer to the PFB group (Scheme 1). This observation demands deeper investigations with
nitro and nitric acid derivatives of alkyl/aryl residues.

In the cases of ADMA, nitrate, nitrite and creatinine, which were analyzed both in
plasma/serum and in urine, there were some differences in the Bland–Altman δ (%) and
ROC-AUC values in plasma or serum compared to urine. ADMA: 0.1409 vs. 0.1298
(1.1-fold); nitrate: 0.06909 vs. 0.04029 (1.7-fold); nitrite: 0.00841 vs. 0.02891 (0.3-fold). These

https://physics.nist.gov/cuu/Constants/index.html
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observations may be interpreted as a type of “matrix effect”. Matrix effects occur not only
in LC-MS/MS but also in GC-MS and GC-MS/MS [22–32]. Several methods have been
proposed and used in LC-MS/MS, such as the use of standard line slopes as a measure of
relative matrix effects [22]. The results of the present study, including those of the pilot
experiment, indicate that the differences in the retention times of isotopologs δ are better
suited to quantify matrix effects than the ratio of the retention times IE of d0-DMA-PFBz
and d6-DMA-PFBz in human urine. IE is a little variable measure but is less sensitive than
the more variable measure δ. The Bland–Altman approach seems to be better suited for
quantitating isotope effects than the ROC approach.

5. Conclusions

In GC-MS, the Bland–Altman and ROC approaches seem to be suitable for studying
H/D and 14N/15N isotope effects in the PFB, PFBz and PFP derivatives of endogenous
analytes of the L-arginine/nitric oxide pathway and the universal biomarker creatinine.
Isotope effects in GC-MS are likely to be caused by differences in the interaction strengths
of H/D and 14N/15N isotopes in the derivatives with the hydrophobic stationary phase of
the GC column. D atoms in the derivatives seem to attenuate the interaction of the skeleton
of the molecules with the lipophilic GC stationary phase. Differences in the retention times
of isotopologs, i.e., the parameter δ, appear to be a better-suited experimental measure for
quantitating matrix effects in GC-MS.
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