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Abstract: In this work, the modified attachment energy model was used to predict the crystal mor-
phology of isosorbide mononitrate (ISMN) in the dichloromethane (CH2Cl2) solvent system and
dichloromethane-n-hexane (CH2Cl2-C6H14) mixed solvent system. The solvent effect can signifi-
cantly affect the crystal morphology, which can profoundly impact both the drug’s physicochemical
properties and the subsequent technological treatment process. In addition, the interactions between
solvent molecules and crystal faces were investigated using molecular dynamics simulation, and
radial distribution function (RDF) analysis was performed to determine the types of interactions.
The structural parameter S was introduced to characterize the roughness of each crystal surface;
the change in the CH2Cl2 diffusion coefficient before and after the addition of C6H14 was analyzed
using mean square displacement (MSD). The calculation results of the modified attachment energy
from the two solvent systems revealed that C6H14 could accelerate crystal growth, while the crystal
morphology was not greatly affected, which is of some significance as a guide for the industrial
crystallization process.

Keywords: 5-ISMN; molecular dynamics simulation; modified attachment energy model

1. Introduction

In the pharmaceutical industry, crystallization is a key step in controlling the crystal
habit, which affects the solubility [1], dissolution rate [2], and bioavailability of the drug [3].
At the same time, crystallization is also a key factor affecting postprocessing procedures,
such as fluidity [4], stability [5,6], and tableting performance [7,8]. Ren et al. investigated
the differences in solubility and dissolution rate of five different crystal habits of ticagrelor
(TICA) type II crystals (TICA-A, TICA-B, TICA-C, TICA-D, and TICA-E) in hydrochloric
acid solution at pH = 1.2 [9]. Phan et al. prepared two different crystal habits of sorafenib
tosylate (Sor-Tos) and investigated their dissolution rates in water and gastric juice pH = 1.2
acid solution [10]. Due to the poor mobility of fine needle-like crystals and the tendency
to clog and agglomerate during the formulation process, Pu et al. avoided the formation
of needle-like crystals of the glycopeptide vancomycin by controlling the pH and salt
concentration [11]. The crystal morphology of ISMN is needle-like, with poor fluidity and
low packing density, which brings inconvenience to the subsequent process treatment
process [12]. After chemical synthesis of ISMN, the product is purified and refined by
solution crystallization [13], and in the process of solution crystallization, different solvents
have a large effect on the crystal morphology due to the different sensitivity of crystal faces
to solvents [14]. The study of the molecular mechanism of ISMN crystal habit manipulation
is important for improving the crystallization process and enhancing product properties.
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As a vasodilator, ISMN has broad market prospects because of its pharmacokinetic
advantages [15], such as no first-pass effect, high bioavailability, and long duration of action.
At present, studies on ISMN mainly focus on pharmacokinetics and synthesis routes [16],
but there are few studies on its crystallization and its influence mechanism. Cao et al.
investigated the solid–liquid equilibrium behavior of 5-ISMN in different solvent systems
and its nucleation behavior in the metastable region, revealing the influence of solvents on
the nucleation behavior of 5-ISMN [12]. In this work, the crystal morphology of 5-ISMN in
CH2Cl2 and mixed solvent (CH2Cl2-C6H14) was investigated, and the mechanism of the
solvent effect on the crystal morphology of 5-ISMN was explained at the molecular level.

With the development of molecular simulation technology, the research method of
studying the effect of solvent on crystal morphology by observing crystals cultured from
experiments has become a thing of the past. Molecular simulation mainly includes molecu-
lar dynamics methods and Monte Carlo methods, which have been widely used in various
fields. Song et al. used molecular dynamics simulations for solvent selection to achieve
crystal morphology regulation of propionamide [17], and Chen et al. used the Monte Carlo
method to predict the adsorption capacity of water molecules on the surface of ammonium
dinitramide (ADN) crystals [18]. Additionally, HABIT software can be used for crystal
morphology prediction, such as HABIT98 and HABIT95 [19]. HABIT software uses the
atom–atom approximation to determine intermolecular interactions in molecular crystals
and further calculates the attachment energy. The crystal morphology is modeled by the
attachment energy [20]. Roberts et al. used HABIT98 software to study lattice energies and
constituent intermolecular interactions for the crystal structures of pharmaceuticals [21].
The program Mercury, developed at the Cambridge Crystallographic Data Centre, has
become a powerful platform delivering analysis, design, and prediction functionality along-
side visualization for crystal structure [22]. Childs et al. used the Materials module of
Mercury CSD to analyze 50 crystal structures containing carbamazepine [23]. In this work,
molecular dynamics simulation was used to study the crystal morphology of 5-ISMN.

2. Results and Discussion
2.1. Intermolecular Interactions within the Crystal Cell

The attachment energy model (AE model), which is based on the theory of periodic
bond chains (PBC) and takes into account the anisotropic properties in the crystal unit [24],
is widely used for the prediction of crystal morphology. A detailed discussion of the AE
model and the modified attachment energy (MAE) model is provided in Section 3. The AE
model determines the relative growth rate by calculating the intermolecular interactions
within the crystal cell. The direction and bond energies of intermolecular interactions
within the crystal cell are shown in Figure 1.
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According to the AE model, the weaker the intermolecular interaction force is, the
slower the growth, and the plane corresponding to this force is of greater morphological
importance [25].

2.2. Crystal Morphology in Vacuum

The crystal morphology under vacuum was predicted using the AE model, which had
six morphologically important growth surfaces, as shown in Figure 2. The Miller index (h k
l) of one face is selected from all of the symmetry images to represent all symmetry-related
facets. The symmetry-related facets are represented by the same color.
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Figure 2. Crystal morphology in vacuum using AE model: (a) front view, (b) left view, (c) right view.

The interplanar distances of the six morphologically important growth surfaces, the
attachment energy under vacuum, and the crystal face areas are shown in Table 1.

Table 1. Parameters associated with morphologically important growth surfaces in the ISMN.

(h k l) Multiplicity dhkl (Å)
Eatt

(kcal/mol/Unit Cell)
Total Habit Facet

Area (Å2)
Total Habit Facet
Area Percentage

(1 0 0) 4 15.42 −48.81 26,086.60 72.56%
(1 1 0) 4 10.90 −61.87 4621.26 12.85%
(1 0 1) 4 6.05 −177.07 1339.40 3.73%

(1 0 −1) 4 6.05 −177.07 1339.40 3.73%
(1 1 1) 4 5.63 −170.28 1282.82 3.57%

(1 1 −1) 4 5.63 −170.28 1282.82 3.57%

The absolute value of the attachment energy (|Eatt| of the (1 0 0) crystal surface is the
smallest; the lattice plane spacing (dhkl) of the (1 0 0) surface is the largest, which has the
greatest morphological importance; and the total crystal face area ratio is up to 72.56%.

2.3. Structural Properties of Crystal Faces

The structure of the crystal face closely affects the interaction between the solvent
and the crystal face [26]. The rugosity S [27] is introduced to quantitatively characterize
the roughness of the six morphologically important growth surfaces, and S is defined
as follows:

S =
Aacc

Ahkl
(1)

Aacc is the solvent-accessible area and Ahkl is the cross-sectional area of the crystal face
in the unit cell.

The solvent-accessible area of each crystal face is shown in Figure 3.
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The rugosity S of each crystal face are shown in Table 2.

Table 2. Calculation results of crystal face rugosity S.

(h k l) Ahkl (Å2) Aacc (Å2) S

(1 0 0) 101.342 131.615 1.299
(1 1 0) 143.319 202.505 1.413
(1 1 1) 277.607 392.680 1.415

(1 1 −1) 277.607 391.540 1.410
(1 0 1) 258.448 340.865 1.319

(1 0 −1) 258.448 356.375 1.379

The (1 1 0), (1 1 1), and (1 1 −1) crystal faces have similar and large roughness, and the
(1 0 0) crystal face has less roughness.

2.4. Effect of Solvent CH2Cl2 on the Morphology of ISMN
2.4.1. Crystal Morphology in the CH2Cl2 Solvent System

ISMN has high solubility in CH2Cl2 solvent, which is often used as an extractant to
determine ISMN in plasma using gas chromatography [28]. In this work, CH2Cl2 was
chosen as the solvent to study the influence of the solvent on the crystal morphology
of ISMN.

Based on the last 100 frames of the conformations of the molecular dynamics simula-
tions, the interaction energies of the solvent layers and crystal face layers of the six crystal
face systems were calculated, and the average values were taken as the interaction energy
between the solvent layer and the crystal face layer (Eint) of the corresponding systems.
The modified attachment energy term (E′

att) of the six morphologically important growth
surfaces was calculated when the solvent was CH2Cl2, and the results of the calculations
are shown in Table 3.

By calculating E’att when the solvent is CH2Cl2, the crystal morphology was predicted,
as shown in Figure 4.

Compared with the crystal morphology under vacuum, the crystal morphology in
the CH2Cl2 solvent system changed somewhat, with the aspect ratio changing from 3.944
in vacuum to 3.886 in the CH2Cl2 solvent system, and the relative surface area-to-volume
ratio changed from 1.343 in vacuum to 1.315 in the CH2Cl2 solvent system. Meanwhile,
the (1 0 1) crystal face and the (1 1 −1) crystal face no longer appeared as morphologically
important growth faces in the CH2Cl2 solvent system.
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Table 3. Calculation results of E′
att in the CH2Cl2 solvent system.

(h k l) dhkl (Å)
Eatt

(kcal/mol/Unit Cell) Zcry Zhkl Ahkl (Å2) Abox (Å2)
Eint

(kcal/mol)
E’att

(kcal/mol/Unit Cell)

(1 0 0) 15.42 −48.81 8 8 101.34 2432.21 −577.44 −24.75
(1 1 0) 10.90 −61.87 8 8 143.32 3439.66 −919.91 −23.54
(1 1 1) 5.63 −170.28 8 8 277.61 6663.03 −2211.43 −78.15

(1 1 −1) 5.63 −170.28 8 8 277.61 6663.03 −2074.29 −83.86
(1 0 1) 6.05 −177.07 8 8 258.45 2326.03 −805.57 −87.56

(1 0 −1) 6.05 −177.07 8 8 258.45 2326.03 −840.60 −83.67
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2.4.2. Diffusion Coefficient

The diffusion coefficient is an important index to characterize the diffusion ability.
The diffusion coefficient D can be calculated by Einstein’s diffusion equation, as shown in
Equation (2), which can be fitted from the mean square displacement (MSD) [29,30].

D =
1
6

lim
t→∞

d
dt

N

∑
i=1

〈
|ri(t)− ri(0)|2

〉
(2)

Different crystal face structures affect the diffusion ability of solvent molecules, thus
affecting the interaction between the solvent and the crystal face. The MSD analysis of the
kinetic simulation trajectories is beneficial to understanding the influence of the diffusion
ability of the solvent on the crystal morphology. The MSD curves of solvent CH2Cl2 in
different crystal face systems are shown in Figure 5.

The MSD curves were fitted to obtain the diffusion coefficients of the solvent molecule
CH2Cl2 at different crystal faces, and the diffusion coefficient magnitude relationship was
(1 1 −1) > (1 1 1) > (1 0 −1) > (1 0 1) > (1 0 0) > (1 1 0).

2.4.3. Radial Distribution Function Analysis

Due to the different structures of each morphologically important growth face, the
exposed functional groups are also different, and the type and strength of the interaction
between the solvent and each crystal face become the key factors affecting the crystal
morphology. To reveal the essence of the interactions between crystal faces and solvent
molecules, RDF [31–33] analysis is performed. The RDF is defined as the ratio of the density
of the counted atoms within the shell layer at a distance r from the reference atom relative
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to the average density of the counted atoms in the whole simulation box, and it reflects the
type of interaction to some extent.
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By calculating the electrostatic potentials of ISMN and CH2Cl2, it was found that the
H1 atom in the ISMN molecule has a large positive charge, while the Cl atom in the CH2Cl2
molecule has a large negative charge, as shown in Figure 6. The RDF was used to analyze
the types of interactions between the H1 and Cl atoms mentioned above.

Molecules 2024, 29, x FOR PEER REVIEW 7 of 21 
 

 

molecule has a large negative charge, as shown in Figure 6. The RDF was used to analyze 
the types of interactions between the H1 and Cl atoms mentioned above. 

 
Figure 6. (a): Molecular structure of ISMN. (b): Electrostatic potential of ISMN. (c): Electrostatic po-
tential of CH2Cl2. 

The reference atom is H1, and the counted atom is Cl, obtaining the radial distribu-
tion function between H and Cl atoms, as shown in Figure 7. 

 
Figure 7. Analysis of the RDF between H1 and Cl atoms: (a) (1 0 0), (1 1 0) and (1 1 1) three crystal 
face systems, (b) (1 1 −1), (1 0 1) and (1 0 −1) three crystal face systems. 

From the RDF diagram, it can be seen that a peak exists in the (1 0 0), (1 1 0), (1 1 1), 
(1 1 −1), and (1 0 −1) crystal face systems in the range of 2.30–2.53 Å, and the magnitude 
relationship of the peak intensity is (1 1 0) > (1 0 0) > (1 1 −1) > (1 1 1) > (1 0 −1). The hydrogen 
bond interaction is within 3.1 Å [34,35] and the van der Waals interaction is within 3.1 Å–
5 Å [36]. There are hydrogen bonding interactions between H1 and Cl atoms in the above 
five crystal face systems. 

The peak intensity of the RDF in the (1 1 0) crystal face system is significantly larger 
than that of the other four crystal face systems, indicating the existence of strong hydrogen 
bonding interactions between H1 and Cl atoms in the (1 1 0) crystal face system; the peak 
intensity of the (1 0 −1) crystal face system near 2.35 Å is weak, indicating the existence of 
weak hydrogen bonding interactions. The absence of a peak in the 3.1 Å range for the (1 0 
1) crystal face system indicates that there is no hydrogen bonding interaction in this crystal 
system. The presence of a peak in the 3.1 Å–5 Å range for the (1 0 0), (1 1 0), (1 0 1), and (1 

Figure 6. (a): Molecular structure of ISMN. (b): Electrostatic potential of ISMN. (c): Electrostatic
potential of CH2Cl2.

The reference atom is H1, and the counted atom is Cl, obtaining the radial distribution
function between H and Cl atoms, as shown in Figure 7.
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Figure 7. Analysis of the RDF between H1 and Cl atoms: (a) (1 0 0), (1 1 0) and (1 1 1) three crystal
face systems, (b) (1 1 −1), (1 0 1) and (1 0 −1) three crystal face systems.

From the RDF diagram, it can be seen that a peak exists in the (1 0 0), (1 1 0), (1 1 1),
(1 1 −1), and (1 0 −1) crystal face systems in the range of 2.30–2.53 Å, and the magnitude
relationship of the peak intensity is (1 1 0) > (1 0 0) > (1 1 −1) > (1 1 1) > (1 0 −1). The
hydrogen bond interaction is within 3.1 Å [34,35] and the van der Waals interaction is
within 3.1 Å–5 Å [36]. There are hydrogen bonding interactions between H1 and Cl atoms
in the above five crystal face systems.

The peak intensity of the RDF in the (1 1 0) crystal face system is significantly larger
than that of the other four crystal face systems, indicating the existence of strong hydrogen
bonding interactions between H1 and Cl atoms in the (1 1 0) crystal face system; the peak
intensity of the (1 0 −1) crystal face system near 2.35 Å is weak, indicating the existence
of weak hydrogen bonding interactions. The absence of a peak in the 3.1 Å range for the
(1 0 1) crystal face system indicates that there is no hydrogen bonding interaction in this
crystal system. The presence of a peak in the 3.1 Å–5 Å range for the (1 0 0), (1 1 0), (1 0 1),
and (1 0 −1) crystal face systems suggests that there are also van der Waals interactions
between the H1 and Cl atoms in the above crystal face systems.

2.4.4. Analysis of Hydrogen Bonding Interactions

Since no hydrogen bonding interaction is formed between the (1 0 1) crystal face
and the solvent molecules, to reveal the effect of hydrogen bonding interaction on the
crystal morphology, hydrogen bonding statistics were performed for the last 300 ps of
the molecular dynamics simulation trajectories for the remaining five crystal face systems.
Probability density distributions of the bond lengths and bond angles of the hydrogen
bonds formed between H1 and Cl atoms are obtained, as shown in Figure 8.

From the probability density distribution of hydrogen bond lengths, it can be seen that
the probability of hydrogen bond lengths less than 2.42 Å in the (1 0 0) crystal face is higher
than that in the other four crystal faces, and the probability that the bond lengths of the
hydrogen bond formed on the (1 1 1) crystal face lie in the range of 2.42–3.10 Å is greater
than that on the other four crystal faces. The probability density distributions of hydrogen
bond lengths are similar for the (1 1 0), (1 1 −1), and (1 0 −1) crystal face systems.

From the probability density distributions of the hydrogen bond angles formed in
the five crystal face systems, it can be seen that there is little difference in the probability
density distributions of hydrogen bond angles among the three crystal faces (1 1 0), (1 1 −1),
and (1 0 −1). Among the five crystal face systems, the probability density distributions of
hydrogen bond lengths and angles on the (1 1 1) crystal face both have the highest peaks,
indicating that the distribution range of hydrogen bond lengths and angles on the (1 1 1)
crystal face is relatively concentrated, and the bond lengths and angles of hydrogen bonds
are more likely to occur at approximately 2.57 Å and 150◦, respectively.

The angle between D-H· · ·A (D is the donor, A is the acceptor) is straight or close to
180◦, and the shorter the distance between H· · ·A, the more stable the individual hydrogen
bonding interaction formed [37]. The hydrogen bonding statistics are shown in Table 4: it
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can be seen that the individual hydrogen bonding interaction formed by the (1 0 0) crystal
face is more stable.
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Table 4. Hydrogen bond statistics in the CH2Cl2 solvent system.

(h k l)
HB

Length a

(Å)

HB
Angle b

(◦)

S1% c (HB
Length <

2.5 Å)

S2% d (HB
Angle >

150◦)
NHB

e NH1
f NHB-per H1

g Abox
h(Å2) NHB-unit area

i Ahkl
j

(Å2) NHB-hkl
k

(1 0 0) 2.52 147.13 50.00% 44.67% 24.80 18 1.38 2432.21 0.0102 101.342 1.03

(1 1 0) 2.57 144.13 42.34% 31.99% 47.19 48 0.98 3439.66 0.0137 143.319 1.97

(1 1 1) 2.59 147.53 37.49% 45.55% 20.92 24 0.87 6663.03 0.0031 277.607 0.87

(1 1 −1) 2.56 144.21 43.60% 31.93% 49.50 48 1.03 6663.03 0.0074 277.607 2.06

(1 0 −1) 2.56 144.28 43.80% 30.99% 17.68 18 0.98 2326.03 0.0076 258.448 1.96

a HB length is the average hydrogen bond length in Å. b HB angle is the average hydrogen bond angle in ◦. c S1%
is the percentage of hydrogen bond lengths less than 2.5 Å. d S2% is the percentage of hydrogen bonding angles
greater than 150◦. e NHB is the average number of hydrogen bonds contained in each frame of the trajectory. f NH1
is the number of H1 atoms involved in the formation of hydrogen bonds in the simulated trajectory. g NHB-per H1

is the average number of hydrogen bonds formed per H1 atom. h Abox is the simulated box cross-sectional area
in Å2. i The NHB-unit area is the average number of hydrogen bonds formed per unit crystal face area. j Ahkl is
the cross-sectional area of the crystal face in the unit cell. k NHB-hkl is the average number of hydrogen bonds
contained in each crystal face in a unit cell.

2.4.5. Effect of Hydrogen Bonds on Changes in Crystal Morphology

The change in crystal morphology was analyzed from the hydrogen bond perspective
by comparing the crystal morphology under vacuum with that in the CH2Cl2 solvent
system. In the competitive growth process of the (1 1 1) and (1 0 1) crystal faces, the
interaction between the solvent CH2Cl2 molecules and the (1 1 1) crystal face is strong
because the (1 1 1) crystal face can form hydrogen bond interactions with the solvent
CH2Cl2 molecules, while the (1 0 1) crystal face does not form hydrogen bond interactions
with the solvent CH2Cl2 molecules. The growth of solute molecules in the (1 1 1) crystal
plane is hindered, so the (1 1 1) crystal face grows slowly and shows greater morphological
importance in the solvent environment.

The area percentage of the (1 1 0) crystal face varies greatly in the two conditions,
with an area percentage of 12.85% in vacuum and 48.93% in the CH2Cl2 solvent system. In
the competitive growth process of the lateral crystal faces of (1 0 0) and (1 1 0), the single
hydrogen bond formed by the (1 0 0) crystal face is more stable, but the (1 1 0) crystal face
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has more H1 atoms involved in hydrogen bond formation. Considering that the MS 2018
software predicts the crystal morphology using the MAE of each crystal face in the unit cell,
by counting NHB-hkl, it is found that the average number of hydrogen bonds contained in
the (1 1 0) crystal face in the unit cell is much greater than that in the (1 0 0) crystal face. As
a result, the interaction between the CH2Cl2 solvent molecules and the crystal face on the
(1 1 0) crystal face is stronger than that on the (1 0 0) crystal face in general, and the growth
of the (1 1 0) crystal face is slower, reflecting greater morphological importance.

HB length, HB angle, S1%, and S2% of the hydrogen bonds formed between the
(1 1 −1) and (1 0 −1) crystal faces and the solvent molecules do not differ much. However,
the bond angle probability density distribution functions of the two crystal faces show a
large difference in the range of 120–150◦, with the probability of the bond angle in the range
of 120–133◦ being greater for the (1 1 −1) crystal face (shown by the green line in Figure 9)
than for the (1 0 −1) crystal face (shown by the violet line in Figure 9). The probability of
the bond angle of the hydrogen bonds formed on the (1 0 −1) crystal face is greater than
that of the (1 1 −1) crystal face in the range of 133–150◦. Under the same conditions, the
larger the bond angle is, the more stable the hydrogen bond formed, so the interaction
between the (1 0 −1) crystal face and the solvent molecules CH2Cl2 is stronger and shows
greater morphological importance.
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2.5. Prediction of Crystal Morphology in the CH2Cl2-C6H14 Solvent System and Analysis
of Results
2.5.1. Crystal Morphology in the CH2Cl2-C6H14 Solvent System

Adding n-hexane (C6H14) to the solution can accelerate the volatilization of the solu-
tion and realize volatilization crystallization. Adding C6H14 to the model solvent layer, the
simulation results are discussed.

The E’att of the six morphologically important growth surfaces in the CH2Cl2-C6H14
solvent system was calculated using the same method as in the CH2Cl2 solvent system,
and the results are shown in Table 5.

Compared with the CH2Cl2 solvent system, the absolute value of E’att increased in
all six crystal face systems in the CH2Cl2-C6H14 solvent system, indicating that after the
addition of C6H14, the interaction between the solvent layer and the crystal face layer is
weakened, the interaction between the solute and the crystal face is enhanced, and the
growth rate of the crystal increases.

The crystal morphology in the CH2Cl2-C6H14 solvent system was obtained by E’att
and is shown in Figure 10.
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Table 5. Results of MAE calculations in the CH2Cl2-C6H14 solvent system.

(h k l) dhkl
(Å)

Eatt
(kcal/mol/Unit Cell) Zcry Zhkl Ahkl (Å2) Abox (Å2)

Eint
(kcal/mol)

E’att
(kcal/mol/Unit Cell)

(1 0 0) 15.42 −48.81 8 8 101.34 2432.21 −556.13 −25.63
(1 1 0) 10.90 −61.87 8 8 143.32 3439.66 −903.67 −24.22
(1 1 1) 5.63 −170.28 8 8 277.61 6663.03 −2126.07 −81.70

(1 1 −1) 5.63 −170.28 8 8 277.61 6663.03 −1991.14 −87.33
(1 0 1) 6.05 −177.07 8 8 258.45 2326.03 −766.75 −91.87

(1 0 −1) 6.05 −177.07 8 8 258.45 2326.03 −786.70 −89.66
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Figure 10. ISMN crystal morphology in the CH2Cl2-C6H14 solvent system predicted using the MAE
model: (a) front view, (b) left view, (c) right view.

In contrast to the crystal morphology in the CH2Cl2 solvent system, the (1 1 −1)
crystal face reappears as a morphologically important growth surface in the CH2Cl2-C6H14
solvent system.

2.5.2. Diffusion Coefficient of CH2Cl2 in the CH2Cl2-C6H14 Solvent System

The MSD of CH2Cl2 in the CH2Cl2-C6H14 solvent system was analyzed, and the
results are shown in Figure 11.
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Figure 11. MSD curve of CH2Cl2 in the CH2Cl2-C6H14 solvent system.

The MSD curves were fitted to obtain the diffusion coefficients of the CH2Cl2 solvent
molecules in the CH2Cl2-C6H14 solvent system, and the results are shown in Table 6.
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Table 6. Diffusion coefficients of CH2Cl2 in two solvent systems.

(h k l) Dα1
a (10−8 m2/s) Dα2

b (10−8 m2/s)

(1 0 0) 0.2661 0.3192
(1 1 0) 0.2650 0.3657
(1 1 1) 0.3526 0.4465

(1 1 −1) 0.3773 0.4369
(1 0 1) 0.2670 0.3475

(1 0 −1) 0.3038 0.3673
a Dα1 is the diffusion coefficient of CH2Cl2 in the CH2Cl2 solvent systems. b Dα2 is the diffusion coefficient of
CH2Cl2 in the CH2Cl2-C6H14 solvent systems.

The diffusion coefficients of CH2Cl2 at all six crystal face systems were increased
compared with those before the addition of the volatile agent C6H14, indicating that the
addition of C6H14 can accelerate the diffusion of CH2Cl2.

2.5.3. Analysis of Hydrogen Bond Interactions in the CH2Cl2-C6H14 Solvent System

Hydrogen bonding statistics were performed for the last 300 ps of the kinetic simula-
tion trajectories of the five crystal face systems (1 0 0), (1 1 0), (1 1 1), (1 1 −1), and (1 0 −1),
and the probability density distributions of the bond lengths and angles of the hydrogen
bonds formed between the H1 and Cl atoms were obtained, as shown in Figures 12 and 13.
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Compared with the CH2Cl2 solvent system, the probability density distribution char-
acteristics of the hydrogen bond lengths and angles did not change much after the addition
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of C6H14, indicating that the addition of the volatile agent C6H14 did not greatly affect the
stability of the hydrogen bonds too much. The hydrogen bonding statistics are shown in
Table 7.

Table 7. Hydrogen bonding statistics in the CH2Cl2-C6H14 solvent system.

(h k l)
HB

Length a

(Å)

HB
Angle b

(◦)

S1% c

(HB
Length <

2.5 Å)

S2% d

(HB
Angle >

150◦)

NHB
e NH1

f NHB-per H1
g Abox

h

(Å2) NHB-unit area
i Ahkl

j

(Å2) NHB-hkl
k

(1 0 0) 2.51 147.27 50.49% 45.16% 22.87 18 1.27 2432.21 0.0094 101.342 0.95

(1 1 0) 2.55 144.49 44.53% 33.08% 40.29 48 0.84 3439.66 0.0117 143.319 1.68

(1 1 1) 2.59 147.76 37.75% 45.95% 20.72 24 0.86 6663.03 0.0031 277.607 0.86

(1 1 −1) 2.57 143.93 43.01% 31.22% 39.87 48 0.83 6663.03 0.0060 277.607 1.66

(1 0 −1) 2.55 144.61 45.73% 31.60% 15.85 18 0.88 2326.03 0.0068 258.448 1.76

Note: The meanings of the physical quantities marked by superscript letters (a–k) in the table are the same as in
Table 4.

From the statistical results, it can be seen that the HB length, HB angle, S1%, and
S2% do not change much compared with those before the addition of C6H14. Except for
the (1 1 1) crystal face, the NHB-unit area, and NHB-hkl in the other four crystal face systems
change considerably, from which it can be hypothesized that the reduction in the number
of hydrogen bonds after the addition of the volatile agent C6H14 leads to the weakening
of the interaction between the solvent layer and the crystal face layer. Thus, the absolute
value of the Es term in the modified attachment energy model decreases, and the absolute
value of E’att increases.

2.5.4. Relative Concentration Distributions of CH2Cl2 and C6H14

In the vicinity of the crystal face, the interaction between solvent molecules and the
crystal face largely determines the crystal morphology, and the relative concentration
distributions of CH2Cl2 and C6H14 were calculated in the direction perpendicular to the
crystal face. By analyzing the last 200 ps of the kinetic simulation trajectory, the relative
concentration distributions were obtained. The relative concentration of CH2Cl2 is high
and that of C6H14 was low near the crystal face in the three crystal face simulation systems
(1 0 0), (1 1 0), and (1 1 −1), as shown in Figure 14.

Taking the (1 1 0) crystal face as an example to explore the reasons for the higher
concentration of CH2Cl2 solvent molecules near the crystal face, the microstructure near
the crystal face during the kinetic simulation is analyzed as in Figure 15. The relative
concentration distribution in the figure is at the contact area between the solvent layer and
the crystal plane. Part of the solvent molecules above and part of the crystal molecules
below outside the contact region have been hidden. The reason for the higher concentration
of CH2Cl2 near the crystal face is mainly due to the existence of small depression regions
at the crystal face, and the CH2Cl2 molecule, because of its smaller molecular structure, is
embedded in the depression regions and interacts more strongly with ISMN molecules at
the crystal face. The larger molecular structure of C6H14 has a larger spatial site resistance
to enter the depression regions, so its concentration is lower near the crystal face.

The density distributions near the (1 0 0) and (1 1 1) crystal faces are similar to those
near the (1 1 0) crystal face, with both higher CH2Cl2 concentrations and lower C6H14
concentrations near the crystal face. The molecular structures of CH2Cl2 and C6H14 and
the spatial site barrier effect at the crystal face combine to contribute to the phenomenon.

Unlike the three crystal faces mentioned above, the relative concentrations of CH2Cl2
and C6H14 in the simulated systems of (1 0 1), (1 0 −1), and (1 1 −1) are both high in the
vicinity of the crystal faces, as shown in Figure 16.
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(1 0 −1) 2.55 144.61 45.73% 31.60% 15.85 18 0.88 2326.03 0.0068 258.448 1.76 

Note: The meanings of the physical quantities marked by superscript le ers (a–k) in the table are 
the same as in Table 4. 
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Figure 14. Relative concentration distributions of CH2Cl2 and C6H14 in the z-axis direction for the
three crystal face simulation systems (1 0 0), (1 1 0), and (1 1 1): (a) (1 0 0) crystal face system, (b) (1 1 0)
crystal face system, (c) (1 1 1) crystal face system. (The light gray area in the figure shows the relative
concentration distribution in the vicinity of the crystal face).
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Figure 15. Concentration distribution of CH2Cl2 and C6H14 near the (1 1 0) crystal face. (The lower
layer is the ISMN. In the upper layer, C6H14 is represented by a stick model, the Cl atom in CH2Cl2 by
a green sphere, the C atom in CH2Cl2 by a cyan sphere, and the H atom in CH2Cl2 by a white sphere.)

The high concentration of CH2Cl2 and C6H14 at the (1 0 1) crystal face is mainly
because CH2Cl2 is unable to form hydrogen bonding interactions with the crystal surface
in this crystal face simulation system, and the interaction between CH2Cl2 and the crystal
face is weaker, resulting in a high concentration of C6H14 in this region as well.

The analysis of the kinetic trajectory of the (1 0 −1) crystal face system reveals that due
to the larger space in the depression regions at the (1 0 −1) crystal face, the site resistance of
the C6H14 molecules to enter the region is smaller, so the relative concentration of CH2Cl2
and C6H14 peaks in the vicinity of the crystal face. The microstructure near the (1 0 −1)
crystal face is shown in Figure 17.

The reason for the high concentration of both CH2Cl2 and C6H14 at the (1 1 −1) crystal
face is that the depression regions at the crystal face are so small that CH2Cl2 molecules
cannot enter the region either, failing to reflect its structural advantages.
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Figure 16. Relative concentration distributions of CH2Cl2 and C6H14 in the z-axis direction for the
three crystal face simulation systems (1 0 1), (1 0 −1), and (1 1 −1): (a) (1 0 1) crystal face system, (b)
(1 0 −1) crystal face system, (c) (1 1 −1) crystal face system. (The light gray area in the figure shows
the relative concentration distribution in the vicinity of the crystal face.)
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Figure 17. Concentration distribution of CH2Cl2 and C6H14 near the (1 0 −1) crystal face. (The lower
layer is the ISMN. In the upper layer, C6H14 is represented by a stick model, the Cl atom in CH2Cl2 by
a green sphere, the C atom in CH2Cl2 by a cyan sphere, and the H atom in CH2Cl2 by a white sphere.)

2.5.5. Analysis of Changes in the Crystal Morphology of ISMN in the CH2Cl2-C6H14
Solvent System

CH2Cl2 solvent molecules can form hydrogen bond interactions with ISMN molecules
on the (1 0 −1) crystal face, while C6H14 molecules do not form hydrogen bond interactions
with ISMN molecules on the (1 0 −1) crystal face. The high concentration of C6H14 near
the (1 0 −1) crystal face weakens the interaction between the solvent layer and the crystal
face layer, and the (1 0 −1) crystal face growth is faster. Therefore, when growing along
with the (1 1 −1) crystal face, the (1 1 −1) crystal face has the opportunity to reappear as a
morphologically important growth face.

3. Simulation
3.1. Calculation Methodology

There are three popular methods for studying crystal morphology, namely, the BDFH
method, the growth morphology method, and the equilibrium morphology method [17].
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The BDFH method [38,39] was first proposed by Bravais, verified by Friedel’s observations,
and improved by Donnay and Harker. The theory states that the normal growth rate of
a crystal surface is inversely proportional to the lattice plane spacing (dhkl). The growth
morphology method determines the relative growth rate based on the magnitude of the
intermolecular interactions within the crystal and is also referred to as the attachment
energy model (AE model) [40,41]. The equilibrium morphology method works by calcu-
lating the minimum surface free energy for a given volume and temperature. Wulff plots
are combined to visualize the morphology of crystals in equilibrium with their surround-
ings [42]. Among the above methods, the AE model is widely used for the prediction of
crystal habits of energy-containing materials [43] and drug molecules [44] due to its simple
computational steps and relatively reliable accuracy, and the AE model is used in this work
to predict the crystal morphology.

In the AE model, the relative growth rate (Rhkl) of a crystal face in vacuum is propor-
tional to the absolute value of the attachment energy (|Eatt|) of the corresponding lattice
plane [45,46].

Rhkl∝ | Eatt | (3)

The crystal plane with the most negative Eatt will have the fastest growth rate and at
the same time the least morphological importance [24,31]. Eatt is calculated as follows:

Eatt = Elatt − Eslice (4)

where Eatt is the energy released when a wafer of thickness dhkl is attached to the surface of
the growing crystal, Elatt is the lattice energy of the crystal, and Eslice is the energy possessed
by a wafer of thickness dhkl.

In solution, due to the interaction between the solvent molecules and the crystal
surface, the growth of the crystal surface requires the exclusion of the solvent–crystal
surface interaction, and the AE model needs to be corrected. In solution, the modified
attachment energy (MAE) is calculated as follows:

E′
att = Eatt − Es (5)

E′
att is the modified attachment energy term, and Es is the solvent adsorption effect on

the attachment energy term, which can be obtained from the interaction energy between
the solvent layer and the crystal face layer (Eint). Eint is expressed as follows:

Eint = Etot − (Ecry + Esol) (6)

where Etot is the total energy of the solvent layer and crystal face system, Ecry is the potential
energy of the crystal face layer alone without the solvent layer, and Esol is the potential
energy of the solvent layer alone without the crystal face layer. The unit of measure for all
three is kcal/mol.

The unit of measure of the attachment energy Eatt in Materials Studio (MS) software is
kcal/mol/unit cell. To ensure the consistency of Es and Eatt, it is necessary to convert Eint
by introducing the following conversion factors [47]:

Es =
Zcry

Zhkl
× Ahkl

Abox
Eint (7)

Eint is the interaction energy between the solvent layer and the crystal face in the
simulation box in kcal/mol; Ahkl is the cross-sectional area of the crystal face cut out from
the unit cell in Å2; Abox is the cross-sectional area of the simulation box in Å2; Ahkl/Abox
is the reciprocal of the number of unit crystal faces contained in the simulation box, e.g.,
to construct a 2 × 3 simulation interface, then Ahkl/Abox = 1/6; Zcry is the number of
molecules contained in the unit cell; Zhkl is the number of molecules contained in the
crystal face cut from the unit cell.
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Through the above conversion, Es and Eatt have the same dimension kcal/mol/unit cell.

3.2. Simulation Methods and Details
3.2.1. Optimization of Lattice Parameters

The original cell structure of the ISMN used in the simulation was obtained by testing
and analyzing the product manufactured by Lunan Pharmaceutical Group Corporation,
which belongs to the P43 space group, and its lattice parameters are shown in Table 8. The
difference is not significant compared with the cell structure obtained from the Cambridge
Structure Database [48]. The COMPASS force field was used to optimize the geometry of
the original cell, and the degree of variation of the optimized lattice parameters was within
the acceptable range. The COMPASS force field was used in this work for the following rea-
sons: Validation studies representing 28 molecular classes show that COMPASS force field
enables accurate and simultaneous prediction of structural, conformational, vibrational,
and thermophysical properties for a broad range of molecules in isolation and in con-
densed phases [49]. These 28 molecular classes include C6H14 and CH2Cl2, the two solvent
molecules in this simulation. The molecular dynamics simulation of organic drug crystals
by the COMPASS force has also been effectively verified, for example, the prediction of
sulfamerazine crystal morphology [27] and the crystallization of mefenamic acid using N,
N-dimethyl formamide (DMF) as a solvent [50]. Cao et al. analyzed the intermolecular
interactions of 5-ISMN and four organic solvents using molecular simulations, and the
force field used for the molecular simulations was the COMPASS force field [12]. So, we
believe that the COMPASS force field is applicable to the simulation system in this work.

Table 8. Comparison of cell lattice parameters.

Lattice Parameter a (Å) b (Å) c (Å) α (◦) β (◦) γ (◦)

Primitive unit cell 15.992 15.992 6.523 90 90 90
Cambridge Structural Database 15.926 15.926 6.509 90 90 90

COMPASS 15.419 15.419 6.572 90 90 90
Relative error 3.58% 3.58% 0.75% 0.00% 0.00% 0.00%

3.2.2. Construction of the Simulation System

The AE model was used to predict the crystal morphology of the geometry-optimized
crystal cell under vacuum conditions. The morphologically important growth faces are cut
out and extended. The simulation box consists of the crystal surface layer and the solvent
layer, where the solvent layer is composed of solvent molecules. The construction process
of the simulation system is shown in Figure 18.

The size of the simulation box affects the results of molecular dynamics
simulations [51,52]. Lan et al. [25] investigated the effect of the size of the interface model
of the ε-hexanitrohexaazaisowurtzitane (HNIW) binary system on the results of the mod-
ified attachment energy calculations. The results showed that the length and width of
the simulation box should be not less than twice the truncation radius (a ≥ 2dc) and the
thickness of the crystal face layer should not be less than the truncation radius (Tc ≥ dc).
In this simulation work, the length and width of the solvent layer were equal to those of
the crystal face layer, and the height of the solvent layer was determined by the number
of molecules and the density of molecules contained in the solvent layer. A vacuum layer
of 100 Å was added above the solvent layer to eliminate the effect of periodic boundary
conditions in the z-axis direction. The sizes of the simulation boxes constructed for each
crystal face system are shown in Tables S1 and S2.
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3.2.3. Molecular Dynamics Simulation Details

The simulation work in this paper was completed by using Materials Studio 2018
software. The molecular dynamics simulation of the crystal surface–solvent model system
was carried out. The NVT ensemble was used, and the initial particle velocity was randomly
assigned at 298 K. The simulation time was 500 ps with a time step of 1 fs, 1 frame of
simulation trajectory was output every 100 steps, and a total of 5000 frames of simulation
trajectory was obtained. The Andersen temperature control method was used to control the
temperature of the system. Under the COMPASS force field, the atomic charge calculation
method is forcefield assigned. The electrostatic interactions were calculated using the
Ewald summation method, and the van der Waals interactions were calculated using an
atom-based method with a truncation distance of 12.5 Å.

4. Conclusions

The crystal morphology of ISMN under vacuum was predicted using the AE model,
and molecular dynamics simulations were performed for the model system containing
morphologically important growth surfaces. The crystal morphology was predicted in two
solvent systems, CH2Cl2 and CH2Cl2-C6H14, and the reasons for the changes in crystal
morphology were analyzed. The conclusions are summarized as follows:

1. In the CH2Cl2 solvent system, the type of interaction present at each crystal face was
determined using RDF analysis. Hydrogen bond interactions determine the crystal
morphology to a certain extent, with the bond length, bond angle, and number of
hydrogen bonds affecting the crystal morphology.

2. The use of C6H14 as a volatile agent accelerates crystal growth and increases the
diffusion rate of CH2Cl2 molecules; the addition of C6H14 affects the interaction
between the crystal face layer and the solution layer mainly by influencing the number
of hydrogen bonds in the vicinity of the crystal face.

3. The addition of C6H14 did not have a major effect on the overall morphology of the
crystals, mainly because the three morphologically important growth faces, (1 0 0),
(1 1 0), and (1 1 1), are still dominated by CH2Cl2 solvent molecules in the vicinity of
the crystal faces.

4. In the CH2Cl2-C6H14 solvent system, the difference in density distribution near the
(1 0 −1) crystal face may account for the reappearance of the (1 1 −1) crystal face as a
morphologically important growth surface.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29020367/s1, Table S1: The size of the simulated box
and the number of solvent molecules contained in the CH2Cl2 solvent system; Table S2: The size of the
simulated box and the number of solvent molecules contained in the CH2Cl2-C6H14 solvent system.
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