
Citation: Qian, Y.; Shi, M.; Zhang, Q.

CONSMI: Contrastive Learning in the

Simplified Molecular Input Line Entry

System Helps Generate Better

Molecules. Molecules 2024, 29, 495.

https://doi.org/10.3390/

molecules29020495

Academic Editor: Bernard Maigret

Received: 15 November 2023

Revised: 12 January 2024

Accepted: 16 January 2024

Published: 19 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

CONSMI: Contrastive Learning in the Simplified Molecular
Input Line Entry System Helps Generate Better Molecules
Ying Qian , Minghua Shi and Qian Zhang *

School of Computer Science and Technology, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses,
East China Normal University, 3663 North Zhongshan Road, Putuo District, Shanghai 200062, China;
yqian@cs.ecnu.edu.cn (Y.Q.); 51215901061@stu.ecnu.edu.cn (M.S.)
* Correspondence: qzhang@cs.ecnu.edu.cn

Abstract: In recent years, the application of deep learning in molecular de novo design has gained
significant attention. One successful approach involves using SMILES representations of molecules
and treating the generation task as a text generation problem, yielding promising results. However,
the generation of more effective and novel molecules remains a key research area. Due to the fact that
a molecule can have multiple SMILES representations, it is not sufficient to consider only one of them
for molecular generation. To make up for this deficiency, and also motivated by the advancements in
contrastive learning in natural language processing, we propose a contrastive learning framework
called CONSMI to learn more comprehensive SMILES representations. This framework leverages
different SMILES representations of the same molecule as positive examples and other SMILES
representations as negative examples for contrastive learning. The experimental results of generation
tasks demonstrate that CONSMI significantly enhances the novelty of generated molecules while
maintaining a high validity. Moreover, the generated molecules have similar chemical properties
compared to the original dataset. Additionally, we find that CONSMI can achieve favorable results in
classifier tasks, such as the compound–protein interaction task.

Keywords: deep learning; drug design; contrastive learning

1. Introduction

Discovering new drugs and material molecules can bring tremendous social and
technological progress. In particular, for some diseases that do not yet have effective
treatment plans, new targeted drugs represent great hope. Discovering more drugs also
provides a way to achieve personalized precision medicine [1]. However, drug discovery
is a costly, time-consuming process with a high failure rate [2]. The estimated number
of potential drug-like candidates ranges from 1023 to 1060 molecules [3], but only around
108 molecules have been synthesized and investigated so far [4]. In molecular research,
researchers are employing a synergy of genetic algorithms and object generation techniques
for molecular screening [5–8]. These methods generally perform Pareto optimization on
molecules to generate molecules with ideal properties. Additionally, they are utilizing
deep learning generative models for a more accurate simulation of molecular distributions,
showcasing the growing reliance on advanced artificial intelligence techniques in molecular
research. Firstly, a generation model is used to simulate the molecular distribution using
self-supervised learning, and then a series of molecules is generated using auto-regression
starting from carbon atoms. With the thriving development of deep learning models in
computer vision [9] and natural language processing (NLP) [10], these models are also
employed to improve molecular distribution and, when combined with reinforcement
learning and multimodal techniques, generate molecules with specific properties. There
are two main ways to generate molecules: using graph-based methods and using SMILES
notation methods. In addition, molecular generation methods based on SELFIES [11] have
been very popular recently.
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There is a lot of research on the graph-based method to generate molecules [12–14].
This method represents molecules as graph structures, where the nodes in the graph
represent atoms and the edges represent chemical bonds. This representation is intuitive
and can clearly present the atoms in the molecule and their connection relationships.
MOLDR [14] decomposes the molecular graphs in the training dataset into subgraphs and
reassembles them in different ways to generate new, optimized molecular graphs. The
Junction Tree VAE (JT-VAE) [13] offers an alternative approach to molecular generation
by representing molecules as graph tree structures. This representation allows for a more
expressive and structured encoding of molecular compounds. One notable advantage of
JT-VAE is its ability to guarantee the 100% validity of generated molecules. It achieves
this by maintaining a vocabulary of molecular components that can be added at each
junction of the molecule tree. By constructing molecules in a step-wise manner based on
valid molecular components, JT-VAE ensures that every generated molecule adheres to the
predefined rules and constraints of molecular validity. This design has three key limitations.
Firstly, when using JT-VAE for attribute optimization, the task becomes more challenging
because two molecules with the same connection tree may correspond to significantly
different attributes. Secondly, the absence of consideration of the node order arrangement
during the generation process can result in increased time consumption. Thirdly, due to the
complexity of real-world drug molecules, generating substructures with less than 20 atoms
is impractical [15].

The Simplified Molecular Input Line Entry System (SMILES) notation [16], which
represents molecules as character strings, allows for the application of advanced deep
learning models from the field of NLP for computational tasks involving molecules [17]. By
treating molecules as sequences of characters, NLP models can be leveraged to analyze and
generate molecular structures, enabling the exploration of chemical space using techniques
inspired by language processing [18]. In the initial development of deep learning architec-
tures for molecular generation, recurrent neural networks (RNNs) [19] were widely used
with molecular SMILES representations [20,21]. These models were trained on extensive
datasets of molecules and further refined through reinforcement learning [22,23] or transfer
learning methods [21]. The goal was to generate molecules with specific properties and
activities by guiding the model towards desired outcomes. These early approaches played a
crucial role in advancing the field of deep learning for molecular generation and paved the
way for subsequent research in the area. AE-based models have also played a significant
role in molecular generation tasks used with SMILES. The molecule generative model
based on VAE can generate various molecules with the required properties by learning the
potential space following a specific probability distribution [24,25]. The AAE (adversarial
auto-encoder) [26], on the other hand, incorporates adversarial training principles. By
introducing a discriminator network, the AAE encourages the encoder to produce latent
representations that closely resembled the true SMILES distribution [27]. This adversarial
training improved the quality and diversity of generated molecules. generative adversarial
networks (GANs) [28] have emerged as another popular approach for molecular design and
generation used with SMILES representation. ORGANs (objective-reinforced generative
adversarial networks) [29], as an early method of using the GAN model for molecular
generation, guide the process of generation through the gradual construction process of
generating molecules and through the use of reinforcement learning. However, the chem-
ical feasibility of ORGAN-generated molecules is very low. LatentGAN [30] is a model
that combines both an auto-encoder and a generative adversarial network for molecular
generation. It starts by pre-training an auto-encoder using SMILES structures as input,
and then trains a GAN to generate latent vectors for corresponding molecules. Similarly,
LatentGAN faces the problem of poor validity and diversity of generated molecules.

Self-Referencing Embedded Strings (SELFIES) [11] represents a significant advance-
ment in the field of molecular string representations, designed to address some of the
limitations inherent in the traditional SMILES format. Compared to SMILES, SELFIES
separates the information of branches and loops, improving the robustness of syntax. This
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robustness ensures that every generated string corresponds to a valid molecular structure,
greatly benefiting machine learning applications in chemistry. This advancement is par-
ticularly notable in the context of machine learning applications for molecular generation.
PASITHEA [31] is a SELFIES-based model for generating molecular structures, leveraging
direct-gradient-based optimization techniques from computer vision. Researchers from
the University of Toronto have developed STONED [32], a simple and efficient generative
model that does not require training. This model is capable of enumerating structures and
searching for transformative trajectories between molecules within a localized chemical
space. SELFIES also has limitations, including potentially complex and less readable strings
and higher computational demands for encoding and decoding processes.

Recently, there has been a lot of research on using the transformer [10] model to per-
form molecular generation tasks based on SMILES [33–35]. The transformer architecture
comprises an encoder and a decoder for sequence tasks. It utilizes self-attention to capture
dependencies and employs feed-forward networks. This design has powered advance-
ments in natural language processing tasks like translation and generation. Generally
speaking, researchers use a transformer encoder to encode molecule-related information,
such as the three-dimensional structural information of molecules [34], molecule-related
proteins [33], etc., and use a decoder to generate a SMILES. Of course, there are also cases
where an encoder (Bert) is used alone for supervised learning tasks such as compound–
protein interaction classification [36,37] or a decoder (GPT) is used alone for unconditional
molecular generation [35]. MolGPT [35] has achieved high effectiveness in unconditional
molecular generation, but its novelty is low, indicating severe overfitting of the model.

Besides enhancing the generation model, researchers are also exploring ways to more
effectively use data. There are several methods to augment data for molecular generative
models, and one of the most common approaches is SMILES enumeration [38]. SMILES
enumeration means that a molecule can have multiple valid SMILES representations.
Multiple SMILES representations of a molecule represent more comprehensive structural
information of the molecule. Josep et al. [39] used randomized SMILES to expand data,
effectively improving the molecular generative model compared to using canonical SMILES.
Cheng-Kun Wu [40] also used SMILES enumeration to expand the dataset to improve
the effectiveness of latent representation learning from molecules. However, the current
SMILES enumeration method is only used for simple dataset expansion and has not been
appropriately optimized for the concrete model.

In addition to simple data augmentation, researchers have recently used contrastive
learning to learn better molecular representations for downstream tasks of molecules. The
core of contrastive learning lies in constructing positive and negative sample pairs and
utilizes the normalized temperature-scaled cross-entropy loss (NT-Xent) [41] to encourage
the model to learn meaningful representations by maximizing agreement between positive
pairs (augmented versions of the same image) and minimizing agreement between nega-
tive pairs (augmented versions of different images). Gathering positive instances typically
encompasses various enhanced perspectives of identical data (such as data augmentation),
while negative pairs commonly consist of the remaining samples within the mini-batch.
Thus, the key to this matter is how to effectively enhance data. In the field of computer vi-
sion, approaches like SimCLR, proposed by Chen et al. [42], used image cropping, rotation,
and other methods to enhance the data. In the textual domain, approaches like [43] utilize
back-translation to enhance the data [44]. SimCSE [45] enters a sample into the model
twice and then puts it through dropout twice, obtaining two different views that are mutu-
ally positive samples. In the molecular field, approaches like MolCLR [46] encompasses
three molecular graph enhancement strategies for data enhancement: atomic masking,
key deletion, and subgraph deletion. MoCL [47] combines the basis of ordinary graph
data enhancement and domain knowledge to ensure that the representation of molecular
graphs does not change during the enhancement process. SMICLR [48] uses different
representations of molecules (SMILES representation and graph representation methods)
as data augmentation for molecules.
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We proposed a framework called CONSMI that utilizes the SMILES enumeration
strategy as a data augmentation strategy for contrastive learning, and the trained repre-
sentations achieved good results in self-supervised molecular generation and supervised
compound–protein interaction prediction experiments. The molecular generation model is
based on GPT, which effectively solves the problem of the overfitting of GPT-generated
molecules compared to MolGPT [35]. The compound protein interaction model is based on
a unified transformer and has achieved SOTA results on multiple datasets.

The contributions of this article are as follows:

1. We propose CONSMI, a contrastive learning framework that learns representation
from a large molecular dataset.

2. The CONSMI framework combined with a transformer decoder generates more
successful molecules.

3. The CONSMI framework combined with a transformer encoder achieves SOTA results
on multiple datasets of compound–protein interactions.

2. Results and Discussion

In this section, we first demonstrate the performance of the molecular generation task.
We compared the model with other state-of-the-art (SOTA) methods and conducted some
interpretability analyses. Then, we demonstrated the performance of the model on some
classification tasks. We refer to the GPT model with the CONSMI framework’s pre-trained
CONSMI embedding layer as CON-GPT, and indicate the two fine-tuning methods (frozen
and unfrozen) after the model name. The models for comparative experiments have been
introduced in Introduction.

2.1. Molecular Generation Results

As mentioned before, a good molecular generative model needs to generate more
valid, unique, and novel molecules. Therefore, CON-GPT is evaluated in comparison
to previous approaches using these evaluation criteria. Notably, JT-VAE utilizes graph
representations as input, while the other approaches utilize SMILES.

The results on the Moses dataset are shown in Table 1. We conducted comparative
experiments using the methods mentioned in the introduction: CharRNN, VAE, AAE,
LatentGAN, JT-VAE, and MolGPT. Due to the fact that JT-VAE performs verification at
every step of molecule generation, the validity of the model is 1. With the exception of JT-
VAE, the MolGPT model achieves the highest validity score of 0.995 for molecule generation.
However, its novelty score is only 0.781, indicating significant overfitting. It is important to
note that both the validity and novelty of generated molecules are crucial. The CON-GPT
model, whose SMILES embedding is pre-trained using the contrastive learning approach
with the CONSMI framework, exhibits a validity score that is 0.04 lower compared to the
MolGPT model. However, it achieves a higher novelty score of 0.834, indicating more
valid and novel generated molecules. We found that the IntDiv1 of the baseline method
fluctuates around 0.855, while ours is around 0.850. Although the difference is not obvious,
we found that GPT-based methods all have this problem, which is a point that we need to
study in the future. The success rate of our CON-GPT exceeds that of all methods except
JT-VAE and LatentGAN. LatentGAN has drawbacks related to GAN, such as unstable
training and time consumption. This suggests that the CONSMI framework effectively
learns the diversity of SMILES grammar, mitigates the overfitting issue observed in the
MolGPT model, and provides a more improved deep molecular generative model based
on SMILES.

We conducted experiments to compare two methods of fine-tuning the models: frozen
(freezing the pre-training CONSMI embedding weights) and unfrozen (unfreezing the pre-
training CONSMI embedding weights). We found that the freezing method outperforms the
unfreezing method, despite our initial expectations. The CON-GPT model with unfrozen
pre-training weights showed a slight decrease in validity (of 0.004) compared to the MolGPT
model, but exhibited a slight increase in novelty (of 0.01). On the other hand, the CON-GPT
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model with frozen pre-training weights also experienced a decrease in validity (of 0.005) but
showed a significant increase in novelty (of 0.053). Additionally, freezing the pre-training
weights led to faster model training. These results demonstrate the strong feature extraction
and generalization capabilities of our CONSMI framework.

Table 1. Comparison of the metrics for molecule generation using various approaches trained on the
MOSES dataset.

Models Validity Unique@10k Novelty Success
Rate IntDiv1

CharRNN 0.975 0.999 0.842 0.820 0.856
VAE 0.977 0.998 0.695 0.678 0.856
AAE 0.937 0.997 0.793 0.741 0.856
LatentGAN 0.897 0.997 0.949 0.849 0.857
JT-VAE 1.0 0.999 0.914 0.913 0.855
MolGPT 0.995 1.0 0.781 0.777 0.850
CON-GPT (unfrozen) 0.992 1.0 0.791 0.785 0.850
CON-GPT (frozen) 0.991 1.0 0.834 0.826 0.850

Our methods have been bolded.

In order to evaluate the generalization ability of our model, we conducted experiments
on the GuacaMol dataset, which is a subset of the ChEMB dataset. The results on the
GuacaMol dataset are shown in Table 2. It is worth noting that the pre-trained dataset and
MOSES dataset used in our experiments are both subsets of the ZINC dataset. By assessing
our model’s performance on the GuacaMol dataset, we can learn how well it can generate
molecules with desirable properties beyond the datasets it was specifically trained on. This
evaluation provides valuable insights into the model’s ability to generalize and produce
high-quality molecules in diverse chemical spaces.

Table 2. Comparison of the metrics for molecule generation using various approaches trained on the
GuacaMol dataset.

Models Validity Unique Novelty Success Rate

SMILES LSTM 0.959 1.0 0.912 0.875
VAE 0.870 0.999 0.974 0.847
AAE 0.822 1.0 0.998 0.820
MolGPT 0.979 0.998 0.958 0.936
CON-GPT (unfrozen) 0.968 0.999 0.968 0.936
CON-GPT (frozen) 0.961 0.999 0.975 0.936

Our methods have been bolded.

The experimental results on the GuacaMol dataset exhibit similarities to those obtained
on the MOSES dataset. The GPT model enhanced with the CONSMI framework for pre-
training demonstrates a higher uniqueness and novelty compared to the pure GPT model,
albeit at the cost of a slight decrease in validity. The performance difference between the
fine-tuning methods for unfrozen and frozen weights aligns with the observations on the
MOSES dataset. Overall, there is still a slight advantage in generating valid and novel
molecules, indicating a certain degree of generalization ability in our model. However, the
leading advantage is not as pronounced as on MOSES, and we speculate that this may be
due to the different sources of the GuacaMol dataset and our pre-trained dataset.

Figures 1 and 2 provide compelling evidence that the important molecular attributes
(QED, LogP, SAScore, tpsa, weight) generated by the model closely match the distribution
of the original dataset. These data were calculated by the RDKit library [49]. This result
strongly suggests that the model has successfully learned the underlying distribution of
molecular attributes present in the dataset.
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(a) (b)

(c) (d) (e)
Figure 1. The distribution of molecular attributes generated by the model trained on the MOSES
dataset. (a) QED (Quantitative Estimate of Drug-likeness). (b) LogP (Octanol-Water Partition
Coefficient). (c) SAScore (Synthetic Accessibility Score). (d) TPSA (Topological Polar Surface Area).
(e) Weight (Molecular Weight).

(a) (b)

(c) (d) (e)
Figure 2. The distribution of molecular attributes generated by the model trained on the GuacaMol
dataset. (a) QED (Quantitative Estimate of Drug-likeness). (b) LogP (Octanol-Water Partition
Coefficient). (c) SAScore (Synthetic Accessibility Score). (d) TPSA (Topological Polar Surface Area).
(e) Weight (Molecular Weight).

Case Study We systematically examined all generated molecules with QED values exceed-
ing 0.9 and assessed their similarity to the molecules in the Moses test set. As shown in
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Table 3 and 4, We found that although the model has not seen the molecules in the test set,
a substantial number of the generated molecules exhibited a similarity of over 0.9 to those
in the test set.

Table 3. Example analysis of generated molecules: SMILES.

Number Molecules Generated Molecules in the Test Set

1 COc1ccc(NC(=O)N2CCN(C(=O)C3 CCCCC3)CC2)cc1 COc1ccc(NC(=O)N2CCN(C(=O)C3 CCCC3)CC2)cc1
2 Cc1nc2cc3c(cc2n1CC(=O)NC1CCCCC1) OCCO3 Cc1nc2cc3c(cc2n1CC(=O)NC1CCCC1) OCCO3
3 Cn1ccc(C(=O)Nc2cc(F)ccc2N2CCCC2)cc1=O Cn1ccc(C(=O)Nc2cc(F)ccc2N2CCCCC2)cc1=O
4 Cc1cc(CN(C)C(=O)Nc2ccccc2N2CCCC2)no1 Cc1cc(CN(C)C(=O)Nc2ccccc2N2CCCCC2)no1
5 COc1ccccc1-c1noc(C(=O)N2CCCC2)c1N COc1ccccc1-c1noc(C(=O)N2CCCCC2)c1N
6 CC(CC#N)N(C)C(=O)Nc1ccccc1N1CCCC1 CC(CC#N)N(C)C(=O)Nc1ccccc1N1CCCCC1

Table 4. Example analysis of generated molecules: molecular properties.

Number Tanimoto
Similarity

QED
(Generated)

SAScore
(Generated)

LogP
(Generated)

1 0.958 0.916 1.839 2.952
2 0.957 0.940 2.318 2.565
3 0.957 0.941 2.184 2.377
4 0.956 0.950 2.102 3.247
5 0.952 0.935 2.284 2.168
6 0.952 0.925 2.685 3.053

Adjusting the Temperature We conducted an evaluation to understand how adjustments to
the hyperparameter τ impact NT-Xent’s ability to distinguish effectively between positive
and negative samples. This assessment involved exploring a set of τ values that are
frequently used in practice, specifically 0.05, 0.1, 0.5, and 1, to identify the most suitable τ
value. The results, encapsulated in Table 5, display the validation errors corresponding to
each τ value during the model’s training process. We found that a τ of 0.1 yielded the most
favorable results. Intriguingly, these results corroborate well with the existing literature,
particularly concerning applications in molecular data [48].

Table 5. The impact of different τ values on generation tasks.

τ 0.05 0.10 0.50 1.00

Loss 0.16411 0.16326 0.16379 0.17299

2.2. Compound–Protein Interaction Results

In this section, we assessed the performance of the CONSMI architecture in the
context of compound–protein interactions. In simpler terms, the task can be boiled down
to a binary classification problem: determining whether there is an interaction between
molecules and proteins or not. We used a transformer with two encoders and denoted
our baseline model as UniT [50]. We substituted the original SMILES embedding layer
with the trained CONSMI embedding Layer, referred to this as CON-UniT. We conducted
comparisons between our model and some currently popular or highly effective models,
such as GNN-CPI [51], TransformerCPI [36], Moltrans [37], and BCM-DTI [52]. GNN-CPI
and TransformerCPI both utilize molecular graph representations of drugs and employ
a CNN and a GCN (graph convolutional network), respectively, to encode the graphs.
TransformerCPI and Moltrans, on the other hand, utilize transformer encoders to capture
the chemical semantics. Additionally, Moltrans is a substructure-based DTI (drug–target
interaction) prediction approach that applies byte pair encoding (BPE) to decompose drug
and protein sequences into a set of explicit substructure sequences [52].
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Tables 6 and 7 illustrate the notable performance improvements achieved by the UniT
model with pre-training in compound–protein interaction classification tasks. The model
exhibits a significantly higher F1 value, accuracy, and recall compared to the model with-
out pre-training. Compared to the currently popular frameworks, our model excels in
all aspects except for recall, where it does not always achieve the highest performance.
However, it outperforms other models in terms of precision and demonstrates the remark-
able ability to maintain a balance between precision and recall, even on the imbalanced
DAVIS dataset [53]. This demonstrates the effectiveness of the pre-training approach in
enhancing the model’s ability to accurately classify compound–protein interactions. In
addition, as seen in the table, a stand-alone transformer model does not necessarily outper-
form other models in terms of precision. However, the CON-UniT model demonstrates
a significant competitive advantage. It is worth mentioning that the other models have
undergone specific adjustments for the compound–protein interaction task, whereas our
model achieved such impressive results with only the addition of pre-training to the orig-
inal UniT. This observation further indicates that our CONSMI framework successfully
learns meaningful representations of molecules. By leveraging the contrastive learning
framework, our model is able to capture important features in the molecular data, leading
to an improved performance in compound–protein interaction classification tasks. The
effectiveness of the CONSMI framework highlights its ability to enhance the model’s under-
standing and representation of molecular structures, thereby facilitating better predictions
and classification accuracy.

Table 6. Experimental results of the compound–protein interaction classification task on the Celegans
dataset.

Models F1 Precision Recall

GNN-CPI 0.933 0.938 0.929
TransformerCPI 0.952 0.952 0.953
Moltrans 0.954 0.947 0.962
BCM-DTI 0.969 0.967 0.971
UniT 0.964 0.966 0.961
CON-UniT 0.969 0.972 0.966

Top performed method in each metric is bold.

Table 7. Experimental results of the compound–protein interaction classification task on the DAVIS
dataset.

Models F1 Precision Recall

GNN-CPI 0.658 0.647 0.669
TransformerCPI 0.584 0.46 0.8
Moltrans 0.306 0.185 0.884
BCM-DTI 0.611 0.853 0.476
UniT 0.841 0.844 0.837
CON-UniT 0.868 0.874 0.862

Top performed method in each metric is bold.

3. Methods

Here, we describe the method proposed in this work. We propose a contrastive
learning pre-trained framework called CONSMI, which consists of a CONSMI embedding
layer, a transformer encoder layer, and a projection head. We used the pre-trained CONSMI
embedding layer for the molecular generation model CON-GPT. In order to demonstrate
universality, we also used the CONSMI embedding layer for the classification model
CON-UniT. CON-GPT is based on a transformer decoder, while CON-UniT is based on a
transformer encoder.
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3.1. CONSMI Framework

Here, we describe a contrastive learning framework using SMILES enumeration to
learn more comprehensive potential representations of SMILES. As shown in Figure 3,
(i) We first use the SMILES enumeration strategy to generate multiple different representa-
tions of a molecule. (ii) We then use a CONSMI embedding layer, a transformer encoder
module, and a projection head with shared parameters to encode the input representations
into latent space. (iii) We finally introduce a contrastive loss layer to calculate the contrastive
loss in a batch of samples. The idea is to maximize the similarity of different SMILES rep-
resentation vectors for the same molecule, while keeping the SMILES vectors of different
molecules away from each other. The different SMILES enumeration representations of
molecules can be obtained using the cheminformatics library RDKit [49].

Figure 3. Overview of the CONSMI framework. Firstly, provide a molecule x. Obtain two SMILES
representations representing x1 and x2 from x, and then input these together into the model. A
transformer encoder module f (·) and a project head module g(·) are trained to maximize the
agreement using a contrastive loss function. f includes several layers of transformer encoder layers,
and g includes a multilayer perceptron (MLP).

For each input molecule x, we perform SMILES enumeration to randomly select two
types x1 and x2. SMILES enumeration is completed using a function from the chemical
informatics library RDKit [49]. As Figure 4 shows, the atomic order of molecules is dis-
rupted when converting to the molfile format, so RDKit is used to generate SMILES from
the molecules in the molfile. Changing the dorandom parameter to true will randomize the
DFS transversal graph when generating SMILES.

The function g(·) within the projection head component takes the latent representa-
tion from the preceding module and maps it into an embedding space denoted as z. To
implement the function g(·), we have adopted a multilayer perceptron (MLP) architecture
which consists of a single hidden layer with rectified linear units (ReLUs) as the activation
function, followed by a linear output layer. This type of architecture is commonly utilized
in neural networks.



Molecules 2024, 29, 495 10 of 16

Figure 4. Visualization of different SMILES representations of the molecule acetaminophen, involving
various transformations of its image. In principle, the DFS transversal graph that traverses all
structures of acetaminophen has a certain degree of randomness. Since its images are generated
according to specified rules by SMILES, each image is a different perspective from another images.

Following Chen et al. [42], this work adopted the normalized temperature-scaled
cross-entropy loss (NT-Xent) shown below as li,j

li,j = −log
exp(sim(zi, zj)/τ)

∑2N
k=1 1k ̸=iexp(sim(zi, zk)/τ)

where sim(zi, zj) = zT
i zj/||zi||||zj|| (i.e., cosine similarity) and zi and zj are a positive pair

(i.e., g(ri) and g(rj) of the same molecule). The function 1k ̸=i is an indicator function
equal to 1 if k ̸= i (i.e., the negative pairs) and τ denotes the temperature parameter. In
addition, since each molecule generates two different SMILES representations, the mini-
batch includes 2N examples, which means there are 2(N − 1) negative examples and
2 positive examples for each sample.

3.2. Generation Module

CON-GPT is composed of the generative pre-training transformer (GPT) model [54].
As shown in Figure 5, this module is built with N decoder blocks, where each block consists
of a masked self-attention layer and a fully connected neural network. The self-attention
layer produces a 256-dimensional vector, which serves as the input for the fully connected
network. The hidden layer of the neural network generates a 1024-dimensional vector
and applies the GELU (Gaussian error linear unit) activation function [55]. Its formula is
as follows:

GELU(X) = x × P(X ≤ x) = x × ϕ(x), x ∼ N(0, 1)

where x is the input value, while X is a Gaussian random variable with zero mean and
unit variance. P(X ≤ x) is the probability that X is less than or equal to the given value x.
The final layer of the fully connected network outputs a 256-dimensional vector, which is
subsequently fed into the next decoder block. The module uses auto-regressive patterns
for generation. We first use the CONSMI framework for pre-training, and then bring the
pre-trained CONSMI embedding layer over for molecular generation. After introducing
pre-trained CONSMI embedding, we used two fine-tuning methods: The first is to freeze the
CONSMI embedding weights and only train additional modules. The other option is to not
freeze the CONSMI embedding weights and train them together with additional modules.

3.3. Classifier Module

CON-UniT is based on the unified transformer [50]. As shown in Figure 6, this module
consists of two transformer encoders, one encoding the protein sequence and the other
encoding the SMILES representation sequence of the molecule. After being encoded by the
encoder, they are concatenated and mapped to the binary dimensional space. The internal
structure of the encoder is similar to the decoder structure used in the generation module.
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Figure 5. Overview of the generation module. N * means the module consists of a transformer
decoder with N layers.

Figure 6. Overview of CON-UniT. N * means the module consists of two transformer encoders, each
with N layers.

4. Experiment Configuration

In this section, we first introduce two datasets for molecular generation experiments
and datasets for the compound–protein interaction (CPI) task. Then, we describe the process
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and evaluation indicators of the experiment. Finally, we provide a detailed overview of
the CONSMI training process for SMILES representation learning, the molecule generation
task, and the CPI task.

4.1. Datasets

We selected SMILES representations with molecular weights between 250 and 350, a
logP not exceeding 3.5, and a SMILES sequence length not exceeding 100 from the ZINC
Clean Leads [56] to form our pre-training dataset. There was a total of 37,956,795 SMILES
sequences. We divided the training and testing sets randomly at 19:1. We hoped to pre-train
molecules on a large dataset and learn more comprehensive molecular representations.
MOSES [57] is a set of lead-like molecules extracted from the Zinc dataset, and its distribu-
tion is very similar to that of ideal drug molecules. We used the MOSES dataset to generate
new drug-like molecules. GuacaMol [58] is a subset of the database ChEMBL [59] which
contains 1.6 million molecules. It was used to verify the migration ability of the model on
different molecular distributions.

We also used the Celegans [60] and DAVIS [53] datasets for experiments on compound–
protein interactions. Every dataset was further divided into three sets with a ratio of 8:1:1
for training, validating, and testing, respectively.

4.2. Evaluation Metrics

The primary objective of our model is to generate a diverse set of molecules. To assess
the quality of the generated molecules, we employed five distinct 2D-level metrics: Validity,
Uniqueness, Novelty, Success Rate, and Internal Diversity. These metrics were used to
evaluate and compare the structural integrity, uniqueness, and ability to introduce new
chemical structures of generated molecules, as well as their diversity in the chemical space.

Validity was determined by utilizing RDKit’s [49] molecular structure parser, which
examines the valency of atoms and the consistency of bonds in aromatic rings. It assesses
how accurately the generated molecules adhere to the rules and constraints of SMILES
representations, ensuring proper atom connectivity and valence. Formally,

Validity =
Number o f valid SMILES

Number o f generated SMILES

Uniqueness refers to the proportion of valid generated molecules that are distinct
and not repetitive. A low uniqueness score indicates a higher frequency of duplicated or
redundant molecules in the generated set. It reflects the model’s ability, or lack thereof, to
learn a diverse distribution of molecules during the generation process. In experiments
based on the MOSES benchmark, we computed Unique@K and for the first K 10,000 valid
molecules in the generated set.

Uniqueness =
Number o f distinct, valid SMILES

Number o f Valid SMILES

Novelty is defined as the proportion of generated molecules that do not exist in the
training set. It measures the model’s capability to produce new and unseen molecules that
were not encountered during the training process. A low novelty score suggests a higher
likelihood of overfitting, where the model predominantly reproduces molecules already
present in the training set rather than generating novel compounds.

Novelty =
Number o f novel SMILES not in training set

Number o f unique generated SMILES
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Success Rate is defined as the ratio of actual generation of available molecules, and
from the perspective of unconditional generation of molecules, it should be the product of
effectiveness, uniqueness, and novelty.

SuccessRate = Validity × Uniqueness × Novelty

Internal Diversity (IntDivp) was designed to measure the diversity of generated
molecules and check for mode collapse or whether the model keeps generating similar
structures. This involves calculating the mean power (p) of Tanimoto similarity (T) between
fingerprints of all pairs of molecules (s1, s2) within the generated set (S).

IntDivp(S) = 1 − p

√
1

|S|2 ∑
s1,s2∈S

T(s1, s2)p

For the classification task, we employed Precision, Recall, and the F1 score as evalua-
tion metrics.

Precision measures the accuracy of the model’s positive predictions. It is the propor-
tion of correctly predicted positive samples out of all samples predicted as positive.

Precision =
TP

TP + FP

where TP is the number of positive instances correctly predicted as positive by the model
and FP is the number of negative instances incorrectly predicted as positive by the model.

Recall measures the coverage of positive samples by the model. It is the proportion of
correctly predicted positive samples out of all actual positive samples.

Recall =
TP

TP + FN

where FN is the number of positive instances incorrectly predicted as negative by the model.
F1 Score is the harmonic mean of precision and recall. It provides a comprehensive

measure of a model’s performance by considering both precision and recall.

F1 Score = 2 · Precision · Recall
Precision + Recall

4.3. Training Details

The models were implemented based on Pytorch and trained on a GPU (Nvidia
RTX3090) and a checkpoint was saved per epoch. We use the AdamW [61] optimizer,
conducted a grid search in the interval of [0.0001, 0.01], and selected the value with the
best performance in the validation set as the learning rate. We designated the target epoch
as 100, and if there was no reduction in the loss of the validation set for 10 consecutive
iterations, we saved the current model as the optimal one and concluded the training
process. The batch size was 16, and the word vector dimension was 256. The parameters of
the CON-GPT were consistent with those in MolGPT [35], so the data in the comparative
experiment were directly used from the paper. We adopted the beam search procedure to
generate multiple candidates. All generated candidates were canonicalized using RDkit
and compared to the source molecules. The training settings for CON-UniT were the same
as CONSMI, except that the batch size was changed to 128. The comparative data were
collected from the paper on BCM-DTI [52].

5. Conclusions

In this work, we propose a contrastive learning pre-training framework called CON-
SMI, specifically designed for molecular SMILES representations. By leveraging SMILES
enumeration as a data augmentation technique, we perform contrastive learning by using
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different SMILES representations of the same molecule as positive examples and different
SMILES representations of different molecules as negative examples. The effectiveness
of our framework is validated through experiments on the GPT model, showcasing its
superior performance in molecular generation tasks.

The experimental results demonstrate that our pre-training framework significantly
enhances the novelty and uniqueness of the generated molecules while maintaining a high
level of validity. Our model is capable of generating more effective and novel molecules,
while ensuring that their properties align with the distribution observed in the dataset.
The evaluation conducted on both the MOSES dataset and the GuacaMol dataset further
confirms the efficacy of our pre-training framework.

Moreover, our pre-training framework exhibits promising results in the compound–protein
interaction task. The successful outcomes achieved across multiple datasets serve as further
evidence that our framework facilitates the learning of improved molecular representations.

In summary, our proposed CONSMI framework contributes to the advancement
of molecular generation tasks by enabling the generation of more effective and novel
molecules while preserving their alignment with the dataset’s molecular distribution. Addi-
tionally, the framework demonstrates its efficacy in the compound–protein interaction task,
showcasing its ability to facilitate more comprehensive molecular representation learning.
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