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Abstract: Water pollution has becoming an increasingly serious issue, and it has attracted a significant
amount of attention from scholars. Here, in order remove heavy metal hexavalent chromium (Cr (VI))
from wastewater, graphitic carbon nitride (g-C3N4) was modified with molybdenum disulfide (MoS2)
at different mass ratios via an ultrasonic method to synthesize g-C3N4/MoS2 (CNM) nanocomposites
as photocatalysts. The nanocomposites displayed efficient photocatalytic removal of toxic hexavalent
chromium (Cr (VI)) from water under UV, solar, and visible light irradiation. The CNM composite
with a 1:2 g-C3N4 to MoS2 ratio achieved optimal 91% Cr (VI) removal efficiency at an initial 20 mg/L
Cr (VI) concentration and pH 3 after 120 min visible light irradiation. The results showed a high pH
range and good recycling stability. The g-C3N4/MoS2 nanocomposites exhibited higher performance
compared to pure g-C3N4 due to the narrowed band gap of the Z-scheme heterojunction structure
and effective separation of photo-generated electron–hole pairs, as evidenced by structural and
optical characterization. Overall, the ultrasonic synthesis of g-C3N4/MoS2 photocatalysts shows
promise as an efficient technique for enhancing heavy metal wastewater remediation under solar and
visible light.

Keywords: g-C3N4/MoS2 composites; Z-scheme heterojunction; hexavalent chromium Cr (VI);
photocatalyst

1. Introduction

Water scarcity and water pollution have long been major global concerns; in recent
decades, the rapid development of the economy and industrialization led to increasingly
serious environmental pollution problems. Water quality has decreased since a large
amount of industrial wastewater, which contained heavy metals, was discharged into the
water system [1,2]. Chromium is one of the common sources of heavy metal pollution
and mainly exists in Cr (III) and Cr (VI) in water [3]. Cr (III) is one of the essential
elements in the human body, which can participate in the metabolism of human fat and
is widely used in the adjuvant therapy of diabetes [4]. Cr (VI) poses a lasting threat
to the environment and human health and can enter the human body through skin-to-
skin contact or breathing. In addition, Cr (VI) has strong oxidation and can oxidize
human hemoglobin into methemoglobin, which may cause cancer risk after long-term
or short-term exposure [5,6]. Therefore, it is highly important that we find a way to
handle Cr (VI) in industrial wastewater economically and efficiently and make it meet the
discharge standard.
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At present, reducing Cr (VI) to Cr (III) in wastewater is an important way of alle-
viating chromium pollution in water [7,8], and common methods for treating chrome-
containing heavy metal wastewater include the adsorption method [9,10], chemical reduc-
tion method [11,12], and biological method [13,14]. In the process of Cr (VI) removal, these
methods consume a large amount of power and other resources, have high costs, and may
cause other forms of pollution. However, existing treatment methods for the removal of
pollutants in the process of treatment have complexity and high costs, and they are prone
to secondary pollution and other shortcomings.

Photocatalytic technology is widely used [15–17], which has the advantages of no
secondary contamination and strong redox capacity and is widely used in pollutant degra-
dation [18,19], hydrogen generation [20,21] and CO2 photoreduction [22]. It is one of the
best ways to solve future pollution problems [23]. Bi-bridge S-scheme Bi2S3/BiOBr het-
erojunction (Bi2S3/Bi/BiOBr), produced by the one-pot solvothermal method, has shown
high visible light photocatalytic reduction performance, and the removal efficiency of Cr
(VI) was 97% [24]. Graphitic carbon nitride (g-C3N4)’s band gap is 2.7 eV; it is a common
photocatalyst with high stability and environmental friendliness [25–27]. Currently, ther-
mal polycondensation is commonly used in the preparatory work of g-C3N4, which makes
the preparation of g-C3N4 simple [28–30]. However, due to the rapid recombination rate
of photo-generated electrons and holes and the low light absorption range and surface
range [31–33], the photocatalytic performance of g-C3N4 photocatalysts is low, which
makes the use of g-C3N4 limited. Numerous researchers have found that the photocatalytic
performance of g-C3N4 could be improved by conducting morphology regulation [34,35],
ion doping [36–38], and heterojunction construction [39–41]. Li et al. [42] prepared ultra-
thin tubular lateral heterostructures (LHSs) of graphitic carbon nitride and carbon dots
(CN/C-Dots) by one-step thermal polymerization; they found that the CN/C-Dots LHSs
exhibited excellent electrocatalysts for a hydrogen evolution reaction, due to which the
charge carriers’ transport was enhanced and the specific surface area was increased, mean-
ing more active sites of CN. Renji Rajendran et al. [43] developed a g-C3N4/TiO2/α-Fe2O3
ternary magnetic nanocomposite with a Z-scheme by facile calcination and a hydrothermal
process. The g-C3N4/TiO2/α-Fe2O3 ternary magnetic nanocomposite exhibited excellent
photocatalytic performance for the degradation of Rhodamine B (RhB); under visible light
exposure, the degradation rate was 95.7%, which was due to the formation of the Z-scheme
enhancing the separation and migration of photoexcited electron and hole pairs and the
light absorption range. Photocatalysts have been widely used for various purposes. How-
ever, photocatalysts still have the shortcomings of low utilization of visible light and high
requirements for reaction conditions. MoS2 has attracted attention as a transition metal
dichalcogenide with good chemical stability and adjustable bandwidth [44].

In this work, g-C3N4/MoS2 samples with different mass ratios were prepared by the
ultrasonic method, and the photocatalytic removal efficiencies of Cr (VI) under different
light irradiation sources (ultraviolet light, solar light and visible light) were investigated.
g-C3N4/MoS2 composites showed strong photocatalytic activity. When the pH value was 3,
the initial concentration of Cr (VI) was 20 mg/L, and the photocatalyst demonstrated strong
photocatalytic activity. Compared with pure g-C3N4, the doping of MoS2 is beneficial for
narrowing the band gap and reducing the recombination rate of photo-generated electrons
and holes, and the photocatalytic performance of CNM (1:2) increased. The composite
photocatalyst has a wide pH range and can still show a high removal rate after multiple
reuses, overcoming the shortcomings of existing difficult-to-recover photocatalysts.

2. Results and Discussion
2.1. Characterization
2.1.1. XRD

The X-ray diffraction (XRD) pattern characterization of g-C3N4, MoS2, and CNM (1:2)
is shown in Figure 1. g-C3N4 had diffraction peaks at 13.1◦ and 27.6◦, which corresponded
to the (100) and (002) planes, respectively [45]. The characteristic diffraction peaks of
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13.9◦, 32.8◦ and 58.6◦ were attributed to the (002), (100), and (110) planes, respectively [46].
Compared with g-C3N4 and MoS2, there is a shift in the peak position of the CNM (1:2)
composites, which may be caused by the increased interlayer distance of the defect modified
samples [47]. The diffraction peaks of the CNM (1:2) composites were 13.3◦, 27.9◦, 32.8◦

and 57.6◦, respectively. These were attributed to (100), (002), (100), and (110). The CNM
(1:2) composites showed diffraction peaks belonging to g-C3N4 and MoS2, which indicated
the MoS2 had successfully combined with g-C3N4.
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Figure 1. XRD patterns of g-C3N4, MoS2, and CNM (1:2).

2.1.2. SEM

Scanning electron microscopy (SEM) images of g-C3N4 and g-C3N4/MoS2 are shown
in Figure 2. Figure 2a,b show SEM images of g-C3N4 and CNM (1:2), g-C3N4 had a massive
structure, which was combined with a layered structure. CNM (1:2) had a porous structure,
the reason for this result may be that during the ultrasonic treatment, the g-C3N4 was
stripped and combined with MoS2, and a large number of pore structures were formed
in the process. Ultrasonic treatment can effectively promote g-C3N4 and MoS2 recom-
bination, effectively accelerate the separation of photo-generated carriers, and improve
the photo-generated carrier migration rate, thus improving the photocatalytic activity of
composite photocatalytic materials. The CNM (1:2) complex can accelerate the separation
of photo-generated carriers and increase the migration rate of photo-generated carriers,
thus improving the photocatalytic activity of the composite photocatalyst. Figure 2c–h
reveal CNM (1:2) as well as corresponding elemental mapping of C, N, S, and Mo, and
EDS of CNM (1:2). The mapping of SEM confirmed that the elements of C, N, S, and Mo
exist in CNM (1:2), and it indicated that g-C3N4 and MoS2 had been successfully combined.
In the process of MoS2 doping g-C3N4, a g-C3N4/MoS2 photocatalyst with more voids
was formed, which increased the area of the photocatalyst in contact with pollutants, and
increased the number of active sites on its surface, thus increasing its photocatalytic activity.

2.1.3. XPS

The X-ray photoelectron spectroscopy (XPS) spectra of and CNM (1:2) and used
CNM (1:2) are displayed in Figure 3, and the spectra of g-C3N4 were shown in previous
articles [30]. The survey spectra of CNM (1:2) and used CNM (1:2) are shown in Figure 3a,
the main elements are C, N, O, S and Mo, indicating g-C3N4 and MoS2 were successfully
combined. In Figure 3b, the C 1s spectrum of CNM (1:2) has three peaks at 288.2, 286.4,
and 284.8 eV; the 288.2 eV is attributed to O-C-N, the 286.4 eV is attributed to C-O, and the
284.8 eV belongs to C-C [48]. In the C 1s spectrum of used CNM (1:2), the peaks shifted
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to 288.8, 286.4 and 284.8 eV, respectively [49]. The N 1s of CNM (1:2) has three peaks at
404.3, 400.3 and 398.5 eV, which are attributed to N-H bonds, N-(C)3, and C = N-C [50].
Additionally, the N 1s peaks of the used CNM (1:2) were shifted to 404.5 eV (N-H), 401.3 eV
(C-N-H), and 399.2 eV (N-(C)3) [51], as shown in Figure 3c. The Mo 3d of CNM (1:2) had
four peaks at 235.1, 231.5, 228.1 and 225.4 eV, with the peaks corresponding to Mo6+, Mo
3d3/2, Mo 3d5/2 and S 2s, attributed to the 1T-phase MoS2 [52,53]. In the Mo 3d spectrum
of used CNM (1:2), the peaks shifted to 235.8, 232.3, 228.9, and 226.2 eV, respectively [45].
Figure 3e shows the S 2p spectra of CNM (1:2); it has three peaks at 168.2, 162.2, and 161
eV, which correspond to S2

2−, S 2p1/2, and S 2p3/2 [53]. In the S 2p spectrum of used CNM
(1:2), those peaks shifted to 169.1, 162.9, and 161.7 eV [45]. In Figure 3f, the presence of
Cr was not detected on the surface of the reused photocatalysts, which ensures that the
active sites on the surface of the photocatalyst were not covered. The XPS characterization
results again confirm that both g-C3N4 and MoS2 have been successfully compounded,
and Cr was not detected in the reused CNM (1:2), thus ensuring the excellent reusable
performance of the photocatalyst.
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2.1.4. BET

The Brunauer–Emmett–Teller N2 adsorption–desorption isotherms of g-C3N4, MoS2
and CNM (1:2) are shown in Figure 4. The specific surface area and pore volumes of
g-C3N4, MoS2, and CNM (1:2) are listed in Table 1. The specific surface area of CNM (1:2)
(30.7214 m2·g−1) is higher than that of g-C3N4 (27.3882 m2·g−1) and MoS2 (10.5045 m2·g−1).
In addition, we found that the pore volumes of g-C3N4 (0.2385 cm3·g−1) and MoS2
(0.0332 cm3·g−1) are lower than that of CNM (1:2) (0.3498 cm3·g−1). The increase in specific
surface area and pore volume is beneficial to providing more photocatalytic active sites
and improving the activity of CNM (1:2).

Table 1. Specific surface area and pore volumes of g-C3N4, MoS2, and CNM (1:2).

Samples SBET (m2·g−1) VPore (cm3·g−1)

g-C3N4 27.3882 0.2385
MoS2 10.5045 0.0332

CNM (1:2) 30.7214 0.3498
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2.1.5. UV–Vis Diffuse Reflectance Spectra

UV–vis diffuse reflectance spectra images of g-C3N4 and CNM (1:2) are displayed
in Figure 5a. g-C3N4 had an absorption edge at 450 nm, while the absorption edge of
CNM (1:2) was redshifted, and the absorption range was 200–800 nm. This indicates that
the doping of MoS2 could effectively improve the utilization ratio of the photocatalyst in
visible light, and the light absorption of the photocatalyst was enhanced, thus achieving the
purpose of improving the photocatalytic activity of CNM (1:2). The plots of the transformed
Kubelka–Munk function versus the photon energy of g-C3N4 and CNM (1:2) are shown
in Figure 5b. The value of the band gap can be calculated according to the formula
(ahv)1/2 = A(hv−Eg), hv = hc/λ; the results show that the band gaps of g-C3N4 and CNM
(1:2) are 2.72 and 2.31 eV, respectively. The doping of MoS2 is beneficial to narrowing the
band gap and reducing the recombination rate of photo-generated electrons and holes.
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2.1.6. PL Spectra

The separation and transfer ability of photo-excited carriers in the g-C3N4, MoS2 and
CNM (1:2) are measured with PL spectra. As displayed in Figure 6, the g-C3N4 and CNM
(1:2) exhibited broad peaks at 435 nm. g-C3N4 showed a stronger fluorescence emission
peak intensity, which indicates the higher recombination efficiency of the electron–hole
pairs. After adding MoS2, the CNM (1:2) showed a low PL intensity, the carrier separation
efficiency was enhanced, and the electron pairs’ separation rate was reduced in the CNM
(1:2) nanocomposite. Therefore, the results confirmed the photocatalytic performance of
CNM (1:2) increased.
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2.1.7. Transient Photocurrent Responses

The separation and transfer of photo-excited carriers on g-C3N4 MoS2 and CNM (1:2)
were investigated. The transient photocurrent spectrum of the samples is shown in Figure 7.
The CNM (1:2) showed the highest photocurrent density during the samples; it showed
that the separation efficiency of the photogenerated electrons and holes is significantly
improved after the doping MoS2. This result confirms that CNM (1:2) can effectively reduce
the recombination rate of electrons and holes, thereby increasing the photocatalytic activity
of the photocatalysts.
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2.2. Photocatalysis
2.2.1. Photocatalytic Performance of Different Photocatalysts

The removal rates and the pseudo-first-order reaction kinetics of Cr (VI) by g-C3N4,
MoS2, CNM (1:1), CNM (1:2), CNM (1:4), CNM (2:1), and CNM (4:1) were shown in
Figure 8a,b. In order to select the optimal ratio of g and m, we prepared photocatalysts with
different mass ratios, as shown in Figure 8a, the results show that doping with different
MoS2 masses has a great influence on the photocatalytic activity of the photocatalysts.
When the mass ratio of g-C3N4 to MoS2 was 2:1 (CNM (1:2)), it had the best rate of removal
of Cr (VI). At the same time, the pseudo-first-order reaction kinetics model shows that
the reaction rates of g-C3N4, MoS2, CNM (1:1), CNM (1:2), CNM (1:4), CNM (2:1) and
CNM (4:1) are, respectively, 0.0006, 0.0010, 0.0028, 0.0102, 0.0052, 0.0022, and 0.0018 min−1.
It was found that when the content of MoS2 was too high, the removal efficiency of
Cr (VI) was decreased. Excessive MoS2 made the charge transfer rate too fast, which
increases the recombination probability of photo-generated electrons and holes; therefore,
the photocatalytic activity decreased.
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In order to investigate the removal ability of photocatalysts, we explored the Cr (VI)
removal rate of photocatalysts under different forms of light illumination (ultraviolet light,
solar light, and visible light), and the results displayed in Figure 8c,d. The removal rate
of Cr (VI) by CNM (1:2) was 91.6% under the illumination of ultraviolet light, and the
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removal rate of Cr (VI) was 91% and 86% under solar light and visible light, respectively.
The results revealed that with the different forms of light irradiation, the photocatalytic
removal performance of Cr (VI) had a weak effect. At the same time, we investigated the
effects of pH value, initial concentration, and dosage on the removal rate (in Figure 8e–g),
The experimental results show that with the increase in the pH value, the reducibility of the
photocatalyst to Cr (VI) decreases gradually. When the solution is neutral or alkaline, the
removal rate of Cr (VI) reduced to 40%, but the removal rate is as high as about 65% under
weak acid conditions, which affirms that photocatalysts have a high application range.
The stability of the photocatalysts was experimentally assessed three times under visible
light (in Figure 8h), and the results showed that the CNM (1:2) photocatalysts still had
strong photocatalytic activity after multiple cycles. This effectively solves the shortcomings
of traditional photocatalysts that can only remove Cr (VI) under strong acid conditions
and provides data support for the practical engineering application of photocatalysts in
the future.

2.2.2. Scavenging Study

In order to investigate the main reactive radicals in the reactions, scavenger tests were
performed and the results are displayed in Figure 9a. In this study, ethylenediaminete-
traacetic acid disodium salt (EDTA−2Na), potassium persulfate (K2S2O8), and ascorbic
acid (C6H8O6) were used as the scavenger for scavenge holes (h+), electrons (e−), and
superoxide radicals (·O2

−), respectively. The test results showed that the removal of Cr (VI)
by the CNM (1:2) photocatalyst was significantly decreased after the addition of K2S2O8,
which implied that the e− played an important role in the removal of Cr (VI), and the results
displayed that the addition of ascorbic acid and EDTA-2Na have a slight influence on the
removal of Cr (VI), which shows that ·O2

− and h+ do not play a key role in the reaction.
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To evaluate the reaction mechanism of CNM (1:2)’s photocatalytic reduction of Cr
(VI), an inductively coupled plasma–mass spectrometer (ICP-MS) was used to analyze
the concentration of chromium. Ultraviolet-visible spectrophotometry was performed
to measure the concentration of Cr (VI), which can determine the valence state change
of chromium during the reaction (Figure 9b). The results show that the content of total
chromium did not change with the increase in reaction time, but the concentration of Cr (VI.)
decreased with the increase in light time. The presence of chromium in aqueous solution
mainly includes Cr (III) and Cr (VI), from which it can be inferred that with the increase
in reaction time, Cr (VI) in water is reduced to Cr (III). The content of total chromium in
the solution remains unchanged, which indicates that the Cr (VI) in the water is reduced
to Cr (III) by photocatalysis during the reaction process. Chromium is mainly present in
water in the form of minimally toxic Cr (III) instead of being adsorbed on the surface of the
photocatalyst; this means it will not form a buildup on the surface of the material and affect
the performance of the photocatalyst, which is beneficial for recycling of photocatalysts.
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2.2.3. Mechanisms of Photocatalysis

A possible photocatalytic mechanism of CNM (1:2) removal Cr (VI) is shown in
Figure 10. Additionally, the figure shows that under the excitation of light, a large number
of electron and hole pairs are generated on the surface of photocatalysts, which greatly
increases the activity of the photocatalyst for pollutant removal [54]. The band gap of CNM
(1:2) was significantly narrower than that of the g-C3N4 and MoS2, which is due to the
photoexcited electrons’ (e−) transition from the conduction band (CB) of g-C3N4 to the CB
of MoS2, and the holes’ (h+) transition from the valence band (VB) of MoS2 to the VB of
g-C3N4, which is beneficial to the narrowing of the band gap and reduces the recombination
rate of photo-generated electrons and holes. The photocatalyst can absorb more energy
under the same light conditions and be excited to generate more photo-generated electron–
hole pairs, thus improving the photocatalytic performance of CNM (1:2) and enhancing
the removal rate of Cr (VI) by CNM (1:2). This is due to Z-scheme heterojunction formed
between g-C3N4 and MoS2 [44]. The reaction equation is shown in Equations (1)–(4).

g-C3N4 + hv → g-C3N4 (e− + h+) (1)

g-C3N4 + MoS2 → g-C3N4 + MoS2(e−) (2)

MoS2 (e−) + O2 → MoS2 + ·O2
− (3)

Cr (VI) + e− → Cr (III) (4)
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3. Materials and Methods
3.1. Materials

Thiourea (H2NCSNH2, AR) was purchased from Hengxing chemical preparation(Tianjin,
China), ammonium molybdate ((NH4)6Mo7O24·4H2O, AR) was acquired from Taishan
Chemical Plant (Shandong, China), urea (H2NCONH2, AR) was obtained from Tianjin
Zhiyuan chemical reagent co(Tianjin, China), ethylenediaminetetraacetic acid disodium
salt (EDTA-2Na), potassium persulfate (K2S2O8), ascorbic acid (C6H8O6), hydrochlo-
ric acid (HCL), and sodium hydroxide (NaOH) were obtained from Xilong scientific
(Guangzhou, China).

3.2. Preparation of Photocatalysts
3.2.1. Preparation of g-C3N4

g-C3N4 was prepared by the thermal polymerization method. Then, 20 g of urea were
loaded into a crucible and wrapped in tin foil, with a 5 ◦C·min−1 heating rate, before being
kept at 550 ◦C for 4 h. After cooling to room temperature, the yellow g-C3N4 was obtained,
using an agate mortar grind to obtain the powdered g-C3N4.
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3.2.2. Preparation of MoS2

The MoS2 was prepared by the hydrothermal method. Then, 0.4 g ammonium molyb-
date ((NH4)6Mo7O24·4H2O) and 0.8 g thiourea (H2NCSNH2) were added to 10 mL of
deionized water, stirred for 30 min, and ultrasound-treated for 30 min. The solution was
transferred to a hydrothermal reactor and heated for 10 h at 200 ◦C, after which the solu-
tion was cooled to room temperature and strained and washed with deionized water and
anhydrous ethanol 3 times, aiming to remove any impurities. The samples were kept at
60 ◦C for 12 h; the black MoS2 was obtained using an agate mortar to grind it into a powder
(which was bagged for later use).

3.2.3. Preparation of g-C3N4/MoS2 with Different Mass Ratios

g-C3N4/MoS2 with different mass ratios was prepared by the ultrasonic method. The
0.2 g g-C3N4 and 0.4 g MoS2 were added to 400 mL of deionized water and ultrasound-
treated for 180 min. The g-C3N4/MoS2 was obtained and denoted CNM (1:2); the CNM
(1:4), CNM (2:1), CNM (4:1), and CNM (1:1) were obtained in the same way, and the
different samples were obtained by changing the mass ratios of g-C3N4 and MoS2, as
shown in Figure 11.

Molecules 2024, 29, x FOR PEER REVIEW 11 of 15 
 

 

disodium salt (EDTA-2Na), potassium persulfate (K2S2O8), ascorbic acid (C6H8O6), hydro-
chloric acid (HCL), and sodium hydroxide (NaOH) were obtained from Xilong scientific 
(Guangzhou, China).  

3.2. Preparation of Photocatalysts 
3.2.1. Preparation of g-C3N4 

g-C3N4 was prepared by the thermal polymerization method. Then, 20 g of urea were 
loaded into a crucible and wrapped in tin foil, with a 5 °C·min−1 heating rate, before being 
kept at 550 °C for 4 h. After cooling to room temperature, the yellow g-C3N4 was obtained, 
using an agate mortar grind to obtain the powdered g-C3N4.  
3.2.2. Preparation of MoS2 

The MoS2 was prepared by the hydrothermal method. Then, 0.4 g ammonium mo-
lybdate ((NH4)6Mo7O24·4H2O) and 0.8 g thiourea (H2NCSNH2) were added to 10 mL of 
deionized water, stirred for 30 min, and ultrasound-treated for 30 min. The solution was 
transferred to a hydrothermal reactor and heated for 10 h at 200 °C, after which the solu-
tion was cooled to room temperature and strained and washed with deionized water and 
anhydrous ethanol 3 times, aiming to remove any impurities. The samples were kept at 
60 °C for 12 h; the black MoS2 was obtained using an agate mortar to grind it into a powder 
(which was bagged for later use).  

3.2.3. Preparation of g-C3N4/MoS2 with Different Mass Ratios 
g-C3N4/MoS2 with different mass ratios was prepared by the ultrasonic method. The 

0.2 g g-C3N4 and 0.4 g MoS2 were added to 400 mL of deionized water and ultrasound-
treated for 180 min. The g-C3N4/MoS2 was obtained and denoted CNM (1:2); the CNM 
(1:4), CNM (2:1), CNM (4:1), and CNM (1:1) were obtained in the same way, and the dif-
ferent samples were obtained by changing the mass ratios of g-C3N4 and MoS2, as shown 
in Figure 11.  

 
Figure 11. The preparation process of photocatalysts. 

3.3. Characterization of Photocatalysts 
The crystal structures of the photocatalysts were characterized by X-ray diffraction 

(XRD, Rigaku SmartLab SE, Rigaku Corp., Tokyo, Japan) with Cu-kα radiation. The mor-
phology and structure of the photocatalysts were determined using scanning electron mi-
croscopy (SEM, TESCAN MIRA LMS, TESCAN CHINA, Ltd., Shanghai, China). X-ray 
photoelectron spectroscopy (XPS, Thermo Scientific k-Alpha, Thermo Fisher Scientific Co., 
Ltd., Shanghai, China) was used to characterize the elemental composition and valence 
state of the photocatalysts. The optical properties of photocatalysts were measured using 
a UV–visible spectrophotometer (UV–vis, UV-3600i plus, Shimadzu Corp., Kyoto, Japan). 
The surface area and pore size of photocatalysts were tested by the Brunauer–Emmett–

Figure 11. The preparation process of photocatalysts.

3.3. Characterization of Photocatalysts

The crystal structures of the photocatalysts were characterized by X-ray diffraction
(XRD, Rigaku SmartLab SE, Rigaku Corp., Tokyo, Japan) with Cu-kα radiation. The
morphology and structure of the photocatalysts were determined using scanning electron
microscopy (SEM, TESCAN MIRA LMS, TESCAN CHINA, Ltd., Shanghai, China). X-ray
photoelectron spectroscopy (XPS, Thermo Scientific k-Alpha, Thermo Fisher Scientific Co.,
Ltd., Shanghai, China) was used to characterize the elemental composition and valence
state of the photocatalysts. The optical properties of photocatalysts were measured using
a UV–visible spectrophotometer (UV–vis, UV-3600i plus, Shimadzu Corp., Kyoto, Japan).
The surface area and pore size of photocatalysts were tested by the Brunauer–Emmett–Teller
method (BET, Micromeritics ASAP2460, Micromeritics Corp., Norcross, GA, USA). The
steady and transient photoluminescence spectra of photocatalysts were assessed using a
fluorescence spectrometer (PL, FLS980, Edinburgh Instruments Ltd., Shanghai, China). The
metal element content was tested using an inductively coupled plasma–mass spectrometer
(ICP-MS, PerkinElmer NexION 2000, Perkinelmer, MS, USA).

3.4. Photocatalytic Tests

The photocatalytic performance of g-C3N4, CNM (1:2), CNM (1:4), CNM (2:1), CNM
(4:1) and CNM (1:1) was tested in the photoreactor. A 300 W Xe lamp supported by CEL-
LAM with a cutoff filter (λ > 420 nm) was used as the source of solar light and visible light.
CEL-LAM 500 was the source of UV light, and the reaction took place at room temperature.
A 10 mg photocatalyst was put into the 100 mL Cr (VI) solution (20 mg·L−1), and the pH
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value was 3. The photocatalyst and the 20 mg·L−1 Cr (VI) solution were stirred in the dark
for 30 min to achieve adsorption–desorption equilibrium, and 2 mL of solution was taken
each time to analyze the concentration of Cr (VI). After turning on the light source, samples
were taken at 20, 40, 60, 80, 100, and 120 min, respectively. The same 2 mL of solution was
taken at a time and filtered using a biofilter membrane (0.45 µm) to obtain a filtrate without
photocatalyst. We then determined the water quality and amount of chromium (VI)-1,5
dtphenylcarbohydrazide using a spectrophotometric method (GB 7467-87) [55] to analyze
the concentration of hexavalent chromium. The removal rate (%) was calculated according
to Equation (5):

removal rate (%) =
C0 − Ct

C0
× 100% (5)

C0: the initial concentration of Cr (VI); Ct: the concentration of Cr (VI) at the corre-
sponding time.

4. Conclusions

Z-scheme g-C3N4/MoS2 nanocomposite heterojunctions were successfully synthe-
sized using an ultrasonic method and demonstrated efficient photocatalytic removal of
toxic Cr (VI) from water under UV, visible, and solar light irradiation. The nanocomposites,
especially those with the optimized 1:2 g-C3N4/MoS2 ratio, exhibited enhanced photoac-
tivity compared to pure g-C3N4, with over 90% Cr (VI) removal achieved. The superior
performance is attributed to the combined effects of the narrowed heterostructure band
gap, which enables visible light response, and the effective separation of photo-generated
electron–hole pairs at the interfaced junction between the two semiconductors. The results
showed that the MoS2 could be located at the g-C3N4, which was beneficial for the enhance-
ment of photocatalytic activity, owing to the g-C3N4/MoS2 nanocomposites having a broad
range of light response and the separation and transfer efficiencies of photo-generated
electron–hole pairs being improved. Overall, this work highlights the promise of ultrasoni-
cally synthesized g-C3N4/MoS2 nanocomposites for tackling the pressing environmental
challenge of heavy metal wastewater treatment using solar-driven photocatalysis. Fur-
ther optimization to translate this efficient lab-scale Cr (VI) remediation to real-world
applications should be pursued.
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