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Abstract: Paper-based test strips with on-site visual detection have become a hot spot in the field of
target detection. Yet, low specific surface area and uneven deposition limit the further application of
test strips. Herein, a novel “turn-on” ratio of molecularly imprinted membranes (Eu@CDs-MIMs)
was successfully prepared based on a Eu complex-doped polyvinylidene fluoride membrane for the
selective, rapid and on-site visual detection of norfloxacin (NOR). The formation of surface-imprinted
polymer-containing carbon dots (CDs) improves the roughness and hydrophilicity of Eu@CDs-MIMs.
Fluorescence lifetimes and UV absorption spectra verified that the fluorescence enhancement of CDs
is based on the synergistic effect of charge transfer and hydrogen bonding between CDs and NOR.
The fluorescent test strip showed a linear fluorescent response within the concentration range of
5–50 nM with a limit of detection of 1.35 nM and a short response time of 1 min. In comparison with
filter paper-based test strips, Eu@CDs-MIMs exhibit a brighter and more uniform fluorescent color
change from red to blue that is visible to the naked eye. Additionally, the applied ratio fluorescent
test strip was combined with a smartphone to translate RGB values into concentrations for the visual
and quantitative detection of NOR and verified the detection results using high-performance liquid
chromatography. The portable fluorescent test strip provides a reliable approach for the rapid, visual,
and on-site detection of NOR and quinolones.

Keywords: norfloxacin; fluorescent test strip; molecularly imprinted polymers; on-site visual detec-
tion; smartphone

1. Introduction

Quinolones, especially fluoroquinolones, are widely used to treat various diseases
caused by bacterial infections due to their strong antibacterial properties [1,2]. Among
them, norfloxacin (NOR), as the first clinically used fluoroquinolone, has been applied to
treat various diseases such as urinary and reproductive system infections [3], respiratory
infections [4], and intestinal infections [5]. However, the long-term use of NOR is bound
to result in its residue in the environment, which in turn poses potential risks to the
environment and ecosystems and thus causes reproductive toxicity to aquatic lifeforms [6],
antibiotic resistance [7] and joint toxicity [8]. In consideration of the widespread distribution
and seasonal variations of NOR in aquatic environments [9,10], it is necessary to detect
NOR more frequently. At present, various laboratory instrument-based methods have
been used for the determination of NOR, including electrochemical detection [11], enzyme-
linked immunosorbent assay (ELISA) [12], the surface-enhanced Raman scattering (SERS)
method [13] and high-performance liquid chromatography (HPLC) [14]. However, the
high specificity and sensitivity of the above methods often require professional operation,
expensive instruments, and intricate pre-treatment processes [15–17], all of which are not
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conducive to long-term monitoring of NOR residues. Therefore, it is necessary to establish
an effective method for portable, highly sensitive, and rapid determination of NOR in
water environments.

At present, the ratio fluorescence technology with visualization function has been
developed to achieve the on-site detection of NOR [18], which enables a high-sensitivity
measurement of targets by measuring the fluorescence intensity ratio of two fluorescent
materials in the sensing system. Among many fluorescent materials, europium complexes
are suitable for use as reference signals because of their broad excitation band, narrow
emission band and long fluorescence lifetime [19]. Additionally, to achieve the selective
detection of NOR in complex environments, it is essential to introduce materials with spe-
cific recognition functions into fluorescence sensors. The molecular imprinting technique
(MIT) is an effective method to efficiently recognize imprinted molecules by constructing
biomimetic synthetic receptors. The fluorescent imprinting sensors can be employed to
provide visual detection without the usage of any instruments by introducing molecular
imprinting polymers (MIPs) with specific recognition capabilities [20,21]. Traditional fluo-
rescent imprinting sensors typically require dispersion in aqueous or organic solutions to
complete the detection process [22]. Compared with the traditional nano-powder materials,
convenience and practicality are the hallmarks of pH-inspired paper-based fluorescent test
strips, which can achieve more intuitive on-site detection [23].

Nowadays, the impregnation method is mostly used to manufacture paper-based
fluorescent test strips, which are obtained by simply dispersing the fluorescent sensor
dispersion on the filter paper [24]. Although fluorescent sensors are more uniformly
deposited on filter paper substrates by vacuum filtration [25] and ink-jet printing [26],
the limitations of physical deposition methods still lead to a low reliability and poor
accuracy of fluorescent test strips. Moreover, the low specific surface area of the filter paper
substrate may hinder internal mass transfer, thereby impairing detection performance [27].
Therefore, the key to addressing the limitations of paper-based fluorescence test strips
is to choose suitable substrate materials [28,29]. Polymer membranes have been used
to produce fluorescent test strips to enhance visualization and detection performance.
Polymer membranes-based fluorescent test strips are typically produced from pre-prepared
imprinted polymers by vacuum filtration [30] or blending [31]. Interestingly, Zhang et al.
prepared imprinting materials into a fiber membrane using the electrostatic spinning
method [32]. However, MIPs embedded in the matrix membrane tend to interfere with
binding of the target analyte and reduce the sensitivity and visualization of detection [33,34].
Therefore, mixing reference signals to prepare a substrate membrane and using fluorescent
monomers as response signals to construct fluorescent test strips can improve detection
sensitivity and reduce background interference.

In this work, a novel “turn-on” fluorescent test strip based on a PVDF membrane
doped with europium complexes was successfully prepared to achieve the rapid visual
detection of NOR in water. A highly luminescent europium complex Eu(MAA)3phen
was dissolved in a casting solution and uniformly dispersed in the matrix membrane
as a fluorescence reference signal by the phase conversion method. The molecularly
imprinted membrane (MIM) and non-imprinted membrane (NIM) as fluorescent test
strips (Eu@CDs-MIMs/NIMs) were prepared by the one-step method on the surface of
Eu(MAA)3phen-doped PVDF membranes, as shown in Figure 1. Non-toxic carbon dots
(CDs) and 2-fluoroacrylic acid (FAA) were used as the fluorescent response signal and
functional monomer in the imprinting process, respectively. The fluorescence-enhanced
NOR detection system was constructed based on the strong hydrogen bond interaction
between CDs and NOR [35]. The fluorescence analysis results demonstrated that the
imprinting process on the surface of the substrate membrane improved the hydrophilicity of
the Eu@CDs-MIMs and shortened the response time to NOR. Under the optimal conditions,
red-to-blue visualization was displayed in the range of 5–50 nM with a detection limit
of 1.35 nM. Furthermore, a smartphone was used to enhance color-based quantitative
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analysis and compare it to HPLC. The results showed that Eu@CDs-MIMs were capable of
providing rapid visual detection of NOR in situ.
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Figure 1. The schematic diagram of Eu@CDs-MIMs synthesis and visual detection.

2. Results and Discussion
2.1. Characterization of Eu@CDs-MIMs

The surface chemical composition of Eu@CDs MIMs was further evaluated by XPS
spectra analysis. The survey spectrum reveals the presence of C, O, N and F elements in
Eu@CDs-MIMs, as shown in Figure 2a. The C 1s peak positions located at 284.8, 285.7,
286.81, 288.8 and 289.5 eV are ascribed to C–C/C=C, C–N, C–O, C=O and -CF2, respectively
(Figure 2b). As shown in Figure 2c, the high-resolution spectra of O 1s at 531.8 and 533.4 eV
stem from C–O and C=O. The high-resolution spectra of N 1s (Figure 2d) consist of 399.7
and 401.2 eV, which are attributed to the typical N–C and N–H groups of CDs in the
imprinted layer. The high-resolution spectra of F 1s (Figure 2e) indicate the presence of
an F–C group (688.4 eV). In summary, the XPS analysis results are consistent with the
FT-IR results.
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The infrared spectra of PVDF, Eu@PVDF, and Eu@CDs-MIMs are shown in Figure S1.
All samples show the characteristic absorption peaks of -CF2 and -CH2 at 1176 and
1403 cm−1 from PVDF, which agree with the results in references [36]. The feature
peak at 1637 cm−1 is attributed to the C=C stretching from MAA, which confirms that
Eu(MAA)3phen is successfully doped into the PVDF membrane and can be used for sub-
sequent surface-imprinting processes. The feature peak at 1736 cm−1 belongs to the C=O
stretching vibration of carboxyl from EGDMA, indicating that the imprinted layer with
EGDMA as the crosslinking agent is successfully polymerized on the PDVF surface. All the
results confirm that Eu@CDs-MIMs is successfully prepared. In summary, FT-IR analysis
results are consistent with XPS results.

Figure 3 shows the SEM images of Eu@PVDF and Eu@CDs-MIMs. Figure 3a,b show
that the Eu@CDs-MIMs have different surface morphology compared with the Eu@PVDF,
and a noticeable polymer layer appears. This indicates that the imprinted layer on the
surface of Eu@PVDF has been successfully polymerized. Energy-dispersive spectrometer
(EDS) mapping images of Eu@PVDF (Figure 3(c1–c5)) illustrate the successful doping and
homogeneous dispersion of Eu(MAA)3phen in PVDF membranes, which facilitates the
uniform distribution of the imprint layer on the surface of Eu@PVDF. Color differences
due to uneven loading are improved so that the visualization of the Eu@CDs-MIMs will be
closer to the detection in solution.
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The surface AFM and water contact angle images of Eu@PVDF and Eu@CDs-MIMs
are shown in Figure 4. The surface structure of Eu@PVDF appears relatively smooth and
flat with circular voids (Figure 4a). After the surface imprinting process is completed,
the polymer layers modify the surface microstructures of Eu@PVDF and improve the
roughness of Eu@CDs-MIMs (Figure 4b). In addition, the change in water contact angle
from 85◦ to 67◦ confirms that the imprinted layer enhances the hydrophilicity of the MIMs,
which improves the detection and visualization effect of the test strips.

2.2. Optimization of the Molar Ratio of NOR to FAA

The specific recognition ability of MIPs is mainly achieved through the interaction
between template molecules and functional monomer bonds [37]. Therefore, a UV spec-
trophotometer was utilized to measure the absorbance of NOR and NOR-FAA mixtures
in acetonitrile solution with different molar ratios to determine the optimal preparation
conditions. As shown in Figure 5a, two prominent absorption peaks at 210 and 284 nm
are observed in the UV spectrum, which are attributable to the π–π* transition of the car-
bonyl and benzene ring in NOR, respectively [38]. After the addition of FAA, there is no
significant change in the absorption peaks at 284 nm, indicating that the benzene ring in
NOR has no interaction with functional monomers. Instead, the absorption peak at 210 nm
significantly increases with the increase in FAA and then remains relatively unchanged
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until the molar ratio reaches 1:4. As a result, the optimal molar ratio of NOR to FAA is
determined to be 1:4.
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Figure 5. UV absorption spectrum of NOR and NOR-FAA mixtures (a). Fluorescence spectra of
Eu@CDs-NIMs (black line), Eu@CDs-MIMs (red line) and Eu@CDs-MIMs with NOR (blue line) (b).
(F433/F618)0 and (F433/F618)/(F433/F618)0 with different doping amounts of CDs (c). Effect of pH
on fluorescence intensity of Eu@CDs-MIMs (d). The incubation time of Eu@CDs-MIMs to NOR (e).
Fluorescence intensity changes of Eu@CDs-MIMs within 60 min (f).
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2.3. Optimization of the Excitation Wavelength

The fluorescence spectra of Eu@CDs-NIMs (black line), Eu@CDs-MIMs (red line) and
Eu@CDs-MIMs with NOR (blue line) are shown in Figure 5b. The sharp emission peak at
618 nm is due to the red emission of Eu(MAA)3phen that is doped into PVDF, whereas
the broad peak centered at 433 nm is associated with the blue emission of CDS. After
combination with NOR, the blue emission of Eu@CDs-MIMs is significantly enhanced,
and the red emission as a reference signal remains unchanged. The smaller difference
in fluorescence intensity between Eu@CDs-MIMs and Eu@CDs-NIMs is attributed to the
hydrogen bonding interaction between NOR and CDs. This suggests that Eu@CDs-MIMs
enable a ratio fluorescence detection for NOR through fluorescence enhancement. To deter-
mine the optimal detection wavelength for Eu@CDs-MIMs, the excitation dependence of
Eu(MAA)3phen and CDs was evaluated and is shown in Figure S3. The optimal excitation
wavelengths of Eu(MAA)3phen and CDs are located at 350 and 344 nm, respectively. In
view of the extremely strong fluorescence enhancement of CDs during the detection process,
the optimal excitation wavelength has been determined to be 344 nm, which is close to the
commonly used 365 nm excitation wavelength of small commercial UV lamps.

2.4. Optimize Doping Amount of CDs

The performance of fluorescence detection and visualization effects can affected by
the amount of CDs doping in the Eu@CDs-MIMs. Excess CDs will produce aggregation-
induced quenching (ACQ) phenomena due to π–π interactions and resonance energy
transfer causing fluorescence quenching [39]. However, a low doping amount of CDs
cannot produce satisfactory fluorescence enhancement. In order to obtain the optimal
doping amount of CDs, (F433/F618)0 and (F433/F618)/(F433/F618)0 of Eu@CDs-MIMs after
binding NOR (50 nM) with different doping amounts of CDs (1, 2, 3, 4, 5 mg) are shown
in Figure 5c. When increasing the doping amount of CDs, the (F433/F618)0 also increases
gradually. In contrast, the (F433/F618)/(F433/F618)0 reaches the maximum when the doping
amount of CDs is up to 3 mg, and then it shows a decreasing trend. Therefore, the optimal
doping amount of CDs is determined to be 3 mg to achieve optimal detection sensitivity
and visualization performance.

2.5. Optimization of the Detection Conditions

The detection environment, response time and stability are prerequisites and important
influencing factors for performance testing. In order to confirm the applicability of Eu@CDs-
MIMs as a test strip in different pH water environments, the fluorescence performance of
Eu@CDs-MIMs was evaluated over a range of 3.0–13.0. The results in Figure 5d indicate that
the relative fluorescence intensity is significantly reduced under acidic conditions, which
is attributable to the fluorescence quenching of CDs under acidic conditions. Moreover,
hydrogen bonding is reduced by hydrogen ions in solution in an acidic medium, which
affects the hydrogen bonding between FAA and NOR. Additionally, the fluorescence
enhancement of CDs based on hydrogen bonding is also weakened [40]. The Eu@CDs-
MIMs exhibits good fluorescence stability under alkaline conditions. As a result, the
optimal pH to detect NOR in water is pH 7. The changes in fluorescence intensity for
different incubation times of Eu@CDs-MIMs to NOR (50 nM) were recorded and are shown
in Figure 5e. The fluorescence intensity of Eu@CDs-MIMs rapidly increases to its highest
value within 1 min and remains stable in the subsequent time. Consequently, the response
time of Eu@CDs-MIMs is chosen to be 1 min. The fluorescence stability of Eu@CDs-MIMs
was evaluated by continuous fluorescence detection 13 times and is shown in Figure 5f.
The results suggest that Eu@CDs-MIMs has sufficient fluorescence stability to complete all
visual test processes within 60 min.

2.6. Fluorescence Detection of Eu@CDs-MIMs and Eu@CDs-NIMs

The fluorescence detection performance of Eu@CDs-MIMs and Eu@CDs-NIMs was
investigated under optimal conditions. Both Eu@CDs-MIMs and Eu@CDs-NIMs were fully
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immersed in the NOR solution to be tested in the concentration range of 0–50 nM for 1 min
and then used for following detection. As shown in Figure 6a, the fluorescence intensities of
Eu@CDs-MIMs at 433 nm are gradually enhanced with the increase in NOR concentration,
while the reference signal at 618 nm remains unchanged. The fluorescence intensity of
Eu@CDs-NIMs at 433 nm (Figure 6b) has the same enhancement trend, but the magnitude
is much smaller than Eu@CDs-MIMs. This phenomenon can be ascribed to the specific
recognition sites formed during the MIPs preparation process, and the selective binding of
Eu@CDs-MIMs to NOR in solution is enhanced by the presence of specific recognition sites,
which improves the fluorescence intensity at 433 nm through hydrogen bonding between
NOR and CDs.
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To further investigate the fluorescence enhancement of Eu@CDs-MIMs in the NOR
concentration range, the linear relationship between the fluorescence intensity ratio of
(F433/F618)/(F433/F618)0 and the concentration of NOR was determined using Stern–Volmer
equations. As shown in Figure 6c,d, both Eu@CDs-MIMs and Eu@CDs-NIMs exhibit
excellent linear relationships of (F433/F618)/(F433/F618)0 within the 0–50 nM range. The
linear equation for Eu@CDs-MIMs is Log[(F433/F618)/(F433/F618)0 − 1] = 0.10424[C] −
0.61065 with an R2 of 0.98573. The imprinting factor (IF) (IF = kMIP/kNIP) [41] is calculated
to be 3.27, and the limit of detection (LOD) is determined to be 1.35 nM by the equation
LOD = 3σ/k (n = 10) in which σ represents the slope of the linear equation, σ represents
the relative standard deviation (RSD) of Eu@CDs-MIMs after detecting 10 times, and n is
the number of detection times. Additionally, the limit of quantitation (LOQ) is found to be
4.5 nM (LOQ = 10σ/k). As a comparison, SiO2-based Eu/CDs-MIPs also have a good linear
relationship, as shown in Figure S4. Because Eu(MAA)3phen embedded in MIPs tend to
reduce the fluorescence efficiency and may interfere with target analyte binding, a higher
LOD of 7.43 nM is achieved [34]. The results demonstrate the availability of Eu@CDs-MIMs
for the detection of NOR within a concentration range of 5–50 nM.

2.7. Selectivity Determination of Eu@CDs-MIMs and Eu@CDs-NIMs

Selective recognition ability is an important factor for Eu@CDs-MIMs to recognize
NOR in complex water environments. In order to investigate the selectivity determina-
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tion of Eu@CDs-MIMs for NOR, three structural analogues of NOR, namely enrofloxacin
(ENR), levofloxacin (LVF) and ciprofloxacin (CIP), along with tetracycline (TC) and chlo-
ramphenicol (CHL) as representative antibiotics, were configured to 50 nM of solution for
fluorescence detection by Eu@CDs-MIMs and Eu@CDs-NIMs, respectively. As shown in
Figure 7a, it can be inferred that Eu@CDs-NIMs lack selectivity in the absence of specific
recognition sites from the corresponding fluorescence intensity ratio of Eu@CDs-NIMs
between different antibiotics. The increased fluorescence intensity ratio of Eu@CDs-MIMs
for CIP, LVF and ENR can be attributed to their similar structure, which enhances their
binding ability. It is worth nothing that Eu@CDs-MIMs still has the highest binding ability
to NOR. In contrast, the fluorescence intensity ratio of TC and CHL remains unchanged.
The results suggest that Eu@CDs-MIMs as a fluorescence test strip can be used for the
selective detection of NOR and has the potential to identify a group of structurally similar
fluoroquinolone antibiotics.
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2.8. Interference of Ions on Eu@CDs-MIMs and Eu@CDs-NIMs

The interference from common ions in natural water and wastewater is an inevitable
influencing factor in actual detection. SO4

2−, CO3
2−, HCO3

−, Cl−, NO3
−, Mn2+, Fe3+,

Ca2+, Mg2+, Na+, and K+ were configured to 500 nM of aqueous solution to evaluate the
ion interference of Eu@CDs-MIMs in fluorescence detection, as shown in Figure 7b. In
comparison to the blank sample, the addition of ions in detection solution has no significant
effect on the fluorescence performance of Eu@CDs-MIMs. Subsequently, 50 nM NOR was
added to each of the solutions that contained the different ions. The same phenomenon
indicates that common ions have no interference in the fluorescence detection of NOR.

2.9. Reusability Research on Eu@CDs-MIMs

Compared to conventional paper-based test strips, organic membrane materials ex-
hibit excellent chemical and thermal stability along with favorable mechanical properties.
The recyclability of Eu@CDs-MIMs was assessed via repeated elution and recombination
experiments using (F433/F618)0 and (F433/F618)/(F433/F618)0 as indicators. The Eu@CDs-
MIMs were regenerated using methanol/acetonitrile (v:v = 4:1) until the fluorescent color
no longer changed. The fluorescence measurements were repeated seven times over the
same membrane. After undergoing repeated elution and recombination seven times, as
illustrated in Figure 8, the initial fluorescence intensity decreases by 19%. However, the rela-
tive fluorescence intensity is still retained (94.7%), demonstrating the excellent fluorescence
performance of Eu@CDs-MIMs. Therefore, these results indicate that the Eu@CDs-MIMs
have good recyclability and the elution process is operationally simple for end users, which
can reduce the cost of detection of NOR and the environmental impact.
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2.10. Fluorescent Test Strip Detection of NOR

The visual performance of a fluorescence test strip is the final purpose of this work.
The filter paper-based Eu/CDs-MIPs as a comparison to Eu@CDs-MIMs were prepared
by the impregnation method, in which the filter paper was immersed in 50 mL of ethanol
dispersed with 100 mg of Eu/CDs-MIPs, stirred for 2 h and dried for use. Both test strips
were cut to 1 by 0.25 cm and then impregnated with an aqueous NOR solution in the
concentration range from 0 to 50 nM for 1 min. Figure 9 shows the pictures of a Eu@CDs-
MIMs fluorescence test strip and filter paper-based Eu/CDs-MIPs fluorescence test strip
with different concentrations of NOR under 365 nm UV lamp and daylight. Both test strips
have the ability to recognize NOR, and as the concentration of NOR increases, the strips
show a color change visible to the naked eye. Due to the rough surface of the filter paper
and the limitations of the impregnation method, filter paper-based Eu/CDs-MIPs have
an uneven color distribution and a poor color-change process. In contrast, PVDF-based
Eu@CDs-MIMs exhibit a brighter and more uniform fluorescent color-change process,
which is more suitable for visualization. Especially, compared to other visual fluorescent
sensors (shown in Table 1), Eu@CDs-MIMs as a fluorescence test strip have significant
advantages in terms of detection time and LOD, which can quickly and accurately identify
NOR from complex samples.
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Molecules 2024, 29, 661 10 of 16

Table 1. Comparison between Eu@CDs-MIMs and other visual sensors.

Visual Sensor Name Target LOD Response Time (min) References

Eu@CDs-MIMs NOR 1.35 nM 1 This work
MIP-CP NOR 81 nM 30 [42]

Y3+@CdTe QDs NOR 31.8 nM 5 [43]
B/RCDs@Fe3+ NOR 6.84 nM 3 [44]
PAN/ATP/Tb NOR 16 nM 3 [28]

CdTe@SiO2@FMIPs NOR 3.28 nM 1 [45]
UCNPs-FICS NOR 6.04 nM 10 [46]
COFBMTH-HB NOR 0.159 µM 1 [47]
DBXPY@Q [8] NOR 0.72 µM 1 [48]
Tb@COF-Ru NOR 0.33 nM 1 [49]

2.11. Smartphone-Assisted Visual Sensing Detection

Although Eu@CDs-MIMs demonstrate strong concentration fluorescence color de-
pendence, relying solely on naked eye recognition remains inadequate to detect subtle
color changes. To improve the performance of quantitative analysis in visual detection, a
smartphone was utilized to translate RGB values into numerical-assisted visual detection.
To convert RBG values, the test strip was placed in a dark box with a 365 nm UV lamp. A
fixed camera parameter mobile phone was used to capture images of test strips and then
analyzed using software. The detection steps are performed according to the process shown
in Figure 10. First, the images under the standard concentration in the linear range were
input to form a standard curve, and the standard curve was established by selecting the
corresponding color channel according to the known type of color change in the test strip.
Following the input of the image to be tested, the pollutant concentration was determined
according to the standard curve. To verify the reliability of the testing software, the images
of Eu@CDs-MIMs under a 5–40 nM range were input to create a standard curve, and the
standard curve generated by the software has a good linear relationship with an R2 of 0.982,
and the LOD is determined to be 7.92 nM.
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2.12. Study on the Mechanism of Fluorescence Enhancement

To investigate the fluorescence enhancement phenomenon induced by Eu@CDs-MIMs
during the detection of NOR, fluorescence lifetime analysis and UV absorption spectroscopy
were employed to explore the fluorescence enhancement mechanism between MIMs and
NOR. The fluorescence lifetimes of CDs and their complexes with NOR are shown in
Figure 11a. After mixing with NOR, the fluorescence lifetime of CDs is significantly
enhanced. Meanwhile, the UV absorption spectra of NOR, MIMs, and NIPs (Figure 11b)
show that the UV absorption intensity of Eu@CDs-MIMs is significantly increased after
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conjugation with NOR, but the wavelength of NOR is almost unchanged. It indicates
that the fluorescence enhancement of CDs is not caused by the fluorescence resonance
energy transfer but by the charge transfer triggered by the conjugation between CDs and
NOR [50]. The charge transfer and hydrogen bond have a synergistic effect that facilitates
the production of larger chromophore and fluorophore conjugates [49]. Due to the strong
hydrogen bonding between CDs and NOR [35], the fluorescence enhancement in this work
is based on the synergistic effect of charge transfer and hydrogen bonding between CDs
and NOR.
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Figure 11. Fluorescence lifetimes of CDs (red square) and CDs with NOR (blue square), the corre-
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2.13. Real Water Sample Analysis

To verify the reliability of Eu@CDs-MIMs for the visual detection of NOR in real water
samples, tap water and river water were used to prepare NOR solution to be tested in the
concentration range of 5–50 nM for recovery testing. The river water samples were taken
from rivers on the campus of Jiangsu University and centrifuged to remove suspended
impurities before use. The results of fluorescence detection and HPLC (Figure S5) are
shown in Table 2, which demonstrate that Eu@CDs-MIMs exhibit a favorable detection
performance across tap water and river water. Additionally, Eu@CDs-MIMs display consis-
tent recovery within the 5–50 nM linear range in all samples. By comparing with HPLC
results, Eu@CDs-MIMs demonstrate reliable detection performance, further affirming its
ant-interference capability.

Table 2. Detection results of NOR recovery in tap water and river water samples.

Samples Eu@CDs-MIMs HPLC Method

Added
(nM)

Found
(nM)

Recover
(%)

RSD
(%, n = 3)

Found
(nM)

Recover
(%)

Tap water 10 9.3 93 3.2 9.8 98
20 21.2 106 2.9 20.2 101
30 30.6 102 2.7 29.7 99
40 41.5 103.8 3.6 39.8 99.5
50 50.7 101.4 2.0 50.3 100.6

River
water 10 10.4 104 3.3 10.2 102

20 19.6 98 2.9 19.7 98.5
30 31.5 105 2.6 30.3 101
40 42.7 106.8 3.1 40.1 100.2
50 49.3 98.6 2.4 49.8 99.6
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3. Experimental Section
3.1. Materials

Eu2O3, ethylene glycol dimethacrylate (EGDMA), polyvinylidene fluoride (PVDF), N,N-
Dimethylacetamide (DMAc), methacryloxy propyl trimethoxyl silane (KH570), methacrylic
acid (MAA), and 2-fluoroacrylic acid were all obtained from Aladdin Chemistry Co., Ltd.
(Shanghai, China). Citric acid anhydrous, urea, 2,2′-azobis (2-methylpropionitrile) (AIBN),
1,10-phenanthroline monohydrate (phen), polyvinylpyrrolidone (PVP), and norfloxacin (NOR)
were purchased from Sinopharm Chemical Reagent Co. (Shanghai, China). All other chemicals
used were analytical grade and obtained commercially.

3.2. Apparatus

Fourier transform infrared (FT-IR) was obtained on a Nicolet iS50 FTIR apparatus
(Thermo Scientific, Waltham, MA, USA). The morphology and sizes were evaluated us-
ing scanning electron microscopy (SEM) (JSM-7800F, JEOL, Akishima City, Japan) and
transmission electron microscopy (TEM) (JEM-2010HR, JEOL, Akishima City, Japan). The
surface morphology of membranes was observed by atomic force microscopy (AFM, Bruker
Dimension Icon, Ettlingen, Germany). The fluorescence intensity of the samples was ob-
served by an F-98 fluorospectrophotometer (Shanghai Lengguang Technology Co., Ltd.,
Shanghai, China). The surface chemical composition was analyzed by X-ray photoelec-
tron spectroscopy (XPS, Shimadzu/Kratos AXIS SUPRA+, Kyoto, Japan). The water
contact angle was measured using a goniometer device (OSA60, LAUDA Scientific, Lauda-
Königshofen, Germany).

3.3. Synthesis of CDs

The CDs were prepared according to the previous work [46]. Firstly, anhydrous citric
acid (1.0 g) and urea (1.0 g) were dissolved in 10 mL of deionized water. Then, the mixture
was transferred to a 50 mL Teflon-lined autoclave and heated at 160 ◦C for 4 h. After
cooling the reaction to room temperature, the solution was transferred to a semi-permeable
membrane bag with a molecular weight of 1000. Finally, the CDs were purified for 48 h,
and the product was stored at 4 ◦C for further use.

3.4. Preparation of Eu(MAA)3phen

Eu(MAA)3phen was synthesized by the coprecipitation method according to previous
works [51]. Europium chloride solution (0.25 mol/L) was prepared from high-purity Eu2O3
by dissolving in concentrated hydrochloric acid (6 mol/L). The product was washed three
times with anhydrous ethanol and then dried to obtain solid EuCl3·6H2O. Subsequently,
EuCl3·6H2O (1.832 g) was dissolved in anhydrous ethanol (50 mL), and MAA (1.31 mL)
was added dropwise into the above solution under continuous stirring. After adjusting
the pH value of the mixture to 8 using ammonium hydroxide (2 mol/L), phen (0.991 g)
was then added. The mixture was stirred at room temperature for 3 h and kept overnight.
The precipitate was filtered and washed with anhydrous ethanol for three times and finally
dried at 80 ◦C to obtain Eu(MAA)3phen.

3.5. Preparation of Eu/CDs-MIPs

Eu/CDs-MIPs were prepared on the surface of SiO2@KH570 as a comparison. First,
SiO2@KH570 (0.1 g) was dispersed with 50 mL of acetonitrile and magnetic stir, CDs (3.0 mg)
and Eu(MAA)3phen (10 mg) were dissolved in anhydrous ethanol with NOR (0.063 g) and
FAA (0.071 g) and then pre-polymerized for 2 h. Then, EGDMA (0.236 mL) and AIBN
(0.05 g) were added and placed under N2 atmosphere for 15 min. After polymerization,
the Eu/CDs-MIPs were centrifuged for 3 min. After this step, polymers were eluted with
methanol/acetonitrile (v:v = 4:1) to remove the NOR.
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3.6. Preparation of Eu@PVDF

Eu@PVDF was synthesized by the phase transition method. PVDF (4.0 g) and PVP
(0.1 g) were added to a round-bottomed flask, which was followed by the addition of
Eu(MAA)3phen (10 mg). Then, the mixture was mechanically stirred at a constant tempera-
ture for 1 day at 25 ◦C in DMAc (20 mL) and maintained at a constant temperature for 1 d.
The casting solution was slowly poured into the scraper plate, and the membrane scraping
operation was performed. The phase transition process was finally completed by placing
the scraper in water. The prepared Eu@PVDF was soaked in deionized water for later use.

3.7. Preparation of Eu@CDs-MIMs

Eu@CDs-MIMs were synthesized by surface imprinting on the surface of Eu@PVDF, in
which the imprinted layer was polymerized through carbon–carbon double bonds provided
by Eu(MAA)3phen. CDs (3.0 mg) were dissolved in anhydrous ethanol (50 mL) with NOR
(0.063 g) and FAA (0.065 g) and pre-polymerized for 2 h. After adding Eu@PVDF to the
mixed solution, EGDMA (0.236 mL) and AIBN (0.05 g) were added, and the solution was
exposed to a N2 atmosphere for 15 min to remove oxygen. After stirring at 60 ◦C for 24 h,
Eu@CDs-MIMs were obtained by washing and drying. After this step, Eu@CDs-MIMs were
eluted with methanol/acetonitrile (v:v = 4:1) to remove the NOR. With the exception of the
addition of NOR, the Eu@CDs-NIMs were synthesized in the same way as Eu@CDs-MIMs.

3.8. Fluorescence Measurements

Eu@CDs-MIMs and Eu@CDs-NIMs were cut to a size of 1.0 cm multiplied by 0.5 cm
for the detection of NOR, and NOR solution in the concentration range of 5 to 50 nM was
prepared using double-distilled water as a solvent, respectively. The fluorescent test strip
was completely immersed in the solution to be tested and reacted completely for 1 min,
and the fluorescence spectrum of the test strip was then removed and examined. The
excitation wavelength was 344 nm, the slit width was set at 5 nm, and the voltage of the
photomultiplier tube was 700 V. The concentrations of solution used for both the evaluation
of selectivity and the ionic interference performance were 50 nM, and the test methods were
the same. Fluorescent images of test strips for the visualization of performance studies
were taken under dark conditions using a small ultraviolet (UV) lamp with an excitation
wavelength of 365 nm.

3.9. HPLC Analysis of Actual Samples

The chromatographic separation was performed on HPLC (Agilent 1260 Infinity II,
Santa Clara, CA, USA) with a Wonda Cract ODS-2 reversed-phase column (250 mm ×
4.6 mm, 5 mm). The mobile phase was a mixture of isocratic eluent (pH 2.4) of methanol
and purified water (v:v = 60:40) with a flow rate of 1.0 mL·min−1 using a UV detector of
278 nm. Finally, macromolecular impurities were removed from the actual sample using a
0.22 mm filter, and the sediment was removed by centrifugation.

4. Conclusions

In summary, a novel fluorescent test strip based on a Eu complexes-doped PVDF
membrane for NOR detection utilizing CDs-doped MIPs as fluorescent probes has been
successfully synthesized. NOR could enhance the blue emission of CDs through the
charge transfer and hydrogen bonding between CDs and NORs, while the red emission of
Eu(MAA)3phen remained unchanged. With the gradual addition of NOR, the fluorescent
test strip showed a color change from red to blue that is visible to the naked eye, resulting in
an accurate and rapid detection of NOR with an LOD of 1.35 nM and a rapid response time
of 1 min. Excitingly, the combination of the smartphone could achieve numerical-assisted
visual detection with a low LOD of 7.92 nM. In addition, to verify the feasibility of the
detection method, the HPLC analysis method was used as a reference. Consequently, the
designed fluorescent test strip provides a reliable approach for the visual quantitative
detection of NOR, which promises to be used for environmental safety detection.
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