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Abstract: By taking advantage of a sequence of oxidative addition/reductive elimination reac-
tions, Pt(II) cyclometalated derivatives are able to promote a rare C(sp2)-C(sp3) bond coupling,
resulting in the production of novel methyl-substituted pyridines and bipyridines. Starting from
6-phenyl-2,2′-bipyridine, the step-by-step full sequence of reactions has been followed, leading to
the unprecedented 3-methyl-6-phenyl-2,2′-bipyridine, which was isolated and fully characterized.
The synthesis involves the following steps: (1) rollover cyclometalation to give the starting complex
[Pt(NˆC)(DMSO)Me]; (2) the synthesis of a more electron-rich complex [Pt(NˆC)(PPh3)Me] by the
substitution of DMSO with triphenylphosphine; (3) oxidative addition with methyl iodide to give the
Pt(IV) complex [Pt(NˆC)(PPh3)(Me)2(I)]; (4) iodide abstraction with silver tetrafluoborate to give an
unstable pentacoordinate intermediate, which rapidly evolves through a carbon–carbon reductive
coupling, forming a new C(sp3)-C(sp2) bond; (5) finally, the extrusion and characterization of the
newly formed 3-methyl-6-phenyl-2,2′-bipyridine. The reaction has been therefore extended to a
well-known classical cyclometalating ligand, 2-phenylpyridine, demonstrating that the method is not
restricted to rollover derivatives. Following the same step-by-step procedure, 2-phenylpyridine was
converted to 2-o-tolyl-pyridine, displaying the potential application of the method to the larger family
of classical cyclometalated complexes. The application of this protocol may be useful to convert an
array of heterocyclic compounds to their methyl- or alkyl-substituted analogs.

Keywords: cyclometalated complexes; C-H bond activation; Pt(II) complexes; rollover platinum
complexes; nitrogen ligands

1. Introduction

One of the main goals of organometallic chemistry is the functionalization of C−H
bonds mediated by transition metals, particularly when it involves the formation of new
carbon–carbon bonds [1]. The C-C coupling is particularly interesting when it implicates
the activation of a C-H bonds in organic compounds followed by metalation (the formation
of a metal–carbon bond) and successive functionalization (Scheme 1):
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Scheme 1. Activation, metalation, and functionalization via C-C reductive coupling.

A successive combination of oxidative addition/reductive elimination reactions is
often found in catalytic cycles, leading first to the activation of a substrate and second to the
formation of new bonds and hence to newly designed compounds. Reductive elimination
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is usually the key step in C−C bond formation, representing the reaction in which the final
product is formed [2].

The cyclometalation reaction is a useful method for C-H bond activation in aromatic
heterocycles, leading to particularly stable organometallic complexes known as cyclometa-
lated compounds [3]. These derivatives, characterized by a carbon-heteroatom chelating
ligand, have attracted enormous interest for various applications: as catalysts for a large
array of reactions [4], in biomedicine as antitumor or antimicrobial agents [5,6], and in the
field of innovative materials, such as photoluminescent devices, sensors, switches, etc. [7,8].

Furthermore, after the activation of the C-H bond, the subsequent functionalization of
the cyclometalated ligand may facilitate the synthesis of new organic molecules by means
of stoichiometric or catalytic processes [9].

For these reasons, a great variety of subclasses of cyclometalated species have emerged,
particularly for nitrogen donors such as pyridines, imines, and amines. In addition to
classical CˆN donors (e.g., phenylpyridines and phenylamines), the subclasses of tridentate
cyclometalates have been thoroughly studied, comprising NˆNˆC donors [10] (such as 6-
phenyl-2,2′-bipyridine) and the so-called “pincer ligands” [11] (e.g., CˆNˆC, NˆCˆN donors).
One recent and unusual class is that of the rollover complexes, ref. [12] derived from the
internal rotation of bidentate heterocyclic ligands, such as 2,2′-bipyridine (Figure 1).
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Figure 1. Some classes of cyclometalated complexes.

Among the various methods, the rollover cyclometalation reaction is a quite new and
useful process, suitable for activating heterocyclic donor ligands in remote positions, such
as the C3 position in 2,2′-bipyridines (see Figure 1). It is not easy to functionalize these
bidentate ligands in certain positions with transition metals owing to their propensity to
form stable NˆN chelated complexes. In contrast to classical cyclometalated complexes,
rollover derivatives contain a free donor atom that confers behaviors not accessible to clas-
sical cyclometalated species [13], such as protonation [14], retro-rollover reactions [15,16],
successive additional cyclometalation, and polymerization [17].

Rollover complexes were also found to promote C-C bond formation in both stoichio-
metric (gas phase and in solution) [18,19] and catalytic [20–22] reactions. In this regard, we
have recently reported that the rollover activation of the C3-H bond in 2,2′-bipyridine Pt(II)
rollover complexes might be employed to promote C-C bond formation by means of a se-
quence of oxidative addition and reductive elimination reactions to give methyl-substituted
pyridine rings [23].

Following our previous studies in the field [24], we report some aspects of the behavior
of one of the most studied organometallic ligands, 6-phenyl-2,2′-bipyridine (bpyPh), which
lead to the activation and functionalization of the remote pyridine C3-H bond through Pt(II)
rollover cyclometalation. The reaction has been successfully extended to the corresponding
classical ligand, 2-phenylpyridine (pyPh), revealing additional potential applications.

2. Results and Discussion

As reported previously, the reaction of the electron-rich Pt(II) precursor [Pt(DMSO)2
(Me)2] with 6-phenyl-2,2′-bipyridine, bpyPh, produces the rollover complex [Pt(bpyPh-
H)(Me)(DMSO], 1, from which the substitution of the labile DMSO ligand allows the
isolation of the corresponding phosphane complex [Pt(bpyPh-H)(Me)(PPh3)], 2 [25]. The
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reaction can be performed following a “one-pot” procedure by adding PPh3 to the reaction
mixture of [Pt(DMSO)2(Me)2] and bpyPh after completion of the rollover process, thus
directly isolating 2 in high yield (Scheme 2).
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Scheme 2. Synthesis of complex 3: (i) acetone, 50 ◦C, 2 h; (ii) acetone, PPh3, r.t., 1 h; (iii) CH2Cl2, MeI,
30 ◦C, 6 h.

Oxidative addition reactions of alkyl halides to Pt(II) electron-rich complexes have
been extensively studied by several authors [26–30]. In particular, cyclometalated Pt(II)
complexes are known to result in oxidative addition with methyl iodide, affording the corre-
sponding Pt(IV) derivatives [31]. The reaction usually proceeds through an intermolecular
SN2 mechanism at room temperature.

The reaction of complex 2 with MeI does not occur easily: under the same condi-
tions followed by analogous cyclometalated Pt(II) complexes (acetone, room temperature),
we were not able to obtain the desired Pt(IV) product. The greater difficulty of the ox-
idative addition reaction on complex 2 may be explained by the donor properties of the
rollover-coordinated 6-phenyl-2,2′-bipyridine. As we recently reported [32], a good in-
dicator of the donor properties of platinum(II) cyclometalated complexes is the direct
195Pt-31P coupling value revealed by 31P NMR spectroscopy. In comparison with related
cyclometalated ligands (Figure 2), 6-phenyl-2,2′-bipyridine is a poorer donor than cyclomet-
alated 2-phenylpyridine and rollover-coordinated 2,2′-bipyridine, but better than the worst
donor (6-CF3-2,2′-bipyridine). As a consequence, the platinum center in complex 2 is rela-
tively electron-poor compared with similar cyclometalated complexes and the hampered
oxidative addition reaction has a plausible justification.
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It is likely that the presence of the phenyl substituent slows down the reaction, so we
raised the temperature and prolonged the reaction time. In this way, we were able to obtain
and isolate the Pt(IV) complex [Pt(bpyPh-H)I(Me)2PPh3], 3, in high yield (Scheme 2).

The reaction of 2 with MeI should give a complex with the methyl and iodide ligands
entering in a mutually trans position. However, as previously observed, rapid isomerization
produced the more stable isomer, with the phosphane ligand in the axial position with
respect to the bipyridine metalated plane [33].
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Complex 3 was isolated and characterized analytically and spectroscopically, in par-
ticular, by means of NMR spectroscopy. The 31P NMR spectrum of 3 shows a singlet
with satellites at −10.95 ppm, with a Pt-P coupling constant value, 1JPt-P = 962.5 Hz, in
agreement with a Pt(IV) species, but smaller than that found in the corresponding simple
2,2′-bipyridine rollover complex 3′, [Pt(bpy-H)(Me)2I(PPh3)] (1JPt-P = 991 Hz) (Figure 3).
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The 1H NMR spectrum shows two different coordinated methyls as doublets with
satellites due to coupling to 195Pt and 31P nuclei. Comparison with NMR data for 3′

shows that the shielded methyl (δ 1.24 ppm, 2JPt-H = 60.0 Hz) is coordinated in the “axial”
position (with respect to the bipyridine plane), whereas the deshielded methyl (δ 1.70 ppm,
2JPt-H = 70.5 Hz) is in the equatorial position. The H6′ signal is strongly deshielded (δ 9.62
ppm, JPt-H ca 11 Hz), as expected, due to proximity to the iodide ligand [34,35].

Treatment of Pt(IV) Complexes with Silver Salts

Compound 3 is stable in the presence of air and moisture, both in the solid state and
in solution.

The reaction of 3 with AgBF4 in acetone resulted in the abstraction of the coordinated
iodide and the precipitation of solid AgI, which was removed by filtration. The resulting
coordinatively unsaturated, five-coordinate species is unstable and rearranges following a
reductive elimination process, through C(sp3)-C(sp2) coupling, and a subsequent “retro-
rollover” process, involving the rotation of the substituted pyridine, allows the coordination
of the second nitrogen atom to prepare NˆN chelated adducts (Scheme 3).
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On the basis of our previous experience, we expected to obtain the two geometric
isomers of the adduct [Pt(NˆN)(PPh3)Me]+, as in the case of unsubstituted 2,2′-bipyridine,
where the two species 4a′ and 4b′ were isolated in a 1:1 molar ratio (Figure 4). How-
ever, in the case of 6-phenyl-2,2′-bipyridine, likely due to the presence of the bulky
phenyl substituent, the situation is more complex. The 1H NMR spectrum of the iso-
lated product showed a mixture of at least five species in an approximate 8:5:4:2:1 molar
ratio (Supplementary Material S3). All species contain a coordinated 3-methyl-6-phenyl-
2,2′-bipyridine resulting from the desired C(sp3)−C(sp2) coupling, as shown by singlets
around 3.0 ppm in a 1:1 molar ratio with the corresponding Pt-CH3 signals.
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−.

A tentative analysis of the complex mixture may explain the signals as follows: two
species, present in a relative 4:1 molar ratio (ca 40% and 10% of the total) may be described
as the geometric isomers of the adduct [Pt(NˆN)(PPh3)Me]+ (NˆN = 3-methyl-6-phenyl-
2,2′-bipyridine, 4a and 4b). This interpretation is based on the presence of two coordinated
methyls appearing as doublets with satellites, due to coupling with 195Pt and 31P nuclei:
one of the signals, corresponding to the major species, is highly shielded (4a, ca 40%, δ
−0.48 ppm, JP-H = 3.8 Hz, JPt-H = 69.5 Hz) as it is in proximity of the shielding cone of
the phenyl substituent of the bipyridine, whereas the other signal (4b, ca 10%, δ 0.86 ppm,
JP-H = 3.6 Hz, JPt-H = ca 70 Hz) appears in the usual region at around 0.9–1.1 ppm. Two
singlets, at 2.99 and 3.07 ppm, with the same integral values and 4:1 molar ratio, may be
assigned to the methyls on the C3 position in the central pyridine ring. In the 31P NMR
spectrum, these species gave singlets with satellites at 17.57 ppm (4a, JPt-P = 4581 Hz) and
12.49 ppm (4b, JPt-P = 4397 Hz), with the same 4:1 molar ratio. Other smaller signals in the
31P NMR spectrum, e.g., a singlet at 31.72 ppm, were not interpreted.

In the 1H NMR spectrum, two other compounds, 4c and 4d, in an approximate 5:4
molar ratio, (ca. 25% and 20% of the total, respectively), may tentatively be described
as solvato species [Pt(NˆN)(S)Me]+ (S = acetone or water) generated from detachment of
the PPh3 ligand; these species show two singlets with satellites, indicating the absence of
coordinated PPh3 (4c, 25%: δ 1.04 ppm, JPt-H = 71.5 Hz; 4d, 20%: δ 0.96 ppm, JPt-H = 67.5 Hz).
Two singlets at 2.63 and 2.88 ppm (4c and 4d respectively, Me on C3) indicates that also
these species are derived from the C-C coupling. Furthermore, two signals at 3.80 and
2.19 ppm (the latter overlapping with free acetone) may support the assignment of 4c
and 4d as solvato species. Finally, a small singlet with satellites, at −0.17 ppm (ca. 5%,
JPt-H = 66.5 Hz), may be a solvato species (4e) with a methyl coordinated close to the phenyl
substituent.

It is worth mentioning that C(sp2)-C(sp3) formation by reductive elimination is rela-
tively rare, both catalytically and stoichiometrically [36–43]. In our previous study [23] of
2,2′-bipyridine, 2-pyridylquinoline, and 6-methyl-2,2′-bipyridine, we tried to determine
which of the two methyl ligands coordinated to platinum(IV) was involved in the coupling.
However, the oxidative addition reaction with deuterated CD3I produced a 50:50 distribu-
tion of CH3 and CD3 coordinated in the axial and equatorial positions, explainable by a
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rapid isomerization of the pentacoordinated Pt(IV) complex [Pt(NˆC)(CD3)(CH3)(PPh3)]+

before the coordination of iodide.
Here, our main interest consisted in the isolation of the new 3-methyl-6-phenyl-2,2′-

bipyridine, so we did not devote further efforts to the characterization of species 4a–e, and
proceeded with the decomplexation of the ligand from the metal.

The free-substituted 2,2′-bipyridine 5 was isolated by reaction of the 4a–e species
with dppe (1,2-bis-diphenylphosphinoethane). The chelating diphosphane easily displaces
the bipyridine ligand so that the organic species can be isolated in good yield (ca. 80%)
and analyzed.

To the best of our knowledge, compound 5 has not previously appeared in the lit-
erature and its synthesis is unprecedented. For this reason, we performed a thorough
characterization in solution by means of mono- and two-dimensional 1H and 13C NMR
spectroscopy (1H, 13C, H-H COSY, H-H NOESY, H-C HMQC, H-C HMBC).

The 1H and 13C NMR spectra clearly show the methyl in position 3 (1H, 2.58 ppm,
13C, 19.98 ppm). The aromatic region shows all the expected hydrogens, with 4, 2, and
5-proton spin systems for the aromatic rings, for which a COSY H-H spectrum allowed the
assignment of all 1H NMR signals.

In addition, 1H-13C HSQC and HMBC spectra allowed the assignment of 13C signals.
A complete assignment is reported in Figure 5.
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H) and 4J(C-H) couplings. As an example, the 1H methyl singlet at 2.58 ppm shows cross 
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Figure 5. (a) (left): 3-Methyl-6-phenyl-2,2-bipyridine, 5, along with numbering scheme and complete
1H and 13C NMR assignment (CDCl3 solution) deduced from 2D NMR spectra; (b) (right) interactions
revealed by 2D NMR spectra: (i) in red, proximity of CH3 protons with C2, C3, and C4, shown by cross
peaks in the HMBC spectrum; (ii) in blue, NOE contacts between CH3 and H2” with the H4/H5 spin
system (NOESY spectrum); (iii) in green, long-range interactions of CH3 protons and H5, revealed by
the COSY spectrum.

In particular, the 2D 1H-13C HMBC NMR spectrum provided fundamental information,
revealing intense cross peaks for 3J(C-H) coupling, as well as weak peaks for 2J(C-H) and
4J(C-H) couplings. As an example, the 1H methyl singlet at 2.58 ppm shows cross peaks with
signals at 155.52 (C2), 130.9 (C3), and 140.16 (C4) ppm, supporting the given formulation.
The analysis of the other peaks allowed complete assignment. The bonding of the methyl
group on the C3 position is confirmed by the 2D COSY spectrum, which shows a weak long-
range interaction between the methyl protons at 2.58 ppm and the H4 signal at 7.70 ppm
(part of an AB system with the H5 hydrogen).

The 1H NMR spectrum of 5 in CD2Cl2 slightly separated the H4 and H5 signals in the
AB system (δ 7.73, 7.75 ppm, JAB = 8.1 Hz). A NOESY spectrum showed NOE contacts
between the AB system and the methyl at 2.60 ppm, as well as with the H2” protons; a
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detailed analysis, hampered by the tightness of the AB system, allowed assignment of the
H4 and H5 signals (δ 7.73 and 7.75 ppm, respectively).

The GC-MS spectrum (EI) of 5 shows peaks at m/z 245.2 (100%, [M-H]+) and 246.2
([M]+, calculated for C17H14N2 246.12).

Functionalization in the C3 position of 2,2′-bipyridines is not so common: the methods
reported in literature comprise Negishi [44] and Suzuki–Miyaura coupling [45], in addition
to co-cyclotrimerization reactions [46]. In our previous investigation, we reported that
only rollover complexes were able to follow the sequence of reactions also reported in this
paper. The intermediate adducts [Pt(NˆN)(PPh3)Me]+, analogous to 4a–e, were stabilized by
chelation, a behavior not available for classical ligands such as 2-phenylpyridine. However,
the retro-rollover process should follow the C-C coupling, so we analyzed in more detail
the reaction starting from the classical analog [Pt(NˆC)Me(PPh3)] complex derived from
2-phenylpyridine, 6 (Scheme 4).
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Following the same reaction sequence used for 1–4, we obtained the Pt(IV) species 3a,
which was isolated in the solid state and analyzed by means of NMR spectroscopy.

In this case, we did not try to isolate adduct species analogous to 4a–e, as we were
mainly interested in the isolation of the final organic compound. Owing to the different
solubility of 3a with respect to 3, the reaction with silver tetrafluoborate was performed in
a CH2Cl2/acetone 5/1 molar ratio mixture. Analogous to the previous case, the addition of
AgBF4 followed by displacement with dppe, 1,2-bis(diphenylphosphine)ethane, led to the
isolation of 2-ortho-tolylpyridine, 6, derived from the C(sp3)-C(sp2) coupling. Compound
6 was purified by acid–base extraction and characterized by NMR spectroscopy. The
spectroscopic data, in agreement with the previously reported data for 6, ref. [47] revealed,
inter alia, the presence of the methyl group at 2.41 and 20.26 ppm, in the 1H and 13C spectra,
respectively.

Furthermore, the GC-MS spectrum (EI) shows peaks at m/z 168.1 (100%, [M-H]+) and
169.1 ([M]+, calculated for C12H11N 169.09).

The obtained result is significant because, to the best of our knowledge, this is a new
strategy for C-C coupling in a classical cyclometalated complex, following this sequence of
reactions. Moreover, this result suggests the possibility of extending the functionalization
to a wide range of cyclometalated ligands.

3. Experimental Section

All the solvents were purified and dried according to standard procedures [48]. Cis-
[Pt(DMSO)2(Me)2] was synthesized according to reference [49,50]. Elemental analyses were
performed with a PerkinElmer elemental analyzer 240B.1H, 13C{1H}, and 31P{1H} NMR
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spectra were recorded using a Bruker Avance III 400 spectrometer operating at 400.132,
100.623 and 161.967 MHz, respectively. Chemical shifts are given in ppm relative to internal
TMS for 1H and 13C{1H} and external 85% H3PO4 for 31P{1H}; J values are given in Hz. 1H-
1H COSY, 1H-1H NOESY, 1H-13C HSQC, and 1H-13C HMBC experiments were performed
by means of standard pulse sequences.

GC-MS analyses were carried out using an Agilent GC 7820A equipped with an
Agilent MSD 5977E (Column: Zebron ZB-5 60 m × 0.25 mm, i.d. × 0.25 µm).

Preparations

Synthesis of 2, [Pt(bpyPh-H)Me(PPh3)]
Complex 2 was obtained as previously reported [20], following a one-pot procedure,

adding PPh3 after completion of the reaction between cis-[Pt(DMSO)2(Me)2] and 6-phenyl-
2,2′-bipyridine to give complex 1 as an intermediate. Yield 95%. 1H NMR: (400.1 MHz,
CDCl3): δ (ppm) 8.55 (d, 1H, H6′ ), 8.33 (dd with sat, 3JPt-H = 47.1 Hz), 8.20–7.38 (m,
aromatics), 6.71 (m, 1H), 0.79 (d with sat, 3H, 2JPt-H = 83.2 Hz, CH3). 31P NMR: (136.0 MHz,
CDCl3): δ (ppm) 32.49 (s with sat, 1JPt-P = 2236 Hz, PPh3).

Synthesis of 3, [Pt(bpyPh-H)I(Me)2PPh3]
To a solution of [Pt(bpyPh-H)Me(PPh3)] (300.0 mg; 0.42 mmol) in 15 mL of dichloro-

methane, methyl iodide (159.0 µL; 2.52 mmol) was added under stirring. The solution
was heated to 30 ◦C for 6 h, under an argon atmosphere. After completion, the solution
was concentrated to a small volume and treated with hexane. The precipitate formed
was filtered off and dried to give the analytical sample (331.0 mg; Yield: 93%). Elemental
analysis: calculated for C36H32IN2PPt. (%): C, 51.13; H, 3.81; N, 3.31; found: C, 51.26; H,
3.92; N, 3.19. 1H NMR: (400.1 MHz, CDCl3): δ (ppm) 9.65 (dd with sat, 1H, 2JH-H = 5.6 Hz
JPt-H = 11.5 Hz, H6′); 8.42 (d, 1H), 8.07 (m, 2H), 7.80 (td, 1H), 7.57–7.05 (m, 21H + CDCl3),
7.06 (dd, 1H), 1.64 (d with sat, 3H, 2JP-H = 7.7 Hz,2JPt-H = 70.45 Hz, CH3). 1.17 (d with sat,
3H, 2JP-H = 7.4 Hz, 2JPt-H = 60.0 Hz, CH3).31P NMR: (136.0 MHz, CDCl3): δ (ppm) −10.9 (s
with sat, 1JPt-P = 962.5 Hz, PPh3).

Reaction of 3 with AgBF4
To a solution of 3 (255.3 mg; 0.30 mmol) in acetone (20 mL) AgBF4 (61.4 mg; 0.30 mmol)

was added under stirring at room temperature in an argon atmosphere. After three hours,
the formed AgI was removed by filtration over celite. The filtered solution was concentrated
to a small volume and treated with a hexane–diethyl ether 1:5 mixture to give a precipitate
that was filtered off and dried to give the analytical sample.

The 1H NMR spectrum of the obtained product shows the presence of at least five
species, 4a (40%), 4b (10%), 4c (25%), 4d (20%), 4e (5%), tentatively identified as [Pt(NˆN)L
(Me)]+ cationic adducts (L = PPh3, water, or acetone) where the NˆN ligand is 3-methyl-6-
phenyl-2,2′-bipyridine (5).

Selected 1H and 31P NMR data (CDCl3, δ (ppm))
4a (40%), [Pt(Pt(k2-N,N-3-methyl-6-phenyl-2,2′-bipyridine)(PPh3)(Me)]+ (isomer with

Pt-Me cis to Ph-bipy): 1H NMR: δ −0.47 (d with sat, 3H, JP-H = 3.8 Hz, JPt-H = 69.5 Hz,
Pt-Me); 2.99 (s, 3H, Me-bipy) 31P NMR: δ 17.57 (s with sat, JPt-P = 4581 Hz).

4b (10%), [Pt(Pt(k2-N,N-3-methyl-6-phenyl-2,2′-bipyridine)(PPh3)(Me)]+ (isomer with
Pt-Me trans to Ph-bipy): δ 0.86 (d with sat, 3H, JP-H = 3.6 Hz, JPt-H = ca 70 Hz, Pt-Me); 3.07
(s, 3H, Me-bipy). 31P NMR: δ 12.49 (s with sat, JPt-P = 4397 Hz).

4c (25%), [Pt(Pt(k2-N,N-3-methyl-6-phenyl-2,2′-bipyridine)(S)(Me)]+ (S = water or
acetone, isomer with Pt-Me trans to Ph-bipy). 1H NMR: δ 1.04 (s with sat, 3H, JPt-H = 71.5 Hz,
Pt-Me); 2.63 (s, 3H, Me-bipy).

4d (20%), [Pt(Pt(k2-N,N-3-methyl-6-phenyl-2,2′-bipyridine)(S)(Me)]+ (S = water or
acetone, isomer with Pt-Me trans to Ph-bipy). 1H NMR: δ 0.96 (s with sat, 3H, JPt-H = 67.5 Hz,
Pt-Me); 2.88 (s, 3H, Me-bipy).

4e (5%), [Pt(Pt(k2-N,N-3-methyl-6-phenyl-2,2′-bipyridine)(S)(Me)]+ (S = water or ace-
tone, isomer with Pt-Me trans to Ph-bipy), 1H NMR: δ -0.15 (s with sat, JPt-H = 66.5 Hz,
Pt-Me); 2.85 (s, 3H, Me-bipy).
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Synthesis of 5, 3-methyl-6-phenyl-2,2′-bipyridine
To a solution of 3 (255.3 mg; 0.30 mmol) in acetone (20 mL), AgBF4 (61.4 mg; 0.30 mmol)

was added under stirring at room temperature in an argon atmosphere. After three hours,
the formed AgI was removed by filtration over celite. To the filtered solution, a 10% excess
of dppe (132.1 mg; 0.303 mmol) was added and the solution was left under stirring for 15′.
Then the mixture was evaporated to dryness. The organic product was solubilized with
diethyl ether, filtered and purified by an acid–base extraction in order to eliminate traces of
dppe, anhydrified with Na2SO4, filtered and evaporated to dryness to give the analytical
sample with a 75% yield. Complete 1H and 13C NMR assignment was enabled by analysis
of 1D and 2D NMR spectra (1H, 13C, H-H COSY, H-H NOESY, H-C HSQC, H-C HMBC).

1H NMR: (400.1 MHz, CDCl3): δ (ppm) 8.69 (ddd, 1H, JH-H = 4.8, 1.7, 0.9 Hz, H6′ ), 8.08
(m, 1H, H2′′ ), 8.03 (dt, 1H, JH-H = 8.0, 0.9 Hz, H3′ ), 7.87 (td, 1H, JH-H = 7.8, 1.8 Hz H4′ ), 7.70
(AB system, 2H, H5+H4, JH5-H4 = 8.1 Hz), 7.49 (m, 2H, H3′′ ), 7.41 (m, 1H, H4′′ ), 7.33 (ddd,
1H, JH-H = 7.7, 4.8, 1.2 Hz, H5′ ), 2.58 (s, 3H, CH3). 1H NMR (400.1 MHz, CD2Cl2): selected
signals δ (ppm) 8.71 (ddd, 1H, H6′ ), 7.73(H4, 1H, AB system, JAB = 8.1 Hz); 7.75 (H5, 1H,
AB system, JAB = 8.1 Hz); 2.60 (s, 3H, CH3).

13C NMR: (100.1 MHz, CDCl3) δ (ppm) 159.43 (C2); 155.67 (C2′ ); 154.36 (C6); 148.24
(C6′ ); 140.31 (C4); 139.43 (C1′′ ); 136.74 (C4′ ); 131.01 (C3); 128.79 (C3′′ ); 128.77 (C4′′ ); 126.92
(C2′′ ); 124.68 (C3′ ); 122.77 (C5′ ); 119.80 (C5); 19.98 (CH3).

GC-MS (EI): C17H14N2, found m/z 245.2 [M-H]+ (calculated for M+ 246.1).
Synthesis of 2a, [Pt(pyPh-H)Me(PPh3)]
To a solution of cis-[Pt(DMSO)2(Me)2] (210.0 mg; 0.55 mmol) in 15 mL of anhydrous

toluene, 0.10 mL of 2-phenylpyridine (0.70 mmol) was added under constant stirring. The
solution was heated, under an argon atmosphere, to a temperature of 110 ◦C for 3 h. After
cooling to room temperature, a 10% excess of triphenylphosphine was added and allowed
to react for one hour. The obtained solution was concentrated to a small volume and treated
with diethyl ether. The precipitate formed was filtered off and washed with hexane to
produce the analytical sample (0.174 g; yield: 50%). 1H and 31P NMR data match those
previously reported [51].

Selected 1H NMR data: (400.1 MHz, CDCl3): δ (ppm) 077 (d with sat, 3H, 3JP-H = 7.9 Hz,
2JPt-H = 83.5 Hz, Pt-Me). 8.00 (m with sat, 1H, JPt-H = 51 Hz, H3′ ),

31P NMR (136.0 MHz,
CDCl3): δ (ppm) 33.10 (s with sat, JPt-P = 2105 Hz).

Synthesis of 3a, [Pt(pyPh-H)I(Me)2(PPh3)]
To a solution of [Pt(pyPh-H)Me(PPh3)] (100.0 mg; 0.16 mmol) in 15 mL of dichloro-

methane, an excess of CH3I (59.6 µL; 0.96 mmol) was added, under constant stirring in an
argon atmosphere. The solution was heated to 30 ◦C for 6 h. After completion, the solution
was concentrated to small volume and treated with hexane. The precipitated formed
was filtered off and dried to give the analytical sample (0.083 g; yield: 68%). 1H and 31P
NMR data match those previously reported. Ref. [33] Selected NMR data (CDCl3): δ(ppm)
1.25 (d, 3H, 2JPt-H = 60.8 Hz, 3JP-H = 7.5 Hz, Me trans to P), 1.65 (d, 3H, 2JPtH = 71.1 Hz,
3JP-H = 7.7 Hz, Me trans to N), 9.72 (ddd, 1H, JH-H) 5.5 Hz, 3JPt-H = 10.5 Hz, H6′ , adjacent to
N). 31P NMR (136.0 MHz, CDCl3): −9.34 (s, 1JPt-P = 967 Hz).

Synthesis of 6, 2(o-tolyl)pyridine
To a solution of [Pt(pyPh-H)I(Me)2(PPh3)] (60.0 mg; 0.080 mmol) in a 5:1 mixture

of dichloromethane acetone, AgBF4 (17.2 mg, 0.088 mmol) was added under constant
stirring. The solution was stirred at room temperature, under an argon atmosphere, for
three hours. At the end, the resulting suspension was filtered to remove the formed AgI
and a 10% excess of 10% dppe (35.06 mg; 0.088 mmol) is added. The solution was stirred
at room temperature for 15′, then evaporated to dryness, solubilized with diethyl ether,
and filtered. The filtered solution was evaporated to dryness and purified by means of an
acid–base extraction, followed by anhydrification with Na2SO4, filtration, and evaporation
to dryness, to produce the analytical sample (0.015 g; yield: 94%). Selected NMR data.
1H NMR: (400.1 MHz, CDCl3): δ (ppm) 8.72 (dd, 1H, H6′ ), 7.81 (td, 1H, H4′ ), 2.41 (s, 3H,
CH3).13C NMR: (100.1 MHz, CDCl3) δ (ppm) 159.83 (Cq); 148.91; 139.98 (Cq); 136.78, 135.92,
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130.93, 129.80, 128.63, 126.07, 124.47, 121.93, 20.42 (CH3). NMR data match those previously
reported (ref. [47]).

GC-MS (EI): C12H11N, found m/z 168.1 [M-H]+ (calculated for M+ 169.1). Traces (<1%)
of triphenylphosphine oxide (m/z 278.1).

4. Conclusions

The coupling reaction reported here constitutes a new synthetic method for the prepa-
ration of methyl-substituted heterocycles: in principle, a large array of heterocyclic donors,
able to support classical or rollover cyclometalation may follow the sequence of reactions
reported here, taking advantage of a rollover/retro-rollover reaction pathway.

The reductive elimination step involves a rather rare C(sp3)-C(sp2) coupling in place
of the more common C(sp3)-C(sp3) one. The reaction has now been demonstrated not to be
restricted to rollover complexes but may have a more general application.

The next steps in this research will be the extension of the reaction to other cyclometa-
lated heterocyclic donors and to other organic halides in order to add different groups in
the C-C coupling. It will also be useful for revealing the factors governing the process, such
as the electronic and steric influence of the ligands coordinated to the platinum center.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/molecules29030707/s1. NMR spectra of compounds 2, 3, 4, 5, 2a, 3a, 4a and 6: S1–S13;
GC-MS spectra of 5 and 6: S14 and S15.
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