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Procedure for the synthesis of PQM ligand

\N o Ny SH  MgSO,, DCM _ NN
_ _ RT. 58hrs ¢ N/
AQ —/  paM

A 25-mL round-bottom (RB) flask was charged with a magnetic stir bar, 2.0 mmol of 8-
aminoquinoline (AQ), 2.2 mmol of 2-pyridine carboxaldehyde, and 10.0 mmol of MgSOa. This
mixture was solvated in 10.0 mL of dichloromethane (DCM) and the reaction was left to stir for
approximately 5-8 hours under an N> atmosphere at room temperature in a closed with a septum.
After stirring, the reaction progress was monitored through TLC. Upon the completion of the
precursors, the reaction mixture was filtered through celite. Evaporation of the solvent and
subsequent purification by column chromatography on silica gel afforded the oily product of PQM
in 60% yields. This compound is known and '"H-NMR data matches with reported spectra.[1-3] Yield
60% (320.0 mg), Yellow sticky liquid; "H NMR (500 MHz, CDCl3) 6: 9.24 (d, J=10.0 Hz, 1H),
9.01 (d, J=4.0 Hz, 1H), 8.06 (dd, J=2.0, 8.0 Hz, 1H), 7. 85 (d, J= 7.8 Hz, 1H), 7.66-7.40 (m,
4H), 7.19 (dd, J=2.4, 7.6 Hz, 1H), 7.08 (dd, J= 2.4, 8.4 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H) ppm.



Procedure for the synthesis of PQM ligated copper complex

—~ ) araY

RT, 5 hrs \N/ —OTf
\ N Pam N\ /
TfO OHy
Cu?*(PQM)

A 25-mL round-bottom (RB) flask was equipped with a stirring bar and charged with 1.0 mmol of
PQM, 1.0 mmol of Cu(OTf)2, and solvated with 5.0 mL of EtOH solvent. The mixture was stirred
at ambient temperature for 6h, and then EtOH was removed in vacuo. After, the precipitate was
washed with methanol to afford the Cu?*(PQM) in green color powder. The Cu**(PQM) could be
crystallized in EtOH and DCM. Crystallization and evaporation of the solvent afforded the green
color product of Cu**(PQM) in 71% yield. Anal. calcd for Ci7Hi13CuFsN307S2: C, 33.31; H, 2.14;
N, 6.86; S, 10.46. Found: C, 31.46; H, 2.16; N, 6.54; S, 12.46.



Powder X-ray diffraction (PXRD) analysis for the Cu?>*(PQM) fitted with the LeBail profile

fitting.

Rwp=11.007%, GoF= 54.930

Figure S1. Cu**(PQM) LeBail refinement fitting profile of PXRD and single-XRD [Blue—

measured and Red — stimulated].

Powder sample:
Symmetry space group name H-M
a=21.95385 A

b=10.95825 A

c=17.17444A

p=101.089°

3
volume = 4054.60 A

Single crystal:
‘Co/m' | Symmetry space group name H-M 'Cz/m'
a= 24.0665 A
b=11.8732 A
c= 17.8506 A

B=99.940°

3
volume = 5024.2 A
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Figure S2. Cu**(PQM) complex crystalline phase PXRD.



General procedure for C-N bond construction by Cu?>*(PQM) catalyzed redox-neutral type

cross-coupling (3a-3v)

| o NH2 )Nli Cu2*(PQM)
X * Ry COR | \\ NHW/U\OR
R4 DCM, 0°Cto RT, 4 h ~Ri R,

A 10-mL vial was charged with a magnetic stir bar, 0.5 mmol of amine, 1.0 mmol of diazo-
compound, and 0.05 mmol of Cu?’(PQM). This mixture was solvated in 3.0 mL of
dichloromethane (DCM) and the reaction was started at 0 °C to ambient temperature stir for
approximately four hours under an N2 atmosphere. After the completion of the reaction time, the
resulting reaction mixture was diluted with ethyl acetate and filtered through a thin pad of celite.
The filtrate was evaporated under reduced pressure and subsequent purification by column

chromatography on silica gel afforded the desired products.



Spectroscopic and physical data of all compounds (3a-3v)

Ethyl phenylglycinate (3a)[4]

O
3a, 72%
Yield: 72%; Pale browish sticky solid; mp = 58 °C; 'H NMR (500 MHz, CDCl3) 6: 7.21 (t,J=4.5

HZ, 2H), 6.74 (t, J= 7.2 Hz, 1H), 6.64 (d, J = 8.0 Hz, 2H), 4.29-4.20 (m, 3H), 3.92 (s, 2H), 1.34
(t,J=6.4 Hz, 3H) ppm.

Ethyl p-tolylglycinate (3b)[5]
@)

NH
Me/® \/U\OEt

3b, 53%

Yield: 53%; Browish solid; mp = 56-58 °C; 'H NMR (500 MHz, CDCl3) 6: 7.01 (d, J = 7.6 Hz,
2H), 6.58 (d, J = 7.8 Hz, 2H), 4.26 (q, J = 6.8 Hz, 2H), 3.90 (s, 2H), 2.28 (s, 3H), 1.33 (t, /= 7.2
Hz, 3H) ppm.

Ethyl (4-methoxyphenyl)glycinate (3¢)[5]
O

NH
Me0/® \)koa

3¢, 84%

Yield: 84%; Yellow semi-solid; mp = 43 °C; 'H NMR (500 MHz, CDCls) 6: 6.78 (d, J = 8.2 Hz,
2H), 6.54 (d, J = 8.2 Hz, 2H), 4.22 (q, J = 6.8 Hz, 2H), 4.10 (bs, 1H), 3.86 (s, 2H), 3.75 (s, 3H),
1.31 (t,J=7.0 Hz, 3H) ppm.

Ethyl (4-bromophenyl)glycinate (3d)[6]
O

NH
Br \/[AOEt
3d, 51%

Yield: 51%; Light reddish brown solid; mp = 95-98 °C; 'H NMR (500 MHz, CDCl3) §: 7.30-7.23
(m, 2H), 6.51-6.46 (m, 2H), 4.11 (s, 1H), 4.27 (q, J = 7.0 Hz, 2H), 3.89 (s, 2H), 1.31 (t,J =7.2
Hz, 3H) ppm.



Ethyl (4-cyanophenyl)glycinate (3e)[7]
O

NH
NC/® \/MOEt

3e, 37%

Yield: 37%; Yellowish solid; 'H NMR (500 MHz, CDCls) 8: 6: 7.48 (d, J = 7.8 Hz, 2H), 6.59 (d,
J=17.6 Hz, 2H), 4.08 (s, 1H), 4.28 (q, J = 7.1 Hz, 2H), 3.90 (s, 2H), 1.29 (t, J = 7.2 Hz, 3H) ppm.

Ethyl (4-(trifluoromethyl)phenyl)glycinate (3)[8]
O

NH
F3C/® \)koa

3f, 35%

Yield: 35%; Pale white solid; 'H NMR (500 MHz, CDCls) 6: 7.40 (dd, J = 8.2, 1.2 Hz, 2H), 6.59
(dd, J = 8.4, 1.2 Hz, 2H), 4.60 (s, 1H), 4.20 (q, J = 7.0 Hz, 2H), 3.89 (s, 2H), 1.28 (t, J = 7.2 Hz,
3H) ppm.

Ethyl (4-nitrophenyl)glycinate (3g)[9]
O

NH
OZNO \/MOEt

39, 10%

Yield: 10%; Yellow solid; mp = 132-134 °C; '"H NMR (500 MHz, CDCl3) §: 8.14 (d, J = 8.8 Hz,
2H), 6.60 (d, J= 8.8 Hz, 2H), 5.11 (bs, 1H), 4.30 (q, J/=7.2 Hz, 2H), 3.40 (s, 2H), 1.33 (t, J= 7.0
Hz, 3H) ppm.

Ethyl naphthalen-1-ylglycinate (3h)[10]

SN
N\)J\OEt

O 3h, 56%

Yield: 56%; White solid; 'H NMR (500 MHz, CDCls) 6: 6: 7.45 (d, J= 7.2 Hz, 2H), 7.30 (m, 2H),
7.21 (m, 1H), 7.09 (m, 2H), 4.12 (s, 1H), 4.10 (q, J = 7.1 Hz, 2H), 3.89 (s, 2H), 1.28 (t,J = 7.2
Hz, 3H) ppm.



Ethyl benzoylglycinate (3i)[11]

b O
N\)J\OEt
O 3i,64%
Yield: 64%; Pale white solid; mp = 60 °C; '"H NMR (500 MHz, CDCl3) 6: 7.86 (d, J = 7.8 Hz,

2H), 7.50 (t, J = 7.0 Hz, 1H), 7.45 (dd, J = 8.0, 7.1 Hz, 2H), 6.80 (s, 1H), 4.30—4.22 (s, 4H), 1.34
(t,J =7.2 Hz, 3H) ppm.

tert-Butyl 2-(phenylamino)acetate (3n)[12]

P
N\O

©/ 3n, 85%

Yield: 85%; Colorless oil; '"H NMR (500 MHz, CDCl3) 6: 7.18 (dd, J = 7.6 Hz, 2H), 6.73 (t, J =
7.6 Hz, 1H), 6.6 (d, J= 7.6 Hz, 2H), 3.24 (br, 1H), 3.79 (s, 2H), 1.48 (s, 9H) ppm.

Ethyl benzylglycinate (30)[13]

SUP
~ OEt

30, 73%

Yield: 73%; Pale yellow oil; '"H NMR (500 MHz, CDCl3) §: 7.46-7.17 (m, 5H), 4.05 (q, J = 7.1
Hz, 2H), 3.8 (s, 2H), 3.39 (s, 2H), 2.18 (bs, 1H), 1.26 (t, /= 7.1 Hz, 3H) ppm.

Ethyl (1-phenylethyl)glycinate (3p)[14]

Tl
N TOEt

3p, 68%

Yield: 68%; Pale yellow oil; '"H NMR (500 MHz, CDCls) d: 7.32-7.24 (m, 5H), 4.15 (q, J = 7.2
Hz, 2H), 3.79 (q, J = 6.4, 2H), 2.25 (ABq, Jas = 17.4 Hz, 2H), 1.87 (bs, 1H), 1.38 (d, /= 6.4 Hz,
3H), 1.24 (t,J="7.2 Hz, 3H) ppm.



Ethyl 2-(piperidin-1-yl)acetate (3q)[15]

@9
N SoEt

3q, 50%

Yield: 50%; Pale yellow oil; 'H NMR (500 MHz, CDCl3) 6: 4.18 (q, J = 7.2 Hz, 2H), 3.17 (s, 2H),
2.5 (m, 4H), 1.62 (m, 4H), 1.43 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H) ppm.

Ethyl 2-morpholinoacetate (3r)[7]

O

@\ J

“OEt
3r, 66%

Yield: 66%; Pale yellow oil; '"H NMR (500 MHz, CDCls) d: 4.10 (q, J = 7.2 Hz, 2H), 3.55 (m,
4H) 3.02 (s, 2H), 2.48 (m, 4H), 1.27 (t, J= 7.2 Hz, 3H) ppm.

Methyl 2-phenyl-2-(piperidin-1-yl)acetate (3s)[16]

v,

L. (%

OMe OMe

3s, 67%(1:1)

Yield: 67%; Pale yellow oil; "H NMR (500 MHz, CDCl3) 6: 7.25-7.35 (m, 3H), 7.39-7.44 (m, 2H),
3.97 (s, 1H), 3.66 (s, 3H), 2.28-2.45 (m, 4H), 1.52-1.64 (m, 4H), 1.37-1.47 (m, 2H) ppm.



Methyl 2-morpholino-2-phenylacetate (3t)[16]
O Q)
N N
' (@) ; O

3t, 78%(1:1)

Yield: 78%; Pale yellow oil; "TH NMR (500 MHz, CDCl3) §: 7.42-7.46 (m, 2H), 7.29-7.38 (m, 3H),
3.98 (s, 1H), 3.73 (t, /= 5.2 Hz 4H), 3.69 (s, 3H), 2.45 (t,J =4 Hz 4H) ppm.

Methyl 2-phenyl-2-(phenylamino)acetate (3u)[17]

“NH 3n 90%(1: 1

Yield: 90%; Yellowish solid; '"H NMR (500 MHz, CDCls) 6: 7.52 (d, J = 7.0 Hz, 2H), 7.40-7.36
(m, 3H), 7.15 (t, J = 7.6 Hz, 2H), 6.69 (t, J = 7.6 Hz, 1H), 6.60 (d, J = 7.6 Hz, 2H), 5.06 (d, J =
6.0 Hz, 1H), 4.98 (s, 1H), 4.31-4.20 (s, 2H), 1.25 (t, J = 7.1 Hz, 3H) ppm.

Methyl 2-(4-fluorophenyl)-2-(phenylamino)acetate (3v)

" NH 30 54%(1: 1) NH
o
OI\/Ie

Yield: 56%; Yellow sticky solid; IR (neat) 3218, 3051, 2967, 2954, 1684, 1626, 1591, 1447, 1368,
1218, 1030, 785 cm™'; 'H NMR (500 MHz, CDCl3) 6:7.53-7.47 (m, 2H), 7.15 (t, J = 8.0 Hz, 2H),
7.06 (t, J = 8.5 Hz, 2H), 6.73 (t, J = 7.5 Hz, 2H), 6.51 (d, J = 3.0 Hz, 1H), 5.07 (d, J = 5.5 Hz,
1H), 4.98 (bs, 1H), 3.75 (s, 3H) ppm; *C NMR (125 MHz, CDCl3) 6:172.1, 163.7 (*Jcr = 245.6
Hz), 145.7, 133.4 (*Jcr = 3.1 Hz), 129.3, 129.0 7 (*Jc-r = 8.3 Hz), 118.3, 115.9 (*.Jc-r = 21.5 Hz),
113.4, 60.0, 52.9 ppm; '°F NMR (500 MHz, CDCl3) J: 113.86 ppm; HRMS (ESI): calcd for
C1sH14FNaNOz: 282.0901 [M+H']; found: 282.0948.

10
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Figure S3. HPLC spectra of compound 3v and integration data.
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Figure S4. 'H NMR spectra of compound 3v (CDCls, 500 MHz)
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Figure S5. 1*C NMR spectra of compound 3v (CDCls, 125 MHz)
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Figure S6. '°F NMR spectra of compound 3v (CDCl3;, 40 MHz)
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Cu?*(PQM) catalyst N-H insertion reaction kinetics plot for compound 3a

NH; )ij Cu*(PQM) NH\/(\)X\
+ R COLE - @ OFt
3a

1a 9a DCM, 0 °C to RT

A 1.0 mL NMR tube was charged with 0.5 mmol of anilines (1a), 1.0 mmol of ethyl diazo acetate
(2a), 0.05 mmol of mesitylene (used as an internal standard) and 0.05 mmol of Cu?*(PQM). This
mixture was dissolved in 0.5 mL of deuterated dichloromethane (DCM-d;), and the reaction was
started at 0 °C to ambient temperature stir for approximately five hours under an N; atmosphere.

The reaction progress was monitored at 10-minute intervals using a 500 MHz NMR instrument.

Time (min) |30 |60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300

Yields (%) 121213847 |59 (64 |70 |73 |73 |74

~
=)

-3
=]

Itwoet

23
=}

&
=)

Yields (%)
8

o)

\

@NH\/‘ ~OEt
3a

0 20 40 60 80 100 120 140 160 180 200

20

Time (min)

Figure S8. N—H insertion reaction kinetics plot for compound 3a.
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Cu?*(PQM) catalyst N-H insertion reaction Kkinetics plot for compound 3b

o)
NH N2 cu?*(PQM)
. 0 N NH A o
Me R1 COsEt

1b 2a DCM,0°Cto RT Me 3b

A 1.0 mL NMR tube was charged with 0.5 mmol of anilines (1b), 1.0 mmol of ethyl diazo acetate
(2a), 0.05 mmol of mesitylene (used as an internal standard) and 0.05 mmol of Cu?*(PQM). This
mixture was dissolved in 0.5 mL of deuterated dichloromethane (DCM-d>), and the reaction was
started at 0 °C to ambient temperature stir for approximately five hours under an N, atmosphere.

The reaction progress was monitored at 10-minute intervals using a 500 MHz NMR instrument.

Time (min) |30 |60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300

Yields (%) 9 |15(23 |31 |38 |43 |47 |53 |53 |54

60

50

40

30

Yields (%)

20

0 50 100 150 200 250
Time (min)

Figure S9. N—H insertion reaction kinetics plot for compound 3b.
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Cu?*(PQM) catalyst N-H insertion reaction kinetics plot for compound 3¢

NH,
Q . K
MeO

1c

N,

1 COEt

2a

Cu?*(PQM)

0
. /©/NH\/U\OEt
DCM, 0 °C to RT MeO 3¢

A 1.0 mL NMR tube was charged with 0.5 mmol of anilines (1c), 1.0 mmol of ethyl diazo acetate

(2a), 0.05 mmol of mesitylene (used as an internal standard) and 0.05 mmol of Cu?*(PQM). This

mixture was dissolved in 0.5 mL of deuterated dichloromethane (DCM-d>), and the reaction was

started at 0 °C to ambient temperature stir for approximately five hours under an N, atmosphere.

The reaction progress was monitored at 10-minute intervals using a 500 MHz NMR instrument.

Time (min)
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180 | 210

240

270

300
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15

31

45
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79
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83

MeO :

o
NH\)LOEt

3c

0 50

100

150

200

Time (min)

250

Figure S10. N-H insertion reaction kinetics plot for compound 3c.
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Cu?*(PQM) catalyst N-H insertion reaction kinetics plot for compound 3d

NH; N Cu?*(PQM) T

2 u
. JU _ NH \/\koa
8 Ry” “CO,Et

1d 22 DCM,0°CtoRT pr 3d

A 1.0 mL NMR tube was charged with 0.5 mmol of anilines (1d), 1.0 mmol of ethyl diazo acetate
(2a), 0.05 mmol of mesitylene (used as an internal standard) and 0.05 mmol of Cu?*(PQM). This
mixture was dissolved in 0.5 mL of deuterated dichloromethane (DCM-d;), and the reaction was
started at 0 °C to ambient temperature stir for approximately five hours under an N; atmosphere.

The reaction progress was monitored at 10-minute intervals using a 500 MHz NMR instrument.

Time (min) |30 |60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300

Yields (%) 1111823 |31 |38 |45 |49 |51 |51 |51

Yields (%)

Time (min)

Figure S11. N-H insertion reaction kinetics plot for compound 3d.
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Cu?*(PQM) catalyst N-H insertion reaction kinetics plot for compound 3e

NH2 N C 2+(PQM) O

2 u
. U _ NH\/U\OEt
NC R COsEt

1e 2a DCM,0°Cto RT NC 3e

A 1.0 mL NMR tube was charged with 0.5 mmol of anilines (1e), 1.0 mmol of ethyl diazo acetate
(2a), 0.05 mmol of mesitylene (used as an internal standard) and 0.05 mmol of Cu?*(PQM). This
mixture was dissolved in 0.5 mL of deuterated dichloromethane (DCM-d>), and the reaction was
started at 0 °C to ambient temperature stir for approximately five hours under an N; atmosphere.

The reaction progress was monitored at 10-minute intervals using a 500 MHz NMR instrument.

Time (min) |30 |60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300

Yields (%) 4 |9 (14121 |27 |30 |34 |37 |38 |39

Yields (%)
3
-

(o}
NH\)\OEI
. o
NC 3e

0 50 100 150 200 250
Time (min)

Figure S12. N-H insertion reaction kinetics plot for compound 3e.
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Cu?*(PQM) catalyst N-H insertion reaction Kinetics plot for compound 3f

NH2 N C 2+(PQM) O
2 u
. JU _ NH\/U\OEt
R COsEt
F3C

15 22 DCM, 0°Cto RT F,C 3f

A 1.0 mL NMR tube was charged with 0.5 mmol of anilines (1f), 1.0 mmol of ethyl diazo acetate
(2a), 0.05 mmol of mesitylene (used as an internal standard) and 0.05 mmol of Cu?*(PQM). This
mixture was dissolved in 0.5 mL of deuterated dichloromethane (DCM-d>), and the reaction was
started at 0 °C to ambient temperature stir for approximately five hours under an N; atmosphere.

The reaction progress was monitored at 10-minute intervals using a 500 MHz NMR instrument.

Time (mints) | 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300

Yields (%) 4 |9 (14|21 |27 |30 |34 |37 |38 |39

35

30

25

20

Yields (%)

Time (min)

Figure S13. N-H insertion reaction kinetics plot for compound 3f.
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Cu?*(PQM) catalyst N-H insertion reaction kinetics plot for compound 3g

NH2 N C 2+(PQM) O
2 u
' _ NH\/U\OEt
R1 COsEt
O,N

(o]
1g 2a DCM, 0 °Cto RT O,N 3g

A 1.0 mL NMR tube was charged with 0.5 mmol of anilines (1g), 1.0 mmol of ethyl diazo acetate
(2a), 0.05 mmol of mesitylene (used as an internal standard) and 0.05 mmol of Cu?*(PQM). This
mixture was dissolved in 0.5 mL of deuterated dichloromethane (DCM-d>), and the reaction was
started at 0 °C to ambient temperature stir for approximately five hours under an N; atmosphere.

The reaction progress was monitored at 10-minute intervals using a 500 MHz NMR instrument.

Time (mints) | 30 | 60 | 90 | 120 | 150 | 180 | 210 | 240 | 270 | 300

Yields (%) 0 |2 (3 |5 7 9 10 (10 |11 |11

Yields (%)
(=]

(0]
oy
O,N 39

0 50 100 150 200
Time (min)

Figure S14. N-H insertion reaction kinetics plot for compound 3g.
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Figure S15: Cu**(PQM) complex crystal view on mounted on a cryoLoop.

CCDC: 2259535
Cuzt(PQM)

Figure S16. Crystallographic data, structure of Cu?*(PQM) complex, and related report
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Table S1: Sample and crystal data for Cu?**(PQM) complex.

Identification code
Chemical formula
Formula weight
Temperature
Wavelength
Crystal size
Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

D JE 014

C7H gCuF¢N4y0 8,

667.01 g/mol

12002) K

1.54178 A

(0.168 x 0.267 x 0.271) mm*
monoclinic
C1l2kcl
a=24.0665(11) A o= 90°
b=118732(5A B =199.940(2)"
¢ = 17.8506(8) A ¥ =90°
5024.2(4) A°

B

1.764 g/cm?

3.742 mm!

2696

Table S2. Data collection and structure refinement for Cu**(PQM) complex.

Theta range for data collection
Index ranges

Reflections collected

Independent reflections

Coverage of independent reflections
Absorption correction

Max. and min. transmission
Refinement method

Refinement program

3.73 to 74.66°

-30<=h<=30, -14<=k<=14, -22<=]<=22
48142

5136 [Riint) = 0.0327]

99.7%

Multi-Scan

0.5720 and 0.4300

Full-matrix least-squares on F*

SHELXL-2018/3 (Sheldrick, 2018)
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Function minimized
Data / restraints / parameters

Goodness-of-fit on F?

Final R indices

Weighting scheme

Extinction coefficient
Largest diff. peak and hole

R.MLS. deviation from mean

I w(F-F2)

5136/ 585/493

1.048

4785

data: R1=0.0803, wR2 = 02308
[=2a(1)

alldata RI1 =0.0837, wR2 =0.2349
w=1/[c*(F,2)+(0.1416P)*+35.7616P]
where P=(F,*+2F.")/3

0.0004(1)

2426 and -1.014 eA”

0.149 eA™
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