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Abstract: Ultrasonic absorption measurements were carried out over a wide concentration and
temperature range by means of a pulse technique to examine the structural mechanisms and the
dynamical properties in lithium hexamethyldisilazide (LiHMDS)–toluene solutions. Acoustic spectra
revealed two distinct Debye-type relaxational absorptions attributed to the formation of trimers
from dimeric and monomer units and to the formation of aggregates between a LiHMDS dimer
and one toluene molecule in low and high frequencies, respectively. The formation of aggregates
was clarified by means of molecular docking and DFT methodologies. The aggregation number, the
rate constants and the thermodynamic properties of these structural changes were determined by
analyzing in detail the concentration-dependent relaxation parameters. The low-frequency relaxation
mechanism dominates the acoustic spectra in the high LiHMDS mole fractions, while the high-
frequency relaxation influences the spectra in the low LiHMDS mole fractions. In the intermediate
mole fraction region (0.25 to 0.46), both relaxations prevail in the spectra. The adiabatic compressibility,
the excess adiabatic compressibility and the theoretically estimated mean free length revealed a
crossover in the 0.25 to 0.46 LiHMDS mole fractions that signified the transition from one structural
mechanism related with the hetero-association of LiHMDS dimers with toluene molecules to the other
structural mechanism assigned to the formation of LiHMDS trimers. The combined use of acoustic
spectroscopy with theoretical calculations permitted us to disentangle the underlying structural
mechanisms and evaluate the volume changes associated with each reaction. The results were
compared with the corresponding theoretically predicted volume changes and discussed in the
context of the concentration effect on intermolecular bonding.

Keywords: lithium hexamethyldisilazide; ultrasonic relaxation spectroscopy; DFT calculations;
molecular docking; self-aggregation; hetero-aggregation

1. Introduction

Lithium bis(trimethylsilyl)amide or lithium hexamethyldisilazide (LiHMDS) has at-
tracted research interest in the field of organometallic chemistry due to its eminent proper-
ties, such as the formation of various acetylide [1] and lithium enolate [2] organolithium
compounds. Aside from its use as a strong non-nucleophilic base in organic chemistry
on both the laboratory and industrial scales, as a ligand, it reacts with a wide range of
metal halides to form metal bis(trimethylsilyl)amides by the so-called salt metathesis re-
action. Due to this ligand, the latter complexes exhibit lipophilicity and thus are soluble
in a wide range of non-polar organic solvents [3]. From a structural point of view, LiH-
MDS forms self- and hetero-aggregates upon dissolution depending on the coordinating
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or non-coordinating properties of the solvent, a characteristic that is common to other
organolithium reagents [3].

When LiHMDS is dissolved in ethers or amines, which are coordinating solvents,
then the structure is dominated by monomer and dimer units with one and two solvent
molecules binding to lithium centers, respectively [4]. Higher complex oligomers, such
as trimers, are formed when aromatics or pentane are used, which are non-coordinating
solvents [5]. A trisolvated monomer is formed when ammonia is used as a donor base.
This species is stabilized by intermolecular hydrogen bonds [6]. On the other hand, in the
solid state, only the trimeric structure is stable [7].

Despite the relatively high solubility of LiHMDS and its chemical stability and com-
mercial availability, only a few experimental and computational studies have been fo-
cused on the physicochemical properties of LiHMDS in solution state. We report herein
a combined spectroscopic and computational study of the aggregation and solvation of
LiHMDS in toluene in an effort to elucidate the effect of solution concentration on the
structure of these solutions. More specifically, the formation of aggregated species was
refined by performing concentration- and temperature-dependent ultrasonic relaxation
spectroscopic measurements. Molecular docking and Density Functional Theory (DFT)
calculations were also conducted under ambient temperature and pressure conditions that
allowed us to disentangle the underlying relaxation processes detected in the acoustic
spectra and to improve our comprehensive understanding of the structure and dynamics of
LiHMDS solutions.

2. Results and Discussion
2.1. Structural Processes in LiHMDS Solutions

Several mechanisms have been proposed for the structure of the LiHMDS organosili-
con compound when dissolved in toluene [4–6,8]. In Figure 1a, the formation of trimers
from monomer and dimer units is presented. All structures were optimized under tight
optimization convergence criteria. The molecular structure of toluene was received from
the PubChem electronic database as an SDF file and was also optimized. DFT calculations
reported in the literature [8] revealed that the highest degree of aggregation at 298 K is
four. However, in non-polar solvents, such as toluene, the formation of dimers and trimers
is thermodynamically favorable, with tetramers simply serving as intermediates. The
formation of pentamer units has never been reported in the literature to our knowledge.

The high solubility of LiHMDS in toluene indicated an explicit π complexation, re-
sulting in the formation of a toluene-complexed LiHMDS dimer, such as that illustrated
in Figure 1b. The aggregate was obtained by means of the AutoDock software (version
4), using the optimized geometries of the LiHMDS dimer and toluene molecules as input,
after minimizing energy with respect to the coordinates of atoms and no restrictions on the
symmetry. The two reactions can be described as follows:

[LiHMDS] + [LiHMDS]2 ⇌ [LiHMDS]3 (1)

[LiHMDS]2 + Toluene ⇌ Toluene·[LiHMDS]2 (2)

The molecular interaction study revealed that the specific pose of the aggregate pre-
sented in Figure 1b is the most stable and corresponds to a docking score of −2.91 kcal/mol.
The lowest and the highest distances between LiHMDS dimer and toluene molecules that
constitute the mixed aggregate were estimated to be theoretically equal to 2.35 Å and
3.48 Å, respectively. The lowest and the highest distances between the Li atom and the
toluene ring were 5.05 and 5.47 Å, respectively. The distance between the Li atom and the
center of the toluene ring was found to be 5.08 Å. These distances are indeed indicative of
metal–pi interaction. The bond distances and angles are presented in the Supplementary
Materials. The molecular volumes of all species presented in Figure 1 were estimated
theoretically following a specific methodology. For each atom of the molecule, the volume
was evaluated from the corresponding wavefunction which was determined by a quantum
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mechanical calculation. This volume is related to the space included in a contour of a partic-
ular electron density of 0.001 electrons/Bohr3. Subsequently, the as-obtained wavefunction
was integrated to obtain the atomic volume. The sum of all individual atomic volumes
specifies the molecular volume. The results are summarized in Table 1.
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Figure 1. Possible mechanisms proposed for the structure of the LiHMDS organosilicon compound
when dissolved in toluene. Schematic representation of the formation of LiHMDS trimer (a,b) of
toluene-complexed LiHMDS dimer. The formation of trimers from monomers and dimers results in
a change in Gibbs free energy of −6.97 kcal/mol, whereas the aggregation of dimers and toluene
results in a change in Gibbs free energy of 8.91 kcal/mol.

Table 1. Theoretically predicted molecular volumes.

Species Molekular Volume (cm3/mol)

LiHMDS monomer 154.312
LiHMDS dimer 296.290
LiHMDS trimer 496.820

Toluene 86.081
Toluene-complexed LiHMDS dimer 502.320

2.2. Ultrasonic Sensing of the Relaxation Processes—Concentration Dependence

In Figure 2, the ultrasonic absorption spectra for the solutions of LiHMDS in toluene
recorded at 20 ◦C are shown. The frequency-reduced absorption coefficients a/ f 2 as a
function of frequency f were adequately fitted to Debye-type profiles, which is given as
follows [9,10]:

a
f 2 = ∑i

Ai[
1 +

(
f

fr,i

)2
] + B (3)

where Ai is the amplitude of the relaxation of the i-th process and B is the classical contribu-
tion to a/ f 2 due to viscous and thermal losses. The classical contribution to the absorption
coefficient is independent from the solution concentration. The relaxation frequency of the
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i-th process is denoted as fr,i. The solid lines representing the fitting curves seem to follow
a non-monotonous trend with solution concentration.
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Figure 2. Ultrasound absorption spectra
(
a/ f 2) as a function of frequency for all LiHMDS–toluene

solutions at 20 ◦C. Lines represent the total fitting relaxation profiles for each LiHMDS mole fraction.

In an effort to quantitatively follow this behavior, we focused our analysis on the
acoustic spectra in three different domains, namely the low-, the medium- and the high-
mole fraction region of LiHMDS, and the results are illustrated in Figure 3. Lines represent
the total fitting relaxation profiles for each solution and the symbols denote the experimental
data. From the goodness of fit, it is obvious that the Debye equation is adequate to fit the
experimental points.
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Figure 3. Experimental ultrasound absorption measurements in the frequency reduced form
(
a/ f 2)

as a function of frequency in the (a) low-, (b) intermediate- and (c) high-concentration region
of LiHMDS–toluene solutions at 20 ◦C. Lines represent the total fitting relaxation profiles for
each solution.
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It is interesting to note that the observed relaxation curves cannot be modeled with a
single relaxation Debye-type profile for the full concentration range. A single relaxation is
detected in the low- and in the high-mole fractions of LiHMDS, while in the intermediate
region, two distinct Debye functions are necessary to sufficiently fit the experimental data.
Thus, the double relaxation spectra were processed by a non-linear least-squares algorithm,
and a representative fitting example of the ultrasound absorption is presented in Figure 4
for a solution with XLiHMDS = 0.46 at 20 ◦C. The continuous solid black line denotes the
total fitting, while the dashed and the dashed–dotted relaxation profiles correspond to
distinct relaxation processes. The experimental data are represented by symbols.
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Figure 4. Fitting example of the ultrasound absorption for a solution corresponding to LiHMDS mole
fraction of XLiHMDS = 0.46 at 20 ◦C. The continuous solid black line denotes the total fitting, while
the two dashed and dashed–dotted relaxation profiles correspond to distinct relaxation processes.
Symbols represent experimental data.

Following the above fitting procedure, we estimated the free fitting parameters for all
mole fractions, and the results are summarized in Table 2. The acoustic spectra correspond-
ing to the 0.924 and 1.000 mole fraction were not analyzed due to their low signal-to-noise
ratio. The characteristic ultrasonic relaxation frequencies and amplitudes for both relaxation
processes as a function of LiHMDS mole fraction are presented in Figure 5a,b, respectively.
The relaxation amplitudes of both relaxation processes detected in the acoustic spectra
exhibit a clear monotonous decreasing trend with mole fraction, while the corresponding
relaxation frequencies show the exact opposite behavior. Furthermore, as shown in Table 2,
the classical contribution to absorption coefficient B reveals a rather constant value with
solution concentration, which is almost three orders of magnitude lower than the relax-
ation amplitude of both relaxation mechanisms. The low-frequency relaxation mechanism
observed in Figure 4 is assigned to the formation of trimers from monomer and dimer
units (Equation (1)), while its high-frequency counterpart is attributed to the formation of
the toluene-complexed LiHMDS dimer illustrated in Figure 1b (Equation (2)). The fitting
results presented in Figure 5 further support our proposed assignments of the ultrasonic
relaxation processes to these structural mechanisms.
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Table 2. Concentration, mole fraction and sound speed values for the LiHMDS–toluene solutions.

XLiHMDS
f r1

(×106 Hz)
A1

(×10−13 s2/cm)
f r2

(×106 Hz)
A2

(×10−13 s2/cm)
B

(×10−16 s2/cm) u (m/s)

1 - - - - - 1093.48
0.924 - - - - - 1095.84
0.843 1.93 1.90 - - 2.75 1102.8
0.714 1.81 2.05 - - 2.64 1126.5
0.595 1.72 2.24 - - 2.63 1149.4
0.466 1.15 2.32 2.36 0.50 2.01 1177.9
0.358 0.92 2.38 2.15 0.90 2.19 1205.2
0.258 0.91 2.56 2.10 0.94 2.36 1233.1
0.173 - - 1.90 1.29 1.83 1260.2
0.094 - - 1.89 1.55 1.87 1286.9
0.050 - - 1.55 1.86 1.38 1295.3
0.013 - - 1.52 2.09 1.37 1315.8
0.001 - - 1.09 2.85 1.44 1321.1
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Figure 5. Mole fraction dependence of the relaxation amplitude A (a) and of the characteristic
ultrasonic relaxation frequency fr (b) for the LiHMDS–toluene solutions at 20 ◦C.

Ultrasound absorption is sensitive to changes in particle size and molecular interaction;
while sound velocity is sensitive to molecular changes, it does not remain constant in
response to changes produced by pressure and depends on the degree of order of the
molecules. The monotonous increase in the sound speed with increasing LiHMDS mole
fraction, shown in Table 2, is indicative in the formation of higher-order aggregates in the
overall structure.

2.3. Kinetic Models of the Relaxation Processes

It seems that bonding between solute molecules and/or solute and solvent molecules
is the driving force behind the observed relaxations in the acoustic spectra. The formation
and braking of the bonding between molecules induce perturbation in the acoustic wave
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propagation, which is accompanied by a change in the total volume and consequently by
compressional relaxation.

Considering Equation (1) which describes the formation of trimers from monomer
and dimer units, we can define the relation between the relaxation frequency fr,1 and the
LiHMDS concentration CLiHMDS as follows [11,12]:

1
τ1

= 2π fr,1 =
(

k f ,1n2
)
(CLiHMDS)

n−1 + kb,1 (4)

where τ1 is the characteristic relaxation time of the low-frequency process (process 1),
while k f ,1 and kb,1 are the forward and backward rate constants, respectively. Equation (4)
describes the general form of the self-aggregation mechanism, and n is the corresponding
aggregation number.

To determine the appropriate value of the aggregation number, several values of n
were tested aiming to obtain the best linear fitting that corresponds to the least statistical
error in the 2π fr,1 versus n2(CLiHMDS)

n−1 plot. The value n = 3 provided the best linear
correlation with Pearson’s r = 0.93243. The results are shown in Figure 6a. Continuously
increasing errors were received for aggregation number values higher than 3. From the
linear dependency illustrated in Figure 6a, the forward and backward rate constants were
evaluated from the slope and the intercept, respectively. These constants were found to be
equal to k f ,1 = 4.26 × 104 M−1s−1 and kb,1 = 4.85 × 106 s−1. The equilibrium constant was
estimated as follows:

K1 =
k f ,1

kb,1
= 8.79 × 103 M−1 (5)
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for the LiHMDS solutions at 20 ◦C. Lines correspond to
linear fits with Pearson’s r equal to 0.93243 and 0.99956, respectively.
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Monomeric species were not detected in non-polar solvents since they are less thermo-
dynamically favorable [4–6].

The formation of the toluene-complexed LiHMDS dimer presented in Equation (2) is
associated with the excess sound absorption observed in the high-frequency range, and its
kinetics can be described by the following [13,14]:

2π fr,2 = kb,2

√
(CLiHMDS − βCT + K2)

2 + 4βCTK2 (6)

where fr,2 is the characteristic relaxation frequency of the high-frequency process (process
2), while kb,2 is the backward rate constant, K2 is the equilibrium constant and CT is
the concentration of toluene. Dimensionless parameter β describes the fraction of the
unbounded toluene molecules.

To determine the appropriate values of the equilibrium constant and parameter β, several
test values of K2 and β were checked, aiming to obtain the best linear fitting that corresponded

to the least statistical error in plot 2π fr,2 versus
√
(CLiHMDS − βCT + K2)

2 + 4βCTK2. The
results are shown in Figure 6b. The only restriction to the tested values was that K2 needed
to be the same for all mole fractions of LiHMDS. The values of the equilibrium constant
and the forward and backward rate constants that provided the best linear correlation with

Pearson’s r = 0.999956 were found to be equal to K2 =
k f ,2
kb,2

= 6.41 M, k f ,2 = 4.10× 107 s−1 and

kb,2 = 6.40× 106 M−1s−1. The values of the dimensionless parameter β for all LiHMDS mole
fractions are shown in Table 3.

Table 3. Concentration dependency of parameter β.

XLiHMDS CLiHMDS (M) β

1 5.14 -
0.924 4.92 -
0.843 4.66 -
0.714 3.84 -
0.595 3.36 -
0.466 2.73 0.20
0.358 2.19 0.24
0.258 1.50 0.28
0.173 1.17 0.20
0.094 0.58 0.25
0.050 0.31 0.15
0.013 0.12 0.10
0.001 0.01 0.01

The adiabatic compressibility of a fluid provides a measure of its compressibility,
which is directly reflected in the dynamics of the system. This physical property can be
determined from the sound velocity and mass density through the following equation:

κs =
1

ρu2 (7)

The experimental values of the isentropic compressibility are illustrated in Figure 7a
as a function of LiHMDS mole fraction. Despite the monotonous increase in κs with
solution concentration, it seems that a sudden change near XLiHMDS = 0.358 is observed.
Furthermore, the trend below and above this crossover is linear. The structural and
thermodynamic modifications that are caused by the mixing of the two liquids influence
the ultrasonic wave propagation in the solutions, which in turn may provide valuable
information on the intermolecular interactions. In the quantification of these alterations, it is
beneficial to use the excess compressibility rather than the simple isentropic compressibility
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calculated by means of Equation (7). The excess isentropic compressibility is given by
the following:

κS(excess) = κS(ideal) − κS(experimental) (8)

where the ideal property is estimated as follows:

κS(ideal) = Xκ0
S(solute) + (1 − X)κ0

S(solvent) (9)
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Figure 7. Concentration dependence of the adiabatic compressibility (a) and of the excess adia-
batic compressibility (b) for all LiHMDS solutions studied at 20 ◦C. Linear fittings and dashed
areas indicate the transition region between the two distinct structural mechanisms. See text for
more details.

The as-obtained results are presented in Figure 7b. A simple comparison between
the experimental and the excess isentropic compressibility reveals that the change in the
excess property is more pronounced and allows better surveillance of the behavior as a
function of the LiHMDS mole fraction. From Figure 7b, the excess isentropic compressibility
experiences a monotonous decrease up to XLiHMDS = 0.358, while above this mole fraction,
it experiences the exact opposite trend that is a clear monotonic increase. This behavior is
analogous to that observed for experimental isentropic compressibility and indicates the
interplay between the two structural mechanisms described by Equations (1) and (2) that
coexist in the 0.258–0.466 mole fraction range.

Another interesting parameter is the intermolecular free length, which can be evalu-
ated through the following empirical equation [15,16]:

L f = K
√

κs (10)
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with parameter K denoting the Jacobson’s constant. The calculated values for all mole
fractions are presented in Figure 8. The intermolecular free length increases linearly with the
LiHMDS mole fraction, although with different slopes below and above
XLiHMDS = 0.358, similar to the experimental adiabatic compressibility (Figure 7a). An
increase in solution concentration results in a structure where LiHMDS molecules are closer
to each other. Subsequently, an increase in the distance between toluene molecules and
LiHMDS species is expected, which is verified experimentally in Figure 8.
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Figure 8. Intermolecular free length L f as a function of LiHMDS mole fraction at 20 ◦C.

For the i-th (i = 1, 2) structural mechanisms described by Equations (1) and (2), the
isentropic standard volume change ∆Vs can be defined as follows [17]:

∆Vs,i =

√
ART fr,i

πρuΓi
(11)

where ρ is the mass density of the solution, T is the absolute temperature, u is the speed of
sound in the solution and R is the gas constant. Γi is the concentration parameter, while
Ai and fr,i correspond to the relaxation amplitude and frequency for each mechanism,
respectively.

In general, the concentration parameter Γ reflects the progress of a specific reaction
and, for the two relaxation mechanisms occurring in our case, can be estimated as the
following [18]:

Γ1 =
9

[LiHMDS]3
+

4
[LiHMDS]2

+
1

[LiHMDS]
(12)

and
Γ2 =

1
[LiHMDS]2

+
1

[Toluene]
+

1
Toluene·[LiHMDS]2

(13)

The as-obtained values of the isentropic volume changes attributed to the LiHMDS
trimer formation (relaxation process 1) and to the mixed aggregate LiHMDS dimer–toluene
(relaxation process 2) are summarized in Table 4. The variation in the total volume as a
function of mole fractions is presented in Figure 9. The results reveal a decreasing trend,
which is stronger at lower mole fractions and levels off to the theoretically predicted volume
changes for higher mole fractions.



Molecules 2024, 29, 813 11 of 16

Table 4. Isentropic volume changes due to LiHMDS trimer formation (relaxation process 1) and to
mixed aggregate LiHMDS dimer–toluene (relaxation process 2).

XLiHMDS ∆Vs1 (mL/mol) ∆Vs2 (mL/mol) ∆Vs,total (mL/mol)

1 -- -- --
0.924 -- -- --
0.843 42.6 0 42.6
0.714 46.8 0 46.8
0.595 50.3 0 50.3
0.466 45.9 18.6 64.5
0.358 46.2 31.8 78.1
0.258 57.2 44.8 102.1
0.173 0 67.6 67.6
0.094 0 109.5 109.5
0.050 0 155.6 155.6
0.013 0 322.6 322.6
0.001 0 1020.0 1020.0

theoretical 46.2 12.1 58.3
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Figure 9. Sum of the isentropic volume changes as a function of mole fraction due to LiHMDS trimer
formation (relaxation process 1) and to the mixed aggregate LiHMDS dimer–toluene (relaxation
process 2). Symbols represent the experimental values, while the dotted line denotes the theoretically
predicted volume change, respectively.

2.4. Thermodynamic Analysis of the Relaxation Processes

In Figure 10, the sound absorption coefficients as a function of frequency for all
temperatures are shown. The solution studied corresponds to a 0.466 mole fraction of
LiHMDS. All spectra were fitted with a double Debye–type function. In the context of
Eyring’s theory, the characteristic frequency for each relaxation mechanism follows a
temperature dependency, which is given by the following [19–21]:

fr,i

T
=

kB
2πh

exp
(
−

∆H∗
i

RT

)
exp

(
∆S∗

i
R

)
(14)

where kB and h are Boltzmann’s and Planck’s constants, respectively. ∆H∗
i represents the

activation enthalpy and ∆S∗
i denotes the activation entropy. By plotting ln

(
2πh fr,i

kBT

)
as a

function of the reciprocal temperature, one can evaluate the activation enthalpy directly
from the slope of the diagram and the activation entropy from the corresponding intercept.
The trend is expected to be linear and indeed, as shown in Figure 11a, the data in the
Arrhenius-type diagram seem to follow a linear dependency.



Molecules 2024, 29, 813 12 of 16

Molecules 2024, 29, x FOR PEER REVIEW 12 of 17 
 

 

0.714 46.8 0 46.8 
0.595 50.3 0 50.3 
0.466 45.9 18.6 64.5 
0.358 46.2 31.8 78.1 
0.258 57.2 44.8 102.1 
0.173 0 67.6 67.6 
0.094 0 109.5 109.5 
0.050 0 155.6 155.6 
0.013 0 322.6 322.6 
0.001 0 1020.0 1020.0 

theoretical 46.2 12.1 58.3 

2.4. Thermodynamic Analysis of the Relaxation Processes 
In Figure 10, the sound absorption coefficients as a function of frequency for all 

temperatures are shown. The solution studied corresponds to a 0.466 mole fraction of 
LiHMDS. All spectra were fitted with a double Debye–type function. In the context of 
Eyring’s theory, the characteristic frequency for each relaxation mechanism follows a 
temperature dependency, which is given by the following [19–21]: 

𝑓𝑓𝑟𝑟,𝑖𝑖

𝑇𝑇
=

𝑘𝑘𝐵𝐵
2𝜋𝜋ℎ

exp �−
Δ𝛨𝛨𝑖𝑖∗

𝐴𝐴𝑇𝑇
� exp �

Δ𝐿𝐿𝑖𝑖∗

𝐴𝐴
� (14) 

where 𝑘𝑘𝐵𝐵 and ℎ are Boltzmann’s and Planck’s constants, respectively. Δ𝛨𝛨𝑖𝑖∗ represents 
the activation enthalpy and Δ𝐿𝐿𝑖𝑖∗ denotes the activation entropy. By plotting 𝑇𝑇𝑇𝑇 �2𝜋𝜋h𝑓𝑓𝑟𝑟,𝑖𝑖

𝑘𝑘𝐵𝐵𝑇𝑇
� 

as a function of the reciprocal temperature, one can evaluate the activation enthalpy di-
rectly from the slope of the diagram and the activation entropy from the corresponding 
intercept. The trend is expected to be linear and indeed, as shown in Figure 11a, the data 
in the Arrhenius-type diagram seem to follow a linear dependency.  

 
Figure 10. Ultrasound absorption spectra (𝑎𝑎 𝑓𝑓2⁄ ) as a function of frequency for all temperatures 
studied. Measurements were performed for the LiHMDS–toluene solution, which correspond to 
the 0.466 mole fraction of LiHMDS. Lines represent the total fitting relaxation profiles for each 
temperature. 

Figure 10. Ultrasound absorption spectra
(
a/ f 2) as a function of frequency for all temperatures

studied. Measurements were performed for the LiHMDS–toluene solution, which correspond
to the 0.466 mole fraction of LiHMDS. Lines represent the total fitting relaxation profiles for
each temperature.

Molecules 2024, 29, x FOR PEER REVIEW 13 of 17 
 

 

The activation enthalpies were calculated to be equal to Δ𝛨𝛨1∗ = 4.98 ± 0.32 kcal/mol 
and Δ𝛨𝛨2∗ = 12.84 ± 1.12 kcal/mol for relaxation process 1 and 2, respectively. The en-
tropy changes were found to be equal to Δ𝐿𝐿1∗ = 10.57 ± 1.09 cal/molK  and Δ𝐿𝐿2∗ =
17.94 ± 3.79 cal/molK, revealing only a minor contribution to the free energy change.  

For the i-th (i = 1, 2) structural mechanisms defined by Equations (1) and (2), the 
amplitude of the relaxation is given by the following [18]: 

𝜇𝜇𝑒𝑒𝑖𝑖𝑒𝑒,𝑖𝑖 =
1
2
𝐴𝐴𝑖𝑖𝑇𝑇𝑓𝑓𝑟𝑟,𝑖𝑖  (15) 

Furthermore, the temperature dependency of the relaxation amplitude is mainly 

defined by the exponential factor exp �−Δ𝐿𝐿𝑖𝑖
0

𝐴𝐴𝑇𝑇� �, and it was found that the following 
equation holds [21]: 

𝑇𝑇𝜇𝜇𝑒𝑒𝑖𝑖𝑒𝑒,𝑖𝑖

𝑇𝑇2
= (𝑐𝑐𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑎𝑎𝑇𝑇𝑠𝑠) × 𝑇𝑇𝑒𝑒𝑒𝑒 �−

Δ𝛨𝛨𝑖𝑖0

𝐴𝐴𝑇𝑇
� (16) 

Thus, from the Arrhenius-type plot of ln �𝑇𝑇𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚,𝑖𝑖
𝑢𝑢2

� versus 1000
𝑇𝑇�  presented in Fig-

ure 11b, we can determine the difference in enthalpy directly from the slope. The 
as-obtained values of enthalpy differences were equal to Δ𝛨𝛨10 = 15.96 ± 2.88 kcal/mol 
and Δ𝛨𝛨20 = 16.93 ± 0.17 kcal/mol for relaxation process 1 and 2, respectively. The linear 
trend observed in Figure 11b reveals that the enthalpy differences Δ𝛨𝛨𝑖𝑖0 were tempera-
ture-independent, at least in the temperature range studied here.  

 

Figure 11. Plots of 𝑇𝑇𝑇𝑇 �2𝜋𝜋ℎ𝑓𝑓𝑟𝑟,𝑖𝑖
𝑘𝑘𝛣𝛣𝛵𝛵
� � versus 1 𝑇𝑇⁄  (a) and of 𝑇𝑇𝑇𝑇 �𝑇𝑇𝜇𝜇𝑒𝑒𝑖𝑖𝑒𝑒 𝑇𝑇2� � versus 1000 𝑇𝑇⁄  (b) for 

relaxation processes 1 and 2, respectively. See text for more details. 

3.30×10-3 3.36×10-3 3.42×10-3 3.48×10-3
-14.5

-14.0

-13.5

-13.0

-12.5

-12.0

3.28 3.32 3.36 3.40 3.44 3.48

-18.6

-18.0

-17.4

-16.8

-16.2

(b)

ln
(2

πh
 f r

,i /
 k

BT
)

 relaxation process 1
 Linear Fit
 relaxation process 2
 Linear Fit

1/T [K-1]

(a)

relaxation process 1
 linear fit
 relaxation process 2
 linear fit

ln
(T
μ m

ax
 / 

u2 )

1000/T [K-1]

Figure 11. Plots of ln
(

2πh fr,i
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Tµmax
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)
versus 1000/T (b) for relaxation

processes 1 and 2, respectively. See text for more details.

The activation enthalpies were calculated to be equal to ∆H∗
1 = 4.98± 0.32 kcal/mol and

∆H∗
2 = 12.84± 1.12 kcal/mol for relaxation process 1 and 2, respectively. The entropy changes
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were found to be equal to ∆S∗
1 = 10.57 ± 1.09 cal/molK and ∆S∗

2 = 17.94 ± 3.79 cal/molK,
revealing only a minor contribution to the free energy change.

For the i-th (i = 1, 2) structural mechanisms defined by Equations (1) and (2), the
amplitude of the relaxation is given by the following [18]:

µmax,i =
1
2

Aiu fr,i (15)

Furthermore, the temperature dependency of the relaxation amplitude is mainly de-

fined by the exponential factor exp
(
−∆H0

i
RT

)
, and it was found that the following equation

holds [21]:
Tµmax,i

u2 = (constant)× exp

(
−

∆H0
i

RT

)
(16)

Thus, from the Arrhenius-type plot of ln
(

Tµmax,i
u2

)
versus 1000

T presented in
Figure 11b, we can determine the difference in enthalpy directly from the slope. The
as-obtained values of enthalpy differences were equal to ∆H0

1 = 15.96 ± 2.88 kcal/mol and
∆H0

2 = 16.93 ± 0.17 kcal/mol for relaxation process 1 and 2, respectively. The linear
trend observed in Figure 11b reveals that the enthalpy differences ∆H0

i were temperature-
independent, at least in the temperature range studied here.

3. Materials and Methods
3.1. Solutions

For the preparation of the solutions, Lithium bis(trimethylsilyl)amide (97%, Sigma-
Aldrich, Burlington, MA, USA) and toluene (99.5%, Fluka, Charlotte, North Carolina, USA)
were used without any further purification. The binary solutions cover a wide range of
concentrations. The mole fractions and the corresponding concentrations are presented in
Table 5. Only fresh solutions were used for the complete set of measurements. The reaction
of water with LiHMDS is known to be violent [22]. In the present work, we did not use
water as a solvent, and caution was paid to avoid any contact of LiHMDS with moisture.

Table 5. Concentrations and mole fractions of the LiHMDS–toluene solutions.

Solution XLiHMDS CLiHMDS (M) Ctoluene (M)

1 1 5.14 0
2 0.924 4.92 0.41
3 0.843 4.66 0.87
4 0.714 3.84 1.54
5 0.595 3.36 2.29
6 0.466 2.73 3.12
7 0.358 2.19 3.94
8 0.258 1.50 4.31
9 0.173 1.17 5.57
10 0.094 0.58 5.53
11 0.050 0.31 5.89
12 0.013 0.12 9.13
13 0.001 0.01 9.34

3.2. Ultrasonic Relaxation Spectroscopic Measurements

The sound absorption coefficient was measured by means of the parallel-path pulse
method as a function of concentration and temperature with an experimental error less than
±5% [22]. A set of two wide-band piezoelectric elements was utilized as the transmitter
and receiver of the ultrasonic wave, respectively. The liquid sample was placed into a
temperature-controlled cylindrical acoustic cell, and the two piezoelectric elements were
attached to the opposite faces of the cell. Temperature was controlled within ±0.01 ◦C.
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A common ultrasonic medical gel was applied between the cell and the transducers to
achieve better contact and thus the maximum sound transmission. Utilizing the same
experimental setup, ultrasound velocity measurements were performed via the pulse-echo
overlap technique with an experimental error less than ±0.01% [23].

The mass densities of all solutions were measured with a temperature-controlled
density-meter (DM 60, Anton Paar, Germany GmbH, Scharnhausen, Ostfildern, Germany)
with an accuracy of ±0.0001 g/cm3. More details concerning the setup and the experimental
protocols can be found elsewhere [24].

3.3. Theoretical Calculations

The structures of LiHMDS and toluene were fetched as SDF digital files from the Pub-
Chem electronic database and were optimized by employing Density Functional Theory
(B3LYP) methodology combined with the 6-311G(d,p) basis set and tight convergence crite-
ria. The theoretical entropy and the corresponding vibrational properties of the LiHMDS-
monomer, LiHMDS-dimer and LiHMDS-trimer complex with one toluene molecule were
calculated after optimization. Molecular volumes were estimated theoretically as the vol-
ume inside a contour of a particular electron density. All calculations were carried out in
vacuum with the use of the Gaussian 09 program [25].

Molecular docking calculations were conducted with the AutoDock software (version
4.2) to investigate the interaction between toluene and LiHMDS species. The calculation
was performed with the optimized structures.

The LiHMDS trimer was kept stationary at the center of the simulation box (receptor),
while the toluene molecule was left to move freely inside the boundaries of the simulation
box (ligand). The dimensions of the box were set at 25 Å × 25 Å × 25 Å, and the grid
spacing was fixed at a default value of 0.375 Å. The rotatable number of bonds for toluene
was set at maximum. The charges were assigned with the help of Gasteiger charges. The
best poses were selected through the Lamarckian genetic algorithm (LGA) [26]. The final
most plausible pose after molecular docking calculation was also optimized with the same
basis set.

4. Conclusions

The combination of ultrasonic relaxation spectroscopy with computational molecu-
lar docking and DFT methods allowed us to evaluate how solvent coordination modu-
lates the dynamical processes detected in the acoustic spectra. A wide-concentration and
temperature-dependent study was undertaken by means of the pulse-echo technique.

Molecular docking calculations revealed the formation of trimers from monomer and
dimer units, as well as the formation of an aggregate between toluene and LiHMDS dimer
species. DFT methodologies were used to evidence the stability of all species involved. The
concentration dependence of the acoustic spectra revealed the presence of two discrete
relaxation processes. Low-frequency relaxation dominated in the high-mole fractions
of LiHMDS and was attributed to the formation of trimer species. On the other hand,
high-frequency relaxation was the main process in the low-mole fraction of LiHMDS and
was related with the formation of the hetero-aggregate between toluene and LiHMDS
dimer species.

From the concentration dependence of the relaxation frequencies for both relaxation
mechanisms, the relevant kinetic properties were obtained. The forward and backward rate
constants for the two processes were determined to be equal to k f ,1 = 4.26 × 104 M−1s−1,
kb,1 = 4.85 × 106 s−1 and k f ,2 = 4.10 × 107 s−1, kb,2 = 6.40 × 106 M−1s−1, respectively.
From the forward and backward rate constants, the equilibrium constants were computed
as K1 = 8.79 × 103 M−1 K2 = 6.41 M for the self- and hetero-aggregation reaction.

From the temperature dependence of the acoustic spectra, the thermodynamic charac-
teristics of both structural mechanisms were evaluated. The activation enthalpy and entropy
were estimated to be equal to ∆H∗

1 = 4.98 ± 0.32 kcal/mol and ∆S∗
1 = 10.57 ± 1.09 cal/molK

for the self-aggregation of LiHMDS, while for the hetero-aggregation mechanism, the corre-
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sponding thermodynamic parameters were found to be ∆H∗
2 = 12.84 ± 1.12 kcal/mol and

∆S∗
2 = 17.94± 3.79 cal/molK, respectively. The enthalpy differences for both processes were

also calculated from the temperature dependence of the acoustic parameters and found to
be equal to ∆H0

1 = 15.96 ± 2.88 kcal/mol and ∆H0
2 = 16.93 ± 0.17 kcal/mol for relaxation

process 1 and 2, respectively.
The total volume changes associated with the above structural mechanisms were also

evaluated both experimentally and theoretically and were found to be comparable despite
the fact that the theoretical calculation was performed in vacuum without taking into
consideration any intermolecular interactions.

All of the above outcomes are practically ascribed to variations in interactions at the
molecular level that took place in the structure of LiHMDS–toluene solutions.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29040813/s1, Figure S1. LiHMDS–toluene complex. The figure
depicts the angles between the N-Li-N (109.1◦) and the angle of N-Li-η6-toluene (113.3◦). Figure S2.
The theoretical representation of LiHMDS–toluene complex with labeled atoms for easier identifica-
tion (see Table S1). Table S1. The bond distances and angles of the LiHMDS–toluene complex.
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