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Abstract: Rapid screening of botanical extracts for the discovery of bioactive natural products
was performed using a fractionation approach in conjunction with flow-injection high-resolution
mass spectrometry for obtaining chemical fingerprints of each fraction, enabling the correlation
of the relative abundance of molecular features (representing individual phytochemicals) with the
read-outs of bioassays. We applied this strategy for discovering and identifying constituents of
Centella asiatica (C. asiatica) that protect against Aβ cytotoxicity in vitro. C. asiatica has been associated
with improving mental health and cognitive function, with potential use in Alzheimer’s disease.
Human neuroblastoma MC65 cells were exposed to subfractions of an aqueous extract of C. asiatica
to evaluate the protective benefit derived from these subfractions against amyloid β-cytotoxicity. The
% viability score of the cells exposed to each subfraction was used in conjunction with the intensity
of the molecular features in two computational models, namely Elastic Net and selectivity ratio,
to determine the relationship of the peak intensity of molecular features with % viability. Finally,
the correlation of mass spectral features with MC65 protection and their abundance in different
sub-fractions were visualized using GNPS molecular networking. Both computational methods
unequivocally identified dicaffeoylquinic acids as providing strong protection against Aβ-toxicity
in MC65 cells, in agreement with the protective effects observed for these compounds in previous
preclinical model studies.

Keywords: Centella asiatica; bioactives; bioassays; neuroprotection; computational methods; Elastic Net;
spectral networks; GNPS
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1. Introduction

Plants produce more than 200,000 distinct specialized metabolites [1], constituting the
principal reservoir of bioactive compounds combating diseases in numerous countries [2,3].
Nevertheless, the complexity of working with plant extracts lies in discriminating between
the specialized metabolites responsible for producing biological activity in bioassays, pre-
clinical models, or humans. The traditional bioassay-guided fractionation approach is
tedious and time-consuming [4,5]. This approach requires the separation of certain phy-
tochemicals based on physicochemical properties such as polarity, charge, or size, and
assessing the bioactivity in a step-by-step methodology. Carrying out purification and assay
stages sequentially may ultimately result in the isolation of a bioactive compound, only to
find that the compound has been previously discovered [4–8]. Additionally, there are risks
associated with traditional exhaustive fractionation that compounds degrade or become
lost during the process [9]. There is an urgent need to accelerate the discovery of natural
bioactive products and to remove the dereplication bottleneck. Methods capable of ad-
dressing this need are emerging. The Global Natural Product Social Molecular Networking
(GNPS) platform can assist in the dereplication and annotation of specialized metabo-
lites [10,11]. Statistical models, such as Partial Least Squares (PLS) models, utilize spectral
information to predict bioactive metabolites in complex natural product mixtures [12]. The
selectivity ratio method is another well-established tool for assisting in the discovery of
biomarkers that utilizes chromatographic and mass spectral profiles [13–15]. The selec-
tivity ratio method has been recently applied to the discovery of bioactive constituents in
botanical extracts. Recently, our research group showed that Elastic Net (EN), a regularized
regression model [16], was capable of correctly predicting the anti-inflammatory bioactive
constituents in hop extracts utilizing high-resolution mass spectrometry m/z profiles of
extract fractions [17].

The objective of the present study was to find and annotate the bioactives in C. asiatica
extracts that ameliorate cytotoxicity caused by amyloid β in MC65 cells, a cell culture model
amenable to high-throughput screening. Aqueous extracts of C. asiatica are recognized
to enhance memory and mental health [18–21]. The use of C. asiatica preparations in
complementary medicine has been associated with ameliorating cognitive decline due
to ageing and Alzheimer’s disease [20,22–24]. For this purpose, we utilized the Elastic
Net method to correlate molecular features (unknown phytochemicals) derived from
high-resolution mass spectrometry with the bioactivity levels observed for the C. asiatica
fraction in the MC65 assay. We selected Elastic Net as it allows for an accurate computation
of the contribution of each bioactive phytochemical towards the total bioactivity of the
fraction without limiting the number of phytochemicals being used for the prediction [25].
Importantly, we validated the output of the Elastic Net method using the well-established
selectivity ratio method. We created a GNPS network that visualizes the association
between fraction, bioactivity, and mass spectral data. This case study revealed that mono-
and dicaffeoylquinic acids (CQAs) are associated with protecting against amyloid-β toxicity
in an MC65 cell model.

2. Results and Discussion
2.1. Chemical Diversity and Viability in C. asiatica Fractions

The plant-based bioactive compound discovery field is challenged by the need to
purify and identify specialized metabolites that exhibit bioactivity in various assays. To
address these challenges, our research group developed an innovative approach combining
fractionation, high-resolution mass spectrometry, and advanced computational models to
rapidly screen plant extracts [17]. An adaptation of this workflow was applied to C. asiatica
extracts. A critical aspect of our approach involved simplifying the chemical diversity of
the plant extract by creating a set of 21 impure fractions, producing distinct compound con-
centrations across them (fractions A1–A21, Figure S1). The initial liquid–liquid extractions
served as a pivotal step in isolating different components of the Centella asiatica water (CAW)
extract based on their solubility in various solvents. The sub-fractionation approach uses
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LH-20 chromatography, which allows the separation of phytochemical constituents into
low numbers of fractions, thus allowing mass spectral analysis of the chemical constituents
while minimizing the matrix effects when analyzing complex mixtures.

Mass spectral profiles for the 21 fractions were obtained by flow-injection HRMS
(Figure 1). Data were acquired in positive and negative electrospray ionization mode. Over
1500 molecular features were recorded across all fractions, and the gradient of concentra-
tions was computed against the % of proliferation of MC65 cells using two computational
models, namely Elastic Net and selectivity ratio (SR). Removing the use of the analytical
column in flow injections has the advantage of shortening the analysis time (under 2 min
per run) with only 30 s of equilibration time before the next injection. Flow injections
increase the potential of the ion suppression phenomenon since all compounds elute to-
gether, including sodium and other cations producing several adducts for each compound.
However, the sub-fractionation of the plant extracts lessens this problem. Sub-fractionation
in conjunction with flow injection has the methodological advantage of minimizing matrix
effects due to matrix simplification, allowing the detection of additional molecular features.
Nevertheless, careful processing and adduct analysis and deconvolution are needed to ob-
tain mass spectral fingerprints of sufficient quality [26] to feed the computational analysis.
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After data processing, over 1500 molecular features (depicted in the heatmap) were aligned according
to their molecular masses. Right—% cell viability as an index of protection against Aβ toxicity. Bars
represent % viability ± standard error of CAW extract and all subfractions of the CAW extract tested
in MC65 cells in the presence of Aβ (induced by absence of tetracycline). (B) Correlation of % cell
viability with the concentration of di-CQAs (sum of isomers) ([M-H]-, m/z 515.12) present in the
21 CA subfractions (each blue dot represents a subfraction). % viability ± standard error assay of CA
and all subfraction without tetracycline in MC65 cells (n = 12–16).

MC65 cells, a neuroblastoma line, express the C-terminal fragment of the amyloid
precursor protein (APP CTF) regulated by a tetracycline-responsive promoter. Upon
tetracycline withdrawal from the medium, the C99 fragment of APP is expressed, which is
then cut by β-secretase to form Aβ peptides. The accumulation of intracellular, endogenous
Aβ leads to cell death within 72 h [27]. In the absence of tetracycline, cells treated with
each of the 21 fractions exhibit cell viability levels ranging from 5% (A2) to 117% (A10).
Remarkably, cells treated with fractions A10, A11, A12, and A19 not only displayed a
notable absence of cell death but also exhibited a proliferation surpassing that of the control
containing tetracycline, reaching >100% viability. This observation would typically trigger
additional analyses to find the compound present in those fractions. However, this is
not needed under this methodology. This computational approach has the capability to
uncover correlations between variations in the levels of molecular features (phytochemicals)
across the fractions and the percentage of viability, thereby identifying the most probable
compounds influencing cell viability.

2.2. Correlation between Phytochemical Profiles and Neuroprotective Effect

The correlation of the HRMS profiles of the 21 CAW fractions with the neuroprotective
activity levels of each fraction was obtained using Elastic Net as previously described [17].
In addition, we applied selectivity ratio analysis to confirm independently the Elastic Net
analysis results of putative bioactive compounds acting as inhibitors of Aβ cytotoxicity
in the MC65 cell culture model. The selectivity ratio is established by determining the
ratio between the explained and residual variances of the spectral variables on the target
projected component [13,28]. This ratio serves as a useful tool for selecting variables in the
analysis (Figure 2).

The 21 fractions were tested for their protective effect in the MC65 cell culture model
of Aβ toxicity, which uses % cell viability as a measure of cell protection. The Elastic
Net model identified m/z 515.1191 and m/z 353.0874 as the top two bioactives, while
the selectivity ratio pinpointed m/z 303.0502 and m/z 257.0554 as the top two bioactive
compounds, respectively. The m/z values 353.0874 and 515.1191 were previously identified
and characterized in C. asiatica water extracts as the deprotonated molecular ions (M-H-) of
mono- and dicaffeoylquinic acids, respectively [20,29,30]. Despite discrepancies in the top
ten bioactive compounds between the two models, six compounds emerged as consistent
top candidates in both (Table 1). Notably, the selectivity ratio emphasized the significance
of m/z 303.0502 [M+H]+ and m/z 257.0554 as the top bioactives; it also confirmed the
identification of m/z 515.1191 and m/z 353.0874 as the next most important compounds.
This validation highlights the effectiveness of Elastic Net in identifying the most likely
compounds among the 1500 molecular features.
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Figure 2. Selectivity ratio analysis. Selectivity ratios of mono- and dicaffeoylquinic acids were 1.66
and 1.78, respectively, positioning them in the top 5 hit list of correlated compounds. The raw SR
values can be found in the Supplementary Material (Table S1).

Table 1. Selectivity ratio and Elastic Net ranks for the experiment flow injection-TOF acquisition ion
correlated with MC65 bioactivity assay.

Feature 1 SR 2 Variable Rank in
Elastic Net Pipeline 3 Annotation 4 Ion

Mode

1.38_303.0502 m/z 2.89 47 (of 119) Quercetin POS
1.62_257.0554 m/z 1.88 9 (of 85) N/A NEG
1.41_353.0874 m/z 1.78 10 (of 85) Mono-CQAs NEG
1.79_515.1191 m/z 1.66 1 (of 85) Di-CQA’s NEG
1.78_163.0385 m/z 1.58 23 (of 119) Hydroxycoumarin POS
1.55_461.0720 m/z 1.57 47 (of 85) Myricetin 3-glucoside NEG
1.41_179.0351 m/z 1.57 29 (of 85) Caffeic Acid NEG
1.50_539.1153 m/z 1.55 18 (of 119) N/A POS
1.41_537.1012 m/z 1.54 44 (of 85) N/A NEG
1.45_605.0894 m/z 1.53 45 (of 85) N/A NEG
1.52_513.1034 m/z 1.52 34 (of 85) N/A NEG

1.66_477.0674 m/z 1.52 50 (of 85) Quercetin
7-glucuronide NEG

1 Retention_m/z. 2 Selectivity ratio. 3 Distinct ranks were assigned to variables for each ionization mode. A
selection of the 204 most prominent features was utilized to evaluate and contrast both models, with the complete
set of values provided in Table S2 for positive ion mode and Table S3 for negative ion mode. 4 Annotated according
to Phytochem Analysis 2020, 31, 722–738 [30]. MCQA—monocaffeoylquinic acid; DCQA—dicaffeoylquinic acid;
POS—positive ion mode; NEG—negative ion mode; N/A—not available.

In predictive modelling for neuroprotective effects, the Elastic Net algorithm presents
notable advantages and limitations when compared to other models. Elastic Net’s in-
corporation of L1 (Lasso regression) and L2 regularization (Ridge regression) facilitates
variable selection, making it adept at handling multicollinearity and providing flexibility
through parameter tuning. However, Elastic Net’s performance may be compromised
when confronted with many irrelevant features and is sensitive to variable scaling (as
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are many regression models) [17]. On the other hand, the selectivity ratio excels in cap-
turing linear relationships, proving robust against overfitting and capable of handling
missing data. The choice between Elastic Net and the selectivity ratio hinges on the specific
characteristics of the dataset and the interpretability requirements of the neuroprotective
modelling effort. While the m/z 515.1191 acids exhibit a high correlation in both models,
the other compounds in Table 1 showcase varying degrees of correlation, highlighting the
complexity of the botanical extract’s composition. This diversity opens avenues for further
exploration in a resource-focused way. In this case study, both systems provide a reduction
in the candidates from 1500 molecular features to a handful of them.

Despite the potential limitation of encountering antagonist compounds within the
same subfraction, it is noteworthy that this aspect simultaneously highlights a strength
of our current strategy, namely the potential of revealing synergies among compounds.
This capability to uncover synergistic interactions is critical in investigating bioactive
compounds [31]. The intricacies of exploring synergy and antagonism present signifi-
cant challenges, especially in complex natural product chemistry [32]. The conventional
approach in this field focuses on simplifying complexity and isolating single active con-
stituents for drug development, thereby making the comprehensive study of synergistic
and antagonistic interactions notably challenging.

Finally, quite often, one of the struggles of using traditional approaches with ex-
haustive fractionation and purification is the rediscovery of compounds already used in
different studies, wasting resources. In this case, both models add helpful information to
suggest consistent candidates. Furthermore, another advantage of this approach relies on
suggesting the molecular features as candidate(s) for structural elucidation, leveraging the
MS/MS data of the crude used for the fractionation and described in the following section.

2.3. Identification of Neuroprotective Phytochemicals

The mass spectral features m/z 353.0874 and m/z 515.1191 were predicted as bioactive
compounds associated with neuroprotective effects using the multivariate regression Elas-
tic Net model as well as the selectivity ratio (Table 1, Figure 2). The molecular features
with a selectivity ratio greater than 1 indicate that the molecular features explain 50% of
the original variance and can be translated into potential neuroprotective activity. The
m/z 303.0502 held a selectivity ratio (SR) of 2.89, m/z 353.0874 [M-H]- had an SR 1.78, and
m/z 515.1191 [M-H]- had an SR 1.66 (Figure 2). By using our in-house Oregon Natural
Products (ONAP) MS library containing 331 plant NPs, the m/z 353.0874 ion was assigned
to monocaffeoylquinic acid(s) and the m/z 515.1191 ion to dicaffeoylquinic acid(s) [17] and
their identities were verified by an LC-MS/MS comparison with authentic standards as
previously described [30]. Both models successfully identified mono- and di-CQAs among
the top candidates; notably, Elastic Net yielded results that highlight increased activity for
di-CQAs when compared to mono-CQAs. These findings align more closely with earlier
reports emphasizing the increased bioactivity of CQAs corresponding to an increased
number of caffeic acid moieties [27,29,33]. Additionally, m/z 305.0502 was also reported as
one of the constituents in C. asiatica corresponding to quercetin [30]. Among the highly ac-
tive compounds, tentatively annotated constituents included hydroxycoumarin, myricetin
3-glucoside, caffeic acid, bisdihydroquercetin, and quercetin 7-glucuronide (Table 1). Here,
we investigated the correlation of % cell viability with the concentration of di-CQAs (sum
of isomers, [M-H]-, m/z 515.12) present in the 21 CA subfractions, obtaining a positive
correlation (r = 0.613, Figure 1B). The SR and Elastic Net results do not agree completely in
terms of compound importance. However, this is not unexpected, as the two analyses are
quite different. Elastic Net uses a standard regression model in which the individual peaks
are the features, while SR uses a regression in which the features are linear combinations
of all the peaks. The data scaling is also different—as we have shown previously, we
logarithmically transformed both the response and predictor variables in the Elastic Net
pipeline. Finally, in the Elastic Net analysis we computed the POS and NEG mode models
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independently. Despite these differences, it is reassuring that the mono- and di-CQAs are
identified in both approaches.

The discovery of mono- and dicaffeoylquinic acids as active compounds supports
previous findings of their neuroprotective effects in both in vitro and in vivo models. For
instance, evidence across various neural models such as MC65 [27,29], SH-SY5Y [34,35],
and PC-12 cells [36] highlights the neuroprotective role of CQAs. Additionally, pretreat-
ment with CQAs resulted in a significant reduction in neuronal death in rats after ischemic
insult [37]. Furthermore, mono-CQAs exhibited the ability to mitigate synaptic dysfunc-
tion by either enhancing the restoration of synaptic transmission upon re-oxygenation or
alleviating the aberrant alteration in hippocampal synaptic plasticity linked to memory
impairment induced by exposure to β-amyloid peptides in mice models [38]. Our study
further reveals that fractions A10-A12, exhibiting the highest levels of di-CQAs, correlated
with enhanced cell viability. This finding corroborates our previous reports, demonstrating
the protective effects of caffeoylquinic acids in C. asiatica against amyloid-β toxicity [27].
Furthermore, caffeoylquinic acids were found able to mitigate the cognitive deficits in the
5XFAD Alzheimer’s disease mouse model [39]. As for quercetin, its anti-inflammatory
and neuroprotective effects, modulating AMPK and influencing the NF-kB and NLRP3 in-
flammasome pathways, have been well documented [40]. Additionally, quercetin has been
implicated in promoting neuronal survival and synaptic plasticity, potentially influencing
cognitive function [41,42]. While these preclinical studies provide promising insights into
the neuroprotective properties of CQAs and quercetin, further well-designed clinical trials
are essential to establish their efficacy and safety in the context of neurological disorders in
human populations.

2.4. Molecular Networking for Analyzing Chemical Diversity

Molecular networking is a useful tool to propagate annotations of compounds sharing
more than 70% of the spectral fragmentation. In addition to employing full-scan TOF-MS
analysis on the 21 fractions, the crude extract containing all the components underwent an
additional analysis via LC-QTOF-MS/MS to expand the characterization of the chemical
diversity in the fractions. This process yielded required mass fragment (MS/MS) data for
constructing a molecular network through GNPS [43]. GNPS constructs these molecular
networks by aligning MS/MS spectra, where node assignment corresponds to associated
precursor ions. The edges between nodes are established based on the cosine score, repre-
senting the similarity between nodes. We adopted a cut-off value of 0.70 to identify nodes
with significant similarity, with the matching relying on MS/MS fragmentation informa-
tion. The resultant network was visually represented using Cytoscape V3.6.1 (Figure 3).
The organized MS/MS dataset comprised 5500 nodes clustered into 193 distinct groups
containing three or more nodes within the network (Figure 3A). The generation of this
extensive network enabled the association of molecular features with sub-fraction-specific
biological activities. Our bioactivity mapping revealed the presence of dicaffeoylquinic
acids in fractions that exhibited complete protection against Aβ toxicity (Figure 3B–D),
contrasting with the identification of triterpene glycosides (Figure 3E) in fractions providing
partial protection (bioactivity level, 75%). This integrated approach provides a powerful
strategy for the rapid and resource-efficient discovery of bioactive compounds in complex
plant extracts, advancing the understanding of their bioactive potential.
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Figure 3. Massive molecular network for associating molecular features with sub-fraction-specific
biological activities: (A) Generation of a massive molecular network from MS/MS data of aqueous
C. asiatica extract. (B,C) Bioactivity mapping shows that dicaffeoylquinic acids were found in fractions
providing complete protection against Aβ toxicity (panel (D)), whereas triterpene glycosides (panel
(E)) were found in fractions providing partial protection (bioactivity level, 75%). GNPS constructs
the molecular networks by aligning MS/MS spectra. Node assignment relates to the associated
precursor ions. The edges are constructed between nodes based on cosine score, which represents the
similarity of the two nodes with each other. The nodes with a cosine score of zero are completely
unrelated whereas the ones that have a cosine score of 1 are identical. We chose a cut-off value
of 0.70 for identifying similar nodes. Similarity matching was performed using MS/MS fragment
ion information. * The percentages represent cell viability, while the size of each pie slice reflects
the relative abundance of the associated molecular feature within the respective viability group.
Fractions containing higher concentrations of caffeoylquinic acids exhibit favorable cell viability.
Each pie slice’s color corresponds to different CAW fractions. Notably, the pies only include fractions
containing the specific molecular feature indicated by its m/z value.

3. Materials and Methods
3.1. Associating Chemical Diversity of C. asiatica with % Viability from MC65 Bioassay

Centella asiatica water (CAW) extract was prepared as previously described [27,30]. For
this study, the fractionation scheme depicted in Figure S1 was used. Initially, liquid–liquid
extractions were performed, and the organic fractions were further sub-fractionated using
LH-20 chromatography. CAW powder (140.5 g) was sonicated in MeOH (3 × 200 mL);
MeOH insoluble materials were separated, pooled, and assigned as fraction A4 (41.3 g). The
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MeOH soluble fractions were pooled and dried and subjected to liquid–liquid partitioning
between dichloromethane (DCM; 200 mL) and water (2 × 200 mL). The DCM layer was
dried under vacuum (fraction A3; 7.8 g). The combined water layers were then partitioned
with n-butanol (3 × 600 mL). The butanol and water layers were dried to give fractions
A1 (15.9 g) and A2 (68.2 g), respectively. Sephadex LH-20 chromatography (length 40 cm,
diameter 5 cm) with methanol was used to fractionate the BuOH-derived A1 and DCM-
derived A3 residues, resulting in fractions A5–A13 and A14–A21, respectively. Overall,
CAW constituents were distributed in 21 fractions (A1–A21; Figure S1).

3.2. Biological Activity in MC65 Cellular Line

MC65 cells were used because of their ability to conditionally express the C99-terminal
fragment of amyloid precursor protein (APP CTF) [44]. In the absence of tetracycline, the
cells are able to generate endogenous Aβ that results in cell death within 3 days. There has
been evidence that links Aβ aggregates and resulting cytotoxicity with oxidative stress [45].
The maintenance of MC65 cells was performed in MEMα supplemented with 10% FBS
(Gibco-BRL, Carlsbad, CA, USA) and 1 µg/mL tetracycline (Sigma-Aldrich, St. Louis,
MO, USA) using the procedure described in [45,46]. Confluent cells were treated with
trypsin followed by washing in PBS. The cells were resuspended in OptiMEM without
phenol red (Gibco/BRL, Carlsbad, CA, USA). Cells were treated with a vehicle with or
without tetracycline, or treated with fractions and without tetracycline, and then plated
at 25,000 cells/well in 96-well plates. Cell viability was measured at 3 days with CellTiter
96 Aqueous Non-Radioactive Cell Proliferation Assay (Promega Corporation, Madison,
WI, USA). For statistical significance and repeatability, the experiments were performed in
triplicate wells for each of the CAW fractions and repeated two times.

3.3. Profiling of Fractions Using Flow-Injection-HRMS

Flow injection combined with high-resolution accurate mass spectrometry (HRMS)
was conducted using a Shimadzu Nexera UHPLC system connected to an AB SCIEX
TripleTOF® 5600 (Concord, Ontario, Canada) mass spectrometer equipped with a Turbo V
ionization source operated in positive and negative electrospray ion mode. For negative
ion mode acquisition, the following parameter settings were used to operate the mass
spectrometer: spray voltage −4200 V; source temperature 550 ◦C, and a period cycle time
of 150 ms was used. For positive ion mode acquisitions, the instrument settings were the
same as those used in the negative ion mode except that the spray voltage was set to 4500 V.
The mass spectrometer was equipped with a calibrant delivery system.

For the flow-injection analysis, the flow rate was set at 0.2 mL/min utilizing aqueous
methanol (20% v/v). A 3 µL injection volume was used. The total run time per sample
was 3 min. The acquired data were aligned, deconvoluted, and normalized using Pro-
genesis QITM V2.4 (Nonlinear Dynamics, Waters Corporation, Milford, MA, USA). This
deconvolution step assembles isotopologues and adducts from the same molecular species
into one molecular feature [17]. For creating a GNPS network for CAW and derived
fractions, MS/MS data were acquired in data-dependent acquisition mode as previously
described [30].

3.4. Predicting Protective Biological Activity with Mass Spectral Data

The Elastic Net analysis was conducted largely as previously described [17]. Both
the response variable (bioactivity) and the predictor variable (peak intensities) were log-
arithmically transformed before fitting as previously described. Separate models for the
POS and NEG MS modes were computed [17] and each model used an ensemble size of
1000 models. The selectivity ratio was computed using get SelectivityRatio from mdatools
package v 0.11.5 [43] in R to identify discriminating m/z molecular features. The selectivity
ratios for the molecular features were plotted using Excel.
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3.5. Compound Identification

The molecular features identified as leads were queried by their exact mass in our
in-house database as well as online databases such as the Human Metabolome Database
(HMDB) (http://www.hmdb.ca/) and the METLIN database (https://metlin.scripps.edu)
as previously described [30] with the following modifications: the exact mass was queried
in the range of 10 ppm, and the annotations for molecular features were validated by
comparing MS/MS fragments within the range of 50 ppm.

3.6. Molecular Networking

The MS/MS spectral data were used to create the GNPS network. MS/MS data
were deposited to the GNPS repository (http://gnps.ucsd.edu). The C. asiatica fractions’
chemical diversity and associated % viability were used to create molecular networks using
the online workflow described for Global Natural Products Social molecular networking.
MSCluster was used to cluster the identical MS/MS spectra into a single spectrum. The
precursor and fragment ions in the spectra were compared to the spectral libraries with
mass tolerance values of ±0.01 Da for the precursor ions and ±0.05 Da for the fragment
ions. The cosine score was used to compare similarities and differences of spectra with
spectral libraries. The cosine score of 0.7 was used as a threshold for spectral match with
libraries and the threshold for minimum matching peaks for annotating the spectral peaks
was set at 6. The network was imported and visualized using Cytoscape version 3.7.

4. Conclusions

We have demonstrated the use of partial fractionation, HRMS, and the computational
Elastic Net tool for the discovery of neuroprotective bioactives in an aqueous extract of
C. asiatica. Mono- and dicaffeoylquinic acids, predicted as bioactive compounds by the
Elastic Net method, were also in the top list of candidates resulting from the selective
ratio method, underscoring the usefulness of Elastic Net as a machine learning method
for bioactive component discovery. Our strategy resulted in the discovery of mono- and
dicaffeoylquinic acids. Our computational approaches correctly predicted compounds
previously recognized for their bioactivity using traditional approaches; dicaffeoylquinic
acids have shown cognitive benefits in preclinical in vitro and in vivo models. To conclude,
we report on an experimental strategy in conjunction with computational methods that
streamlines the discovery and identification of bioactive constituents in botanical extracts
and minimizes the need to use time-consuming traditional bioassay-guided fractionation as
a primary strategy for the discovery of bioactive compounds in natural product mixtures.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules29040838/s1: Figure S1. Fractionation scheme. A total
of 21 subfractions of CAW extract generated by solvent/solvent partitioning and LH-20 column
chromatography. We analyzed each subfraction by flow-injection HRMS and correlated the features
found with cytoprotective activity in an amyloid β-toxicity MC65 neuroblastoma cell model. In
addition, CAW was analyzed by LC-HRMS/MS for obtaining precursor and fragment ion information
for GNPS molecular network analysis. Relative polarity across fractions is indicated by “–“ and “+”,
Figure S2: Selectivity ratio for most prominent molecular features, Figure S3: List of ensemble Elastic
Net importances for all POS mode peaks, Figure S4: List of ensemble Elastic Net importances for all
NEG mode peaks.

Author Contributions: Conceptualization, J.F.S., C.S.M., A.S., J.F.Q. and A.A.M.; methodology, J.F.S.,
C.S.M., A.S., K.S.B. and A.A.M.; computation, K.S.B., Y.J. and P.C.; formal analysis, P.L., M.N.A.,
M.C., N.E.G. and A.A.M.; investigation, A.A.M., A.V., M.N.A., C.S.M., N.E.G. and C.S.M.; resources,
J.F.S., C.S.M. and A.S.; writing—original draft preparation, A.A.M. and A.V.; writing—review and
editing, all authors; funding acquisition, J.F.S., C.S.M. and A.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by The National Institutes of Health grants R01AT008099,
S10RR022589, S10RR027878, and U19AT010829.

http://www.hmdb.ca/
https://metlin.scripps.edu
http://gnps.ucsd.edu
https://www.mdpi.com/article/10.3390/molecules29040838/s1
https://www.mdpi.com/article/10.3390/molecules29040838/s1


Molecules 2024, 29, 838 11 of 13

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data and software are available from the authors upon request.

Acknowledgments: The authors acknowledge the BENFRA Botanical Dietary and Supplement
Research Center and the Oregon State University Mass Spectrometry Center.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pyne, M.E.; Narcross, L.; Martin, V.J.J. Engineering Plant Secondary Metabolism in Microbial Systems. Plant Physiol. 2019, 179,

844–861. [CrossRef] [PubMed]
2. Mahady, G.B. Global harmonization of herbal health claims. J. Nutr. 2001, 131, 1120s–1123s. [CrossRef] [PubMed]
3. Commisso, M.; Strazzer, P.; Toffali, K.; Stocchero, M.; Guzzo, F. Untargeted metabolomics: An emerging approach to determine

the composition of herbal products. Comput. Struct. Biotechnol. J. 2013, 4, e201301007. [CrossRef] [PubMed]
4. Weller, M.G. A Unifying Review of Bioassay-Guided Fractionation, Effect-Directed Analysis and Related Techniques. Sensors

2012, 12, 9181–9209. [CrossRef] [PubMed]
5. Nothias, L.F.; Nothias-Esposito, M.; da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.;

Costa, J.; et al. Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided
Fractionation. J. Nat. Prod. 2018, 81, 758–767. [CrossRef] [PubMed]

6. Stagliano, M.C.; DeKeyser, J.G.; Omiecinski, C.J.; Jones, A.D. Bioassay-directed fractionation for discovery of bioactive neutral
lipids guided by relative mass defect filtering and multiplexed collision-induced dissociation. Rapid Commun. Mass Spectrom.
2010, 24, 3578–3584. [CrossRef]

7. Abbas-Mohammadi, M.; Farimani, M.M.; Salehi, P.; Ebrahimi, S.N.; Sonboli, A.; Kelso, C.; Skropeta, D. Acetylcholinesterase-
inhibitory activity of Iranian plants: Combined HPLC/bioassay-guided fractionation, molecular networking and docking
strategies for the dereplication of active compounds. J. Pharm. Biomed. Anal. 2018, 158, 471–479. [CrossRef] [PubMed]

8. Shine, V.J.; Anuja, G.I.; Suja, S.R.; Raj, G.; Latha, P.G. Bioassay guided fractionation of Cyclea peltata using in vitro RAW 264.7 cell
culture, antioxidant assays and isolation of bioactive compound tetrandrine. J. Ayurveda Integr. Med. 2018, 11, 281–286. [CrossRef]

9. Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.;
Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv.
2015, 33, 1582–1614. [CrossRef]

10. Sidebottom, A.M.; Johnson, A.R.; Karty, J.A.; Trader, D.J.; Carlson, E.E. Integrated metabolomics approach facilitates discovery of
an unpredicted natural product suite from Streptomyces coelicolor M145. ACS Chem. Biol. 2013, 8, 2009–2016. [CrossRef]

11. Yang, J.Y.; Sanchez, L.M.; Rath, C.M.; Liu, X.T.; Boudreau, P.D.; Bruns, N.; Glukhov, E.; Wodtke, A.; de Felicio, R.; Fenner, A.; et al.
Molecular Networking as a Dereplication Strategy. J. Nat. Prod. 2013, 76, 1686–1699. [CrossRef] [PubMed]

12. Ali, K.; Iqbal, M.; Yuliana, N.D.; Lee, Y.J.; Park, S.; Han, S.; Lee, J.W.; Lee, H.S.; Verpoorte, R.; Choi, Y.H. Identification of bioactive
metabolites against adenosine A1 receptor using NMR-based metabolomics. Metabolomics 2013, 9, 778–785. [CrossRef]

13. Rajalahti, T.; Arneberg, R.; Berven, F.S.; Myhr, K.M.; Ulvik, R.J.; Kvalheim, O.M. Biomarker discovery in mass spectral profiles by
means of selectivity ratio plot. Chemom. Intell. Lab. Syst. 2009, 95, 35–48. [CrossRef]

14. Rajalahti, T.; Arneberg, R.; Kroksveen, A.C.; Berle, M.; Myhr, K.-M.; Kvalheim, O.M. Discriminating Variable Test and Selectivity
Ratio Plot: Quantitative Tools for Interpretation and Variable (Biomarker) Selection in Complex Spectral or Chromatographic
Profiles. Anal. Chem. 2009, 81, 2581–2590. [CrossRef] [PubMed]

15. Kellogg, J.J.; Todd, D.A.; Egan, J.M.; Raja, H.A.; Oberlies, N.H.; Kvalheim, O.M.; Cech, N.B. Biochemometrics for Natural Products
Research: Comparison of Data Analysis Approaches and Application to Identification of Bioactive Compounds. J. Nat. Prod. 2016,
79, 376–386. [CrossRef] [PubMed]

16. Zou, H.; Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 2005, 67, 768. [CrossRef]
17. Brown, K.S.; Jamieson, P.; Wu, W.; Vaswani, A.; Alcazar Magana, A.; Choi, J.; Mattio, L.M.; Cheong, P.H.; Nelson, D.; Reardon, P.N.;

et al. Computation-Assisted Identification of Bioactive Compounds in Botanical Extracts: A Case Study of Anti-Inflammatory
Natural Products from Hops. Antioxidants 2022, 11, 1400. [CrossRef] [PubMed]

18. Brinkhaus, B.; Lindner, M.; Schuppan, D.; Hahn, E.G. Chemical, pharmacological and clinical profile of the East Asian medical
plant Centella asiatica. Phytomedicine 2000, 7, 427–448. [CrossRef]

19. Shinomol, G.K.; Muralidhara, M.S.; Bharath, M. Exploring the Role of “Brahmi” (Bacopa monnieri and Centella asiatica) in Brain
Function and Therapy. Recent Pat. Endocr. Metab. Immune Drug Discov. 2011, 5, 33–49.

20. Gray, N.E.; Alcazar Magana, A.; Lak, P.; Wright, K.M.; Quinn, J.; Stevens, J.F.; Maier, C.S.; Soumyanath, A. Centella asiatica—
Phytochemistry and mechanisms of neuroprotection and cognitive enhancement. Phytochem. Rev. 2018, 17, 161–194. [CrossRef]

21. Kapoor, L.D. CRC Handbook of Ayurvedic Medicinal Plants, 1st ed.; CRC Press: Boca Raton, FL, USA, 1990; p. 416.
22. Kumar, A.; Dogra, S.; Prakash, A. Neuroprotective Effects of Centella asiatica against Intracerebroventricular Colchicine-Induced

Cognitive Impairment and Oxidative Stress. Int. J. Alzheimers Dis. 2009, 2009, 972178. [PubMed]

https://doi.org/10.1104/pp.18.01291
https://www.ncbi.nlm.nih.gov/pubmed/30643013
https://doi.org/10.1093/jn/131.3.1120S
https://www.ncbi.nlm.nih.gov/pubmed/11238830
https://doi.org/10.5936/csbj.201301007
https://www.ncbi.nlm.nih.gov/pubmed/24688688
https://doi.org/10.3390/s120709181
https://www.ncbi.nlm.nih.gov/pubmed/23012539
https://doi.org/10.1021/acs.jnatprod.7b00737
https://www.ncbi.nlm.nih.gov/pubmed/29498278
https://doi.org/10.1002/rcm.4796
https://doi.org/10.1016/j.jpba.2018.06.026
https://www.ncbi.nlm.nih.gov/pubmed/29960238
https://doi.org/10.1016/j.jaim.2018.05.009
https://doi.org/10.1016/j.biotechadv.2015.08.001
https://doi.org/10.1021/cb4002798
https://doi.org/10.1021/np400413s
https://www.ncbi.nlm.nih.gov/pubmed/24025162
https://doi.org/10.1007/s11306-013-0498-9
https://doi.org/10.1016/j.chemolab.2008.08.004
https://doi.org/10.1021/ac802514y
https://www.ncbi.nlm.nih.gov/pubmed/19228047
https://doi.org/10.1021/acs.jnatprod.5b01014
https://www.ncbi.nlm.nih.gov/pubmed/26841051
https://doi.org/10.1111/j.1467-9868.2005.00527.x
https://doi.org/10.3390/antiox11071400
https://www.ncbi.nlm.nih.gov/pubmed/35883889
https://doi.org/10.1016/S0944-7113(00)80065-3
https://doi.org/10.1007/s11101-017-9528-y
https://www.ncbi.nlm.nih.gov/pubmed/20798885


Molecules 2024, 29, 838 12 of 13

23. Sabaragamuwa, R.; Perera, C.O.; Fedrizzi, B. Centella asiatica (Gotu kola) as a neuroprotectant and its potential role in healthy
ageing. Trends Food Sci. Technol. 2018, 79, 88–97. [CrossRef]

24. Lokanathan, Y.; Omar, N.; Ahmad Puzi, N.N.; Saim, A.; Hj Idrus, R. Recent Updates in Neuroprotective and Neuroregenerative
Potential of Centella asiatica. Malays. J. Med. Sci. 2016, 23, 4–14. [PubMed]

25. Kirkpatrick, C.L.; Broberg, C.A.; McCool, E.N.; Lee, W.J.; Chao, A.; McConnell, E.W.; Pritchard, D.A.; Hebert, M.; Fleeman, R.;
Adams, J.; et al. The “PepSAVI-MS” Pipeline for Natural Product Bioactive Peptide Discovery. Anal. Chem. 2017, 89, 1194–1201.
[CrossRef] [PubMed]

26. Clark, T.N.; Houriet, J.; Vidar, W.S.; Kellogg, J.J.; Todd, D.A.; Cech, N.B.; Linington, R.G. Interlaboratory Comparison of Untargeted
Mass Spectrometry Data Uncovers Underlying Causes for Variability. J. Nat. Prod. 2021, 84, 824–835. [CrossRef] [PubMed]

27. Gray, N.E.; Morré, J.; Kelley, J.; Maier, C.S.; Stevens, J.F.; Quinn, J.F.; Soumyanath, A. Caffeoylquinic acids in Centella asiatica
protect against amyloid-β toxicity. J. Alzheimers Dis. 2014, 40, 359–373. [CrossRef] [PubMed]

28. Alcázar Magaña, A.; Kamimura, N.; Soumyanath, A.; Stevens, J.F.; Maier, C.S. Caffeoylquinic acids: Chemistry, biosynthesis,
occurrence, analytical challenges, and bioactivity. Plant J. 2021, 107, 1299–1319. [CrossRef] [PubMed]

29. Magana, A.A.; Wright, K.; Vaswani, A.; Caruso, M.; Reed, R.L.; Bailey, C.F.; Nguyen, T.; Gray, N.E.; Soumyanath, A.; Quinn,
J.; et al. Integration of mass spectral fingerprinting analysis with precursor ion (MS1) quantification for the characterisation of
botanical extracts: Application to extracts of Centella asiatica (L.) Urban. Phytochem. Anal. 2020, 31, 722–738. [CrossRef]

30. Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134 (Suppl. 12),
3479s–3485s. [CrossRef]

31. Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019,
36, 869–888. [CrossRef]

32. Liang, N.; Dupuis, J.H.; Yada, R.Y.; Kitts, D.D. Chlorogenic acid isomers directly interact with Keap 1-Nrf2 signaling in Caco-2
cells. Mol. Cell. Biochem. 2019, 457, 105–118. [CrossRef] [PubMed]

33. Han, J.; Miyamae, Y.; Shigemori, H.; Isoda, H. Neuroprotective effect of 3,5-di-O-caffeoylquinic acid on SH-SY5Y cells and
senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1. Neuroscience 2010, 169, 1039–1045.
[CrossRef] [PubMed]

34. Gao, H.; Jiang, X.-W.; Yang, Y.; Liu, W.-W.; Xu, Z.-H.; Zhao, Q.-C. Isolation, structure elucidation and neuroprotective effects of
caffeoylquinic acid derivatives from the roots of Arctium lappa L. Phytochemistry 2020, 177, 112432. [CrossRef] [PubMed]

35. Lee, S.G.; Lee, H.; Nam, T.G.; Eom, S.H.; Heo, H.J.; Lee, C.Y.; Kim, D.O. Neuroprotective effect of caffeoylquinic acids from
Artemisia princeps Pampanini against oxidative stress-induced toxicity in PC-12 cells. J. Food Sci. 2011, 76, C250–C256. [CrossRef]
[PubMed]

36. Liberato, J.L.; Rosa, M.N.; Miranda, M.C.R.; Lopes, J.L.C.; Lopes, N.P.; Gobbo-Neto, L.; Fontana, A.C.K.; Dos Santos, W.F.
Neuroprotective Properties of Chlorogenic Acid and 4,5-Caffeoylquinic Acid from Brazilian arnica (Lychnophora ericoides) after
Acute Retinal Ischemia. Planta Med. 2023, 89, 183–193. [CrossRef] [PubMed]

37. Fernandes, M.Y.D.; Dobrachinski, F.; Silva, H.B.; Lopes, J.P.; Gonçalves, F.Q.; Soares, F.A.A.; Porciúncula, L.O.; Andrade, G.M.;
Cunha, R.A.; Tomé, A.R. Neuromodulation and neuroprotective effects of chlorogenic acids in excitatory synapses of mouse
hippocampal slices. Sci. Rep. 2021, 11, 10488. [CrossRef] [PubMed]

38. Matthews, D.G.; Caruso, M.; Alcazar Magana, A.; Wright, K.M.; Maier, C.S.; Stevens, J.F.; Gray, N.E.; Quinn, J.F.; Soumyanath, A.
Caffeoylquinic Acids in Centella asiatica Reverse Cognitive Deficits in Male 5XFAD Alzheimer’s Disease Model Mice. Nutrients
2020, 12, 3488. [CrossRef] [PubMed]

39. Chiang, M.-C.; Tsai, T.-Y.; Wang, C.-J. The Potential Benefits of Quercetin for Brain Health: A Review of Anti-Inflammatory and
Neuroprotective Mechanisms. Int. J. Mol. Sci. 2023, 24, 6328. [CrossRef]

40. Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective Effects of Quercetin in Alzheimer’s Disease.
Biomolecules 2019, 10, 59. [CrossRef]

41. Ma, Z.-X.; Zhang, R.-Y.; Rui, W.-J.; Wang, Z.-Q.; Feng, X. Quercetin alleviates chronic unpredictable mild stress-induced depressive-
like behaviors by promoting adult hippocampal neurogenesis via FoxG1/CREB/ BDNF signaling pathway. Behav. Brain Res.
2021, 406, 113245. [CrossRef]

42. Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan,
T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking.
Nat. Biotechnol. 2016, 34, 828–837. [CrossRef]

43. Sopher, B.L.; Fukuchi, K.; Kavanagh, T.J.; Furlong, C.E.; Martin, G.M. Neurodegenerative mechanisms in Alzheimer disease—A
role for oxidative damage in amyloid beta protein precursor-mediated cell death. Mol. Chem. Neuropathol. 1996, 29, 153–168.
[CrossRef]

44. Woltjer, R.L.; McMahan, W.; Milatovic, D.; Kjerulf, J.D.; Shie, F.S.; Rung, L.G.; Montine, K.S.; Montine, T.J. Effects of chemical
chaperones on oxidative stress and detergent-insoluble species formation following conditional expression of amyloid precursor
protein carboxy-terminal fragment. Neurobiol. Dis. 2007, 25, 427–437. [CrossRef]

https://doi.org/10.1016/j.tifs.2018.07.024
https://www.ncbi.nlm.nih.gov/pubmed/27540320
https://doi.org/10.1021/acs.analchem.6b03625
https://www.ncbi.nlm.nih.gov/pubmed/27991763
https://doi.org/10.1021/acs.jnatprod.0c01376
https://www.ncbi.nlm.nih.gov/pubmed/33666420
https://doi.org/10.3233/JAD-131913
https://www.ncbi.nlm.nih.gov/pubmed/24448790
https://doi.org/10.1111/tpj.15390
https://www.ncbi.nlm.nih.gov/pubmed/34171156
https://doi.org/10.1002/pca.2936
https://doi.org/10.1093/jn/134.12.3479S
https://doi.org/10.1039/C9NP00011A
https://doi.org/10.1007/s11010-019-03516-9
https://www.ncbi.nlm.nih.gov/pubmed/30895499
https://doi.org/10.1016/j.neuroscience.2010.05.049
https://www.ncbi.nlm.nih.gov/pubmed/20570715
https://doi.org/10.1016/j.phytochem.2020.112432
https://www.ncbi.nlm.nih.gov/pubmed/32562918
https://doi.org/10.1111/j.1750-3841.2010.02010.x
https://www.ncbi.nlm.nih.gov/pubmed/21535743
https://doi.org/10.1055/a-1903-2387
https://www.ncbi.nlm.nih.gov/pubmed/36220097
https://doi.org/10.1038/s41598-021-89964-0
https://www.ncbi.nlm.nih.gov/pubmed/34006978
https://doi.org/10.3390/nu12113488
https://www.ncbi.nlm.nih.gov/pubmed/33202902
https://doi.org/10.3390/ijms24076328
https://doi.org/10.3390/biom10010059
https://doi.org/10.1016/j.bbr.2021.113245
https://doi.org/10.1038/nbt.3597
https://doi.org/10.1007/BF02814999
https://doi.org/10.1016/j.nbd.2006.10.003


Molecules 2024, 29, 838 13 of 13

45. Woltjer, R.L.; Maezawa, I.; Ou, J.J.; Montine, K.S.; Montine, T.J. Advanced glycation endproduct precursor alters intracellular
amyloid- beta/A beta PP carboxy-terminal fragment aggregation and cytotoxicity. J. Alzheimers Dis. 2003, 5, 467–476. [CrossRef]

46. Kucheryayskiy, S. mdatools—R package for chemometrics. Chemom. Intell. Lab. Syst. 2020, 198, 103937. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3233/JAD-2003-5607
https://doi.org/10.1016/j.chemolab.2020.103937

	Introduction 
	Results and Discussion 
	Chemical Diversity and Viability in C. asiatica Fractions 
	Correlation between Phytochemical Profiles and Neuroprotective Effect 
	Identification of Neuroprotective Phytochemicals 
	Molecular Networking for Analyzing Chemical Diversity 

	Materials and Methods 
	Associating Chemical Diversity of C. asiatica with % Viability from MC65 Bioassay 
	Biological Activity in MC65 Cellular Line 
	Profiling of Fractions Using Flow-Injection-HRMS 
	Predicting Protective Biological Activity with Mass Spectral Data 
	Compound Identification 
	Molecular Networking 

	Conclusions 
	References

