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Abstract: In the literature, the chemical composition of Rhododendron tomentosum is mainly represented
by the study of isoprenoid compounds of essential oil. In contrast, the study of the content of
flavonoids will contribute to the expansion of pharmacological action and the use of the medicinal
plant for medical purposes. The paper deals with the technology of extracts from Rh. tomentosum
shoots using ethanol of various concentrations and purified water as an extractant. Extracts from
Rh. tomentosum were obtained by a modified method that combined the effects of ultrasound and
temperature to maximize the extraction of biologically active substances from the raw material.
Using the method of high-performance thin-layer chromatography in a system with solvents ethyl
acetate/formic acid/water (15:1:1), the following substances have been separated and identified in
all the extracts obtained: rutin, hyperoside, quercetin, and chlorogenic acid. The total polyphenol
content (TPC) and total flavonoid content (TFC) were estimated using spectrophotometric methods
involving the Folin-Ciocalteu (F-C) reagent and the complexation reaction with aluminum chloride,
respectively. A correlation analysis was conducted between antioxidant activity and the polyphenolic
substance content. Following the DPPH assay, regression analysis shows that phenolic compounds
contribute to about 80% (r2 = 0.8028, p < 0.05) of radical scavenging properties in the extract of
Rh. tomentosum. The extract of Rh. tomentosum obtained by ethanol 30% inhibits the growth of test
cultures of microorganisms in 1:1 and 1:2 dilutions of the clinical strains #211 Staphylococcus aureus
and #222 Enterococcus spp. and the reference strain Pseudomonas aeruginosa ATCC 10145.

Keywords: Rhododendron tomentosum; Ledum palustre; rutin; hyperoside; quercetin; chlorogenic acid;
aluminum chloride; Folin-Ciocalteu reagent; DPPH assay; UV–Vis; HPTL; antimicrobial activity;
antioxidant activity

1. Introduction

Rhododendron tomentosum (formerly Ledum palustre) is an evergreen, squat shrub that
has a significant distribution area on the territory of Ukraine throughout its northern part [1].
Rh. tomentosum is widespread mainly in wet and swampy coniferous and deciduous forests,
sphagnum marshes, and peatlands in the northern regions of Europe, North America,
including the northern parts of Canada and Alaska, Siberia, and North Asia [2]. The
popular names of Rh. tomentosum are marsh labrador tea, northern labrador tea, and wild
rosemary [3–5]. As a raw material of Rh. tomentosum, only young shoots of the first year
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up to 10.0 cm long are harvested. They are crushed together with flowers and leaves. The
Rh. tomentosum has a low level of regeneration, so after cutting the shoots, the biomass is
restored only after 3 years. Rh. tomentosum is a pharmacopeial plant raw material in France
and Germany (French Pharmacopoeia, 2007; German Homoeopathic Pharmacopoeia, 2000).

In traditional Ukrainian medicine, the shoots of Rh. Tomentosum are used in the form
of an aqueous infusion or decoction. Historically, this infusion has been used to treat
various respiratory and pulmonary ailments, such as bronchitis, tuberculosis, pertussis
(whooping cough), and asthma. On the other hand, decoction and oil infusion are used
as an ointment formulated with an animal fat base, which is applied topically to address
issues such as eczema, scabies, and insect stings. And the shoots of Rh. Tomentosum have
long been used as an insecticide to repel moths and other insects by placing the shoots
indoors. In the pharmaceutical market of Ukraine, there is a plant blend containing the
shoots of Rh. Tomentosum, “Fitobronkhol” (Liktravy, Zhytomyr), and separately, the shoots
of Rh. tomentosum (PJSC Pharmaceutical Factory “VIOLA”, Zaporizhzhia) can be purchased
at a pharmacy to treat diseases that are accompanied by cough in the form of an infusion
(10 g in 200 mL of water at the dose of ¼ of a glass, 2–3 times per day).

In the traditional medicine of other peoples of the world, Rh. tomentosum has been
used to treat headaches, toothache, pain, and shingles. The leaves are also used as marsh
tea, which is considered to act as an abortifacient, diaphoretic, diuretic, emetic, expectorant,
and galactagogue. Rh. tomentosum leaves and shoots are used in China to treat coughs and
asthma, to decrease blood pressure, and as an antifungal agent [6–8].

Despite the long tradition of its use, this plant has always been treated with caution
due to its essential oil content. The fragrance of Rh. tomentosum is so intense that it can cause
a headache. Drinking excessive amounts of Rh. tomentosum tea is not recommended, as it is
very strong and can lead to serious side effects, including intestinal disturbances, drowsi-
ness, and a strong diuretic effect. Rh. tomentosum has a high content of volatile compounds
in the essential oil; one of the more toxic compounds involved is the sesquiterpenoid ledol,
which has an effect on the nervous system [6].

Table 1 shows collected information on the results of the study of the pharmacological
activity of shoots, which are presented in scientific publications and placed in publicly
accessible reference databases.

Table 1. Summary of pharmacological studies of Rh. tomentosum.

Confirmed
Biological Activity Extract Type Probable Active

Compounds Method Applied Results Source

Anticancer
potential

Dried extracts
obtained by

extraction with water,
70% ethanol,

isopropanol, acetone,
and chloroform

May be attributed to
ursolic acid as a

constituent
component

In vitro using primary human
myeloid leukemia cell line

patient samples, in vivro on
mice engrafted with

C1498 cells

This study demonstrated
that extracts can exert

anti-AML activity
[9]

Antidiabetic

Dried extracts
obtained by

extraction with
80% ethanol

Polyphenols

In vitro using the Caco-2
human enterocytic cell line
and in vivo using an oral

glucose tolerance test (OGTT)

These studies indicate a
decrease in glucose

absorption during an OGTT
in normoglycemic rats and
a significant decrease in the
protein expression of SGLT1

and GLUT2 in
CaCo2/15 cells

[10]
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Table 1. Cont.

Confirmed
Biological Activity Extract Type Probable Active

Compounds Method Applied Results Source

Antidiabetic
potential

Dried extracts
obtained by

extraction with
80% ethanol

Chlorogenic acid,
catechins, taxifolin,

and quercetin
glycosides

Using potentiation
of basal and

insulin-stimulated glucose
uptake by skeletal muscle

cells (C2C12) and adipocytes
(3T3-L1), potentiation of

glucose-stimulated insulin
secretion by pancreatic b cells

(bTC), potentiation of
adipogenesis in 3T3-L1 cells,
protection against glucose

toxicity and glucose
deprivation in PC12-AC

neuronal precursor cells, and
DPPH oxygen free
radical scavenging

The present study revealed
that Rh. tomentosum exhibits

a promising profile of
antidiabetic potential and is
a good candidate for more

in-depth evaluation

[11]

Antioxidant and
anti-inflammatory

activities

Extract obtained by
extraction with 70%

ethanol and
was fractionated by

EtOAc

Unknown

Antioxidant by DPPH and
ABTS assay. The

anti-inflammatory activities
by the inhibitory activity

against NO, PGE2, TNF-α,
IL-1β, and IL-6 production on

LPS-stimulated raw
264.7 macrophages

Extracts have high
antioxidant activities

similar to vitamin C, and
the low concentration of

extracts have high
anti-inflammatory activities

[12]

Analgesic and
anti-inflammatory

activities

Essential oil,
methanol extract, and

aqueous extract

Flavonoid
components

In vivo using model of acetic
acid-induced writhing

response and
anti-inflammatory effect by

using model of
lambda-carrageenan-induced

paw adema in mice

The analgesic and
anti-inflammatory effects of

methanol extract
[13]

Anti-inflammatory
effect

Novogalene agent
Ledum 50 obtained

by 50% ethanol

Polyphenolic
compounds

In vivo model of acute
bronchitis initiated by

endotracheal administration
of 1% formalin solution

Normalization of the
histostructure of the
respiratory system

[14]

Anti-inflammatory
activity

Dried extracts
obtained by

extraction with water
Unknown

In vitro using evaluation of
inhibitory activity on

prostaglandin biosynthesis
and platelet-activating factor

(PAF)-induced exocytosis

High inhibition was
obtained, prostaglandin

inhibition 50 ± 4%,
PAF–exocytosis inhibition

71 ± 3%

[15]

Toxic, antioxidant,
and antifungal

activity

Essential oils
obtained by

hydrodistillation

The major compounds
were palustrol, ledol,

ascaridol isomers,
myrcene, and

cyclocolorenone
isomers

The toxic activity using a
brine shrimp (Artemia sp.)
bioassay, DPPH and ABTS

assay, and antifungal activity
by agar disc diffusion assay

(Candida parapsilosis)

Notable toxic activity of
essential oils, high abilities

to scavenge radicals,
possess potential antifungal

activity

[16]

Antioxidant and
antimicrobial

activities

Essential oil obtained
by hydrodistillation

and methanol
extracts

The major compounds
sabinene,

terpinen-4-ol,
myrtenal, α-pinen,

β-selinene, α-selinene,
and γ-elemene

Antioxidant activity by
TBARS, NBT, and DPPH

assay and inhibition of lipid
peroxide formation.

Antimicrobial activity by MIC
(minimum inhibitory

concentration) test and disc
diffusion method

The methanol extract and
essential oil showed

antioxidant activity. The oil
showed antimicrobial

activity against
Streptococcus pneumoniae,
Clostridium perfringens,

Candida albicans,
Mycobacterium smegmatis,
Acinetobacter lwoffii, and
Candida krusei, while the

methanolic extracts
exhibited slight or

no activity

[17]
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Table 1. Cont.

Confirmed
Biological Activity Extract Type Probable Active

Compounds Method Applied Results Source

Antioxidant
activities

Essential oil obtained
by hydrodistillation,
extract obtained by
extraction with 70%

ethanol

The major compounds
4-thujene, α-thujenal,

and
(-)-4-terpineolwhile.

In the ethanol extract
were α-farnesene,

n-tetradecane,
hexadecanoic acid,
oblivon c, and lilac

aldehyde

DPPH and ABTS assay

Ethanol extract showed
stronger antioxidant

activities than the
essential oil

[18]

Antimicrobial
activities

Essential oil obtained
by steam distillation,
CO2 by supercritical

carbon dioxide

The main compounds
EO palustrol, myrcene,

and ledol. In scCO2
extract, the major

components palustrol
and ledol, and

myrcene absent

Using modified agar well
diffusion methods against S.

aureus, P. aeruginosa, C.
albicans, A. niger, C.

cladosporioides, and P. venetum

All the EOs and scCO2
extracts showed a broad

spectrum of antimicrobial
activities against the

selected microbes

[19]

Antibacterial
activity

Essential oil was
isolated by subcritical

fluid extraction
technology with

butane as a solvent

The main constituents
α-thujenal,

bicyclocompounds,
β-phellandrene,

benzene,1-methyl-3-
(1-methylethyl,

propanal,2-methyl-3-
phenyl, and
β-terpineol

Using the modified
disc method

Extract expressed good
antibacterial activity
against the marine

pathogen V.
parahaemolyticus

[20]

Insecticidal activity
on mosquitoes,
moths, and flies

Essential oil obtained
by hydrodistillation

The main constituents
p-cymene,

isoascaridole, and
cis-ascaridole

Culex quinquefasciatus
larvae, M. domestica adults, S.

littoralis early 3rd instar
larvae. Toxicity on the

nontarget aquatic
microcrustacean Daphnia
magna and soil organisms

Eisenia fetida. Toxicity
keratinocytes cell line

(HaCaT), primary human
fibroblast cell line (NHF A12),

and MTT assay

Essential oil showed
significant mortality on the

larvae of C.
quinquefasciatus and S.
littoralis and adults of M.
domestica, with little or no

impact on beneficial
organisms such as aquatic

microcrustacean and
earthworms and moderate

toxicity on human
fibroblasts and
keratinocytes

[21]

Mosquito
repellent

Volatile compounds
were collected by

solid phase
microextraction,
essential oil was

obtained by steam
distillation, extracts
were extracted with
hexane, ethyl acetate,

or methanol

The volatile fraction of
an ethyl acetate extract

has the major
compounds p-cymene,

terpinyl acetate,
sabinene, p-pinene,

bornyl acetate, α
pinene,

β-phellandrene,
camphene, Z-ocimene,

and γ-terpinene

Repellency bioassays were
carried out using cages made
of mosquito netting and field

experiment

Ethyl acetate extracts
significantly reduced the
probing activity of Aedes
aegypti (L.) and reduced

biting by mosquitoes

[22]

Repellency activity Oil, 10%, diluted in
acetone

Compounds of
essential oil

A repellency bioassay on I.
ricinus nymphs Exhibited 95% repellency [23]

Antihyperuricmic
Mother tincture

Ledum palustre L.,
potency 30c and 1M

Homeopathy Potassium oxonate induced
rat model

The present study indicated
marked hypouricemic
effects; however, clear

conclusion of hypouricemic
potential of Ledum palustre

required replication of
experiment

[24]
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Table 1. Cont.

Confirmed
Biological Activity Extract Type Probable Active

Compounds Method Applied Results Source

Antihyperuricmic Mother tincture
Ledum palustre L. Homeopathy

Randomized single-blind
experimental design was
applied to the study (200

humans). For analysis of uric
acid in blood samples, the

enzymatic method was
selected

The value of reduction in
serum uric acid in males
was 4.3 ± 0.3, in females

was 4.6 ± 0.4

[25]

Rh. tomentosum is considered by scientists primarily as an ethereal medicinal plant,
but it also contains other groups of biologically active substances, such as phenol carboxylic
acids, flavonoids, polysaccharides, and pectin substances [5,8]. The chemical composition
of the plant in the literature is represented mainly by the study of isoprenoid compounds
of essential oil. In contrast, the content of polyphenolic compounds has not been studied
enough. Given the wide biological activity of polyphenolic compounds as flavonoids, it
is important to study the technology of extracts from the shoots of Rh. tomentosum and
carry out a qualitative and quantitative study of their composition [26]. Thus, extraction
of dried plant material with different solvents was performed, and characterization of the
obtained extracts was achieved by chromatographic (HPTLC), spectrophotometric, and
microbiological methods.

2. Results

For the research, 10 samples of extracts of Rh. tomentosum were prepared, nine of which
were obtained by extraction with ethanol of various concentrations from 10% to 90% in
steps of 10% (EtOH10, EtOH20, etc.) and one with purified water (EtOH0). On the one hand,
this approach was chosen due to the fact that ethanol is the most acceptable compound
in pharmaceutical drug technology due to its relatively safe toxic profile, and on the
other hand, the studied group of biologically active substances, polyphenolic compounds,
are soluble in a wide range of ethanol concentrations [27–29]. The liquid extracts were
obtained by the method of threefold fractional maceration in combination with the effect
of ultrasound in the ratio of raw materials/extractant 1:20. The first portion of the extract
was collected separately, the second and third portions were combined and evaporated
to dryness, and the resulting dry residue was dissolved in the first portion of the extract.
Thus, the extracts to be studied were prepared in the ratio of raw material to extractant 1:5.

2.1. HPTLC-UV/Vis Method Development

The purpose of the chromatographic study was to identify flavonoids in Rh. tomen-
tosum using active markers, which were subsequently used as standard samples for the
quantitative determination of the total flavonoid content by the UV–Vis method. For
the chromatographic separation of polyphenol compounds, several eluent systems were
tested: ethyl acetate/methanol/water/formic acid (50:10:7:1), ethyl acetate/methyl ethyl
ketone/formic acid/water (50:30:10:10), and ethyl acetate/water/formic acid/acetic acid
(68:18:7:7). The highest resolution of flavonoids and phenolic acids was obtained using
the solvent system ethyl acetate/formic acid/water (15:1:1); the obtained HPTLC chro-
matograms are shown in Figures 1 and 2.

In the process of HPTLC fingerprint analysis, the identification of substances is based
on the Rf value (position of the bands and color background) of the standard substances
and the studied extracts [30,31]. HPTLC chromatograms visually show similarities and
differences in the composition of the test samples. As can be seen from the results, on
the chromatographic strips of the test samples scanned after derivatization in UV light
at 366 nm, there are zones that correspond in color and Rf to the standard samples of
rutin Rf (0.12), hyperoside Rf (0.32), and quercetin Rf (0.94) [32,33]. As can be seen from
Figure 1, rutin, hyperoside, and quercetin are present in all extract samples regardless
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of the extractant, but in terms of the intensity of color and the size of the colored zones,
it can be argued that samples in which the extractants were purified water and ethanol
10% are somewhat inferior. In addition to flavonoids, standards of phenolic acids, namely
chlorogenic acid, rosmarinic acid, and caffeic acid, were applied to the chromatographic
plate [34,35].
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Figure 1. HPTLC fingerprints of the extracts of Rh. tomentosum and standards with increasing
Rf at λ 366 nm after derivatization: 1—rosmarinic acid, 2—caffeic acid, 3—chlorogenic acid + ros-
marinic acid + caffeic acid, 4—EtOH0, 5—EtOH10, 6—EtOH20, 7—EtOH30, 8—EtOH40, 9—EtOH50,
10—EtOH60, 11—EtOH70, 12—EtOH80, 13—EtOH90, 14—rutin + hyperoside + quercetin,
15—hyperoside.
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Figure 2. HPTLC fingerprints of the extracts of Rh. tomentosum and standards with increasing Rf
at λ 254 nm before derivatization: 1—rosmarinic acid, 2—caffeic acid, 3—chlorogenic acid + ros-
marinic acid + caffeic acid, 4—EtOH0, 5—EtOH10, 6—EtOH20, 7—EtOH30, 8—EtOH40, 9—EtOH50,
10—EtOH60, 11—EtOH70, 12—EtOH80, 13—EtOH90, 14—rutin + hyperoside + quercetin,
15—hyperoside.

After scanning chromatographic zones before derivatization in UV light at 254 nm
(Figure 2) and after detection in UV light at 366 nm (Figure 1), chlorogenic acid Rf (0.32)
was identified. The substances rutin, hyperoside, quercetin, and chlorogenic acid were
also detected by the authors [3,36] in the raw material of Rh. tomentosum. The zones of
rosmarinic acid and caffeic acid standard substances differ in color in UV light at 254 nm,
which may indicate their absence in the raw material.

2.2. Determination of Total Phenolic Content

The Folin-Ciocalteu (F-C) assay is a colorimetric method based on single-electron
transfer reactions between the F-C reagent and phenolic compounds. Phenolic compounds
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act as effective oxygen radical scavengers because phenolic radicals’ electron reduction
potential is lower than oxygen radicals, and phenoxyl radicals are less reactive than oxygen
radicals. Thus, phenolic compounds’ scavenging of reactive oxygen radicals halts further
oxidative reactions [37]. The results of determining the total phenolic compounds in the Rh.
tomentosum extracts are presented in Figure 3. The total phenolic content was expressed as
gallic acid equivalents (mg of GAE/g).
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2.3. Determination of Total Flavonoid Content

The most commonly used method for quantifying the total flavonoid content (TFC)
is the method of differential spectrophotometry after the complexation reaction with
AlCl3 [38,39]. Due to the multifactorial dependence of the results of spectrophotomet-
ric quantification of the TFC, the reproducibility of the technique receives special attention.
Therefore, at the stage of the methodology development, the electronic absorption spectra
of extracts and the spectra obtained by three methods that differed in conditions were
taken (Figure 4). All samples were tested under the same sample preparation conditions: a
reaction time of 30 min at room temperature without direct sunlight [40].

The study of the TFC in the analyzed samples, depending on the extractant used, was
carried out in comparison with such standard samples as rutin, hyperoside, and quercetin.
The TFC of Rh. tomentosum determined in extracts under the conditions of three methods
and expressed as rutin, hyperoside, and quercetin equivalents are shown in Figure 5.
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2.4. DPPH Radical Scavenging Activity

The DPPH radical is known for its remarkable stability due to the delocalization of the
radical in aromatic rings. The radical is neutralized in assays by accepting either a hydrogen
atom or an electron from an antioxidant species (or reducing agent). It is converted into
a reduced form (DPPH or DPPH-H) during this process. The unpaired electron of the
DPPH radical absorbs strongly at 517 nm, resulting in a deep purple color. However, when
the odd electron pairs up with another electron, the initial color gradually fades to pale
yellow [37]. The results of radical scavenging activity of the Rh. tomentosum extracts are
presented in Figure 6. The antioxidant activity was expressed as quercetin equivalent
antioxidant capacity (mg QEAC/mL).

2.5. Determining Antimicrobial Activity In Vitro

By the well agar diffusion method, there were no growth inhibition zones of the tested
microorganisms around the wells with the water extract. However, when the extract was
dripped onto the inoculated agar, there was growth inhibition. It could be explained by the
slow diffusion of the extract into the agar. Ethanol extracts inhibited the growth of Gram-
positive bacteria such as staphylococci (#223, #221, and #b2) and enterococci and did not
inhibit the growth of Gram-negative microorganisms and fungi (Figure 7). Extracts EtOH70
and EtOH60 showed the best antimicrobial activity against staphylococci and the reference
Pseudomonas. Despite this, EtOH30-90 extracts inhibited the growth of Pseudomonas aerugi-
nosa. It was often possible to observe the secondary growth of microorganisms in the zone
of growth retardation of the culture, which indicates an insufficient concentration of the
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active substance for a bactericidal effect on some microorganisms. Ethanol control in all
dilutions did not inhibit the growth of the tested microorganisms.
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expressed as equivalents of rutin, hyperoside, and quercetin.

The water extract EtOH0 partially inhibited the growth of all tested microorganisms
in the first dilution (1:1). In the second dilution (1:2), there was no inhibition. A bactericidal
effect was observed against Enterococcus spp. in the first dilution (the colonies were pale
and small in contrast to the colonies from the second dilution) (Table 2).

Ethanol extracts EtOH10 and EtOH20 inhibit the growth of bacteria in dilutions
1:1 and partially in 1:2. The EtOH10 extract practically did not inhibit the clinical strain of
biofilm-forming Staphylococcus aureus #b2 and the museum strain of Pseudomonas aeruginosa
ATCC 10145, while the EtOH20 extract inhibited these strains at 1:1 dilution. Ethanol
extract EtOH30 completely inhibits the growth of test cultures of microorganisms in 1:1 and
1:2 dilutions of the clinical strains #211 Staphylococcus aureus and #222 Enterococcus spp. and
the reference strain Pseudomonas aeruginosa ATCC 10145. Ethanol extracts from EtOH40
to EtOH90 completely suppress the growth of test cultures of microorganisms in 1 and
2 dilutions, as well as ethyl alcohol (control).
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Table 2. Antimicrobial effect of Rh. tomentosum extracts by the method of serial dilutions (1:1; 1:2),
number of colony-forming units (CFU).

№195 Staphylococcus
aureus ATCC 25923

№ b2
Staphylococcus

aureus
Biofilm-Forming

№ 223
Staphylococcus

delphinium

№211
Staphylococcus

aureus

№222
Enterococcus

spp.

192
Pseudomonas

aeruginosa
ATCC 10145

Dilution 1:1 1:2 1:1 1:2 1:1 1:2 1:1 1:2 1:1 1:2 1:1 1:2

EtOH0 80 TG 10 105 50 105 30 150 45 105 2 50

EtOH10 1 60 80 160 0 80 0 80 11 0 90 TG

EtOH20 0 45 0 200 11 5 0 1 0 0 0 TG

EtOH30 0 0 0 40 0 4 0 3 0 0 0 90

EtOH40 0 0 0 0 0 0 0 0 0 0 0 0

EtOH50 0 0 0 0 0 0 0 0 0 0 0 0

EtOH60 0 0 0 2 0 0 0 0 0 0 0 0

EtOH70 0 0 0 0 0 0 0 0 0 0 0 0

EtOH80 0 0 0 0 0 0 0 0 0 0 0 0

EtOH90 0 0 0 0 0 0 0 0 0 0 0 0

0—no growth; CFU—colony-forming units; TG—total solid growth.
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retardation zone.

3. Discussion

Polyphenols are a numerous class of secondary metabolites of plant raw materials,
which today has about 10,000 identified individual compounds [41]. They are produced
by plants to protect them from abiotic and biotic factors. They can be classified into five
different subgroups based on their structure: phenolic acids (which are further subdi-
vided into hydroxybenzoic, and hydroxycinnamic acids), flavonoids (subdivided into
flavonols, flavan-3-ols, flavones, flavanones, isoflavones, flavanonols, and anthocyanidins),
coumarins, lignans, and stilbenes. Among them, flavonoids are the most abundant in
plants [38].

Using the HPTL method (Figures 1 and 2), flavonols such as rutin, hyperoside,
quercetin, and one hydroxycinnamic acid, chlorogenic acid, were identified in all studied
extracts of Rh. tomentosum. The presence of these substances in the raw materials of Rh.
tomentosum causes a wide spectrum of pharmacotherapeutic action characteristic of these
substances. This may partly explain the effectiveness of infusions and decoctions in folk
medicine. At the same time, the presence of various groups of biologically active sub-
stances in the raw material may lead to a synergistic pharmacotherapeutic effect. Therefore,
appropriate methods are employed to assess the total content of some groups of substances.

Several analytical techniques can determine polyphenol content. An alternative
method for evaluating the content of total polyphenols in various samples is to use a
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spectrophotometric method such as Folin-Ciocalteu (F-C) or a method that utilizes an
aluminum complexation reaction for total flavonoids. These methods are not specific
and are typically used to assess the total content of all polyphenols or some subgroup of
polyphenols. The F-C method is based on single-electron transfer reactions between the F-C
reagent and phenolic compounds [37]. The TPC was expressed as gallic acid equivalents.
As can be seen from Figure 3, all studied extracts of Rh. tomentosum have substances of
polyphenol structure; however, the maximum amount is observed in extracts extracted
with ethanol at a concentration of 40% and 50% (50.91 ± 2.78 and 50.45 ± 1.60 mgGAE/g,
respectively, for EtOH40 and EtOH50). The wide range of ethanol concentrations at which
the maximum extraction of polyphenolic substances is observed may be due to the fact
that, for example, glycoside and aglycone forms of flavonoids have different solubility in
ethanol [28].

During the determination of TFC using the complexation reaction with aluminum
chloride in various reaction media, variations in the values of the bathochromic shift of the
electronic absorption spectrum were noted (Figure 4). Quercetin, rutin, and hyperoside
were used as flavonoid markers, which were identified in the extracts of Rh. tomentosum
by the HTPLC method. Correct determination of absorption maxima affects the final
result of calculations of TFC (Figure 5). Numerous scientific publications are devoted
to the study of the spectrophotometric behavior of flavonoids in reactions with AlCl3,
which demonstrate that the differential spectra of flavonoids (wavelength and intensity of
maximum absorption) depend on the chemical nature of the flavonoids, the stoichiometric
ratio of AlCl3 molecules and flavonoids, the pH of the medium, the time and conditions (in
darkness or daylight) of the reaction, etc. [42–47].

According to the scientific literature, the reaction of complexation with AlCl3 can poten-
tially have several centers for the course, the localization of which is determined by the pres-
ence of a nearby hydroxyl and carbonyl group in the C-4 position of the C-ring [38,39,41,45].
The 3-OH and C=O group (“3-4 site”), 5-OH and C=O group (“5-4 site”), or a pair of 3′-OH
and 4′-OH groups of ring B (“3′-4′ site”) can participate in the binding of metal ions. Figure 8
shows possible ways of complexation using the example of the quercetin molecule [38].
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A possible simultaneous substitution along the rings A and B leads to a bathochromic
shift of bands and an increase in the intensity of absorption [38]. Rutin and hyperoside
flavonoid molecules differ from quercetin in the presence of a glycosidic substituent at-
tached to the oxygen atom at position 3, so rutin and hyperoside have a “5-4 site” and a
“3′-4′ site” to form complexes with aluminum ions.
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The bathochromic shift of absorption maxima in the electronic spectra of both the test
samples and the standard substances of rutin, hyperoside, and quercetin compared to the
published data in scientific articles [39,43,44] can be explained by the use of ammonium
acetate instead of potassium or sodium acetates (Method III) and a different, twice greater
concentration of AlCl3 in all three methods.

Under the conditions of an increase in the concentration of AlCl3 compared to those
described in the literature [44], a significant bathochromic shift is observed as a possible
result of interaction at several binding coordination centers in the flavonoid molecule.
According to the authors [46], the interaction of flavonoid molecules with aluminum ions
occurs sequentially in the order of binding “3′-4′ site”—“3-4 site”—“5-4 site” [46,48]. This
means that the binding of aluminum ions to the site “3-4 site” will take place when all
“3′-4′ sites” are occupied.

Analysis of the obtained data (Figure 4) indicates that the introduction of donor
substituents into the reaction mixture leads to a bathochromic shift in all test samples. The
value of bathochromic shift for extracts obtained by Method I is in the range of 65–85 nm
and maxima are observed at 420–431 nm. The values of bathochromic shift for test samples
obtained by methods II and III practically coincide and are slightly less than 65–80 nm, and
the absorption maxima are in the wavelength range of 405–420 nm. The difference in the
spectral behavior of flavonoids can be explained by the fact that flavones and flavonols
from AlCl3, which contain hydroxyl groups at C-3 and/or C-5 and C-4 ketol groups, form
acid-resistant complexes and acid-labile complexes with ortho-dihydroxyl systems (3′-OH
and 4′-OH groups of ring B) [38,46]. The complexes formed between AlCl3 and the ortho-
dihydroxyl groups of ring B decompose in the presence of acid. Thus, by performing the
complexation reaction of flavonoids with AlCl3 in various reaction media under these
experimental conditions, it can be assumed that there are such groups of flavonoids as
flavones and flavonols with a potential antioxidant effect [49].

The TFC of Rh. tomentosum determined in liquid extracts under the conditions of three
methods and expressed as equivalents of rutin, hyperoside, and quercetin are shown in
Figure 5. As can be seen from the data, the use of quercetin as a standard substance to
recalculate the total amount of flavonoids in Rh. tomentosum extracts under these experi-
mental conditions can give both false-positive and false-negative results. The question of
the dependence of the results of determining the total flavonoid content on the choice of the
standard of flavonoids, experimental conditions, and selected wavelengths for calculations
is of critical importance and is discussed by the authors in publications [43–45]. Thus,
the question of the dependence of the results of determining the amount of flavonoids
on the experiment conditions and the selected wavelengths for calculations is of critical
importance and affects the final result of the determination.

For the raw material of Rh. tomentosum shoots, according to the results of chromato-
graphic and spectrophotometric studies, it is advisable to use rutin or hyperoside as a
standard substance. Regardless of the selected markers and method, the largest amount of
flavonoids was found in the samples obtained using 60%, 70%, and 80% ethyl alcohol as
an extractant.

Analyzing the antioxidant activity of the Rh. tomentosum extracts using the DPPH
assay (Figure 6), it was observed that the extracts obtained by extraction with ethanol con-
centrations ranging from 30% to 90% exhibit slightly higher values of radical scavenging
activity, falling within the range of 15.19 ± 1.14%–30.65 ± 6.75%. There is a correlation
between the values obtained during the determination of TPC and antioxidant capacity.
Quercetin was used as a standard antioxidant, positive control, and its calibration curve
was determined in the range of concentration from 0.1 to 1.0 µg/mL. Quercetin equivalent
antioxidant capacity was calculated using the regression equation between radical scav-
enging activity (%) of the extracts of Rh. tomentosum and mg QEAC/mL (Pearson’s r 0.996,
p < 0.05). The quercetin equivalent antioxidant capacity of the extracts of Rh. tomentosum
ranged from 0.88 ± 0.08 to 2.02 ± 0.49 mgQEAC/mL. However, no significant difference in
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the antioxidant activity of the samples was found, and the obtained values were within the
standard deviation.

The relationship between total flavonoid content under different methods and total
phenolic and antioxidant activity using the DPPH assay extract of Rh. tomentosum is shown
in Figure 9.
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Following the DPPH assay, regression analysis shows that phenolic compounds con-
tribute to about 80% (r2 = 0.8028, p < 0.05) of the radical scavenging properties in the extract
of Rh. tomentosum [50,51]. Similarly, flavonoids contribute to about 55–82% (r2 = 0.5565,
p < 0.05; r2 = 0.6719, p < 0.05; r2 = 0.8226, p < 0.05 under the methods I, II, and II, respectively)
expressed as rutin equivalents, about 60–72% (r2 = 0.60406, p < 0.05; r2 = 0.595, p < 0.05;
r2 = 0.7195, p < 0.05 under the methods I, II, and II, respectively) expressed as hyperoside
equivalents, and about 52–61% (r2 = 0.6049, p < 0.05; r2 = 0.5202, p < 0.05; r2 = 0.6079, p < 0.05
under the methods I, II, and II, respectively) expressed as quercetin equivalents. Evidently,
the rest of the proportion of antioxidant activity comes from nonphenolic compounds.
Phenolics and flavonoids, in general, constitute a major group of compounds that act as
primary antioxidants and are known to react with superoxide anion radicals, hydroxyl
radicals, and lipid peroxyl radicals. They are also known to protect DNA from oxidative
damage, inhibit the growth of tumor cells, and possess anti-inflammatory and antimicrobial
properties [52,53].

When conducting microbiological studies, unexpected results were obtained, which
require detailed further studies of the chemical composition of Rh. tomentosum extracts
obtained during extraction with water and low-concentration ethanol. Despite the quantita-
tive analysis showing a lower presence of polyphenols and flavonoids in extracts obtained
with water and lower ethanol concentrations, ethanol extracts at 10%, 20%, and 30%, and
especially at 60% and 70%, concentrations demonstrated significant antimicrobial effec-
tiveness against both Gram-positive and Gram-negative bacteria, with water extracts also
displaying this activity, albeit to a reduced degree. As can be seen from the data in Table 2,
ethanol extract EtOH30 completely inhibits the growth of test cultures of microorganisms in
1:1 and 1:2 dilutions of the clinical strains #211 Staphylococcus aureus and #222 Enterococcus
spp. and the reference strain Pseudomonas aeruginosa ATCC 10145. In a solid nutrient
medium (agar diffusion method), extracts EtOH70 and EtOH 60 showed the best antimicro-
bial activity, but the presence of secondary growth of bacteria may indicate an insufficient
amount of active substances in these extracts. On the other hand, water extract and EtOH30
did not show any effect on solid agar, in contrast to liquid medium, which may indicate
poor diffusion of active substances.

4. Materials and Methods
4.1. Chemicals

All the chemicals and reagents used were of analytical grade. Ethanol, methanol, ethyl
acetate, formic acid, ammonium acetate, glacial acetic acid, aluminum chloride hexahydrate,
2,2-Diphenyl-1-picrylhydrazyl (DPPH), Folin-Ciocalteu reagent, and sodium carbonate
were purchased from Poch S.A. (Gliwice, Poland). The standards of rutin, hyperoside,
quercetin, rosmarinic acid, caffeic acid, gallic acid, and chlorogenic acid were purchased
from Sigma-Aldrich (Poznań, Poland). HPTLC analyses were performed on 20 cm × 10 cm
HPTLC silica gel 60 F254 plates (Merck, Darmstadt, Germany).

4.2. Plant Material

The shoots of Rh. tomentosum (Ledum palustre) were collected at the fruiting stage in
the forest belts of the Rivne region (Ukraine, 51.302381◦ N, 26.509154◦ E). The identity of
the raw material was established by Nadiia Kovalska, Assoc. Prof. of the Department
of Pharmacognosy and Botany of Bogomolets National Medical University. The voucher
specimens of the plant have been deposited in the herbarium of the department [54–56].
The shoots were shade-dried at 25–35 ◦C and stored in tightly closed containers.

4.3. Extracts Preparation

Extracts from Rh. tomentosum shoots were obtained using a modified method that com-
bined the effects of ultrasound and temperature to maximize the extraction of biologically
active substances from the raw material [28,57–59]. Extracts were prepared using different
concentrations of hydroalcoholic mixture and purified water to determine the effect of
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ethanol concentration on the extraction of flavonoids in the form of aglycones and glyco-
sides since glycosidic and aglyconic forms of flavonoids have different solubility [27,60,61].
The use of ethanol as an extractant is the most acceptable in the pharmaceutical industry
for the manufacture of herbal medicines and does not require a test for residual amounts
of extractants in plant extracts. About 5.0 g of raw material (exact weight) was crushed to
the size of particles passing through a 60 mesh sieve, placed in a flask with a thin section
with a capacity of 100 mL, and 50 mL of the corresponding extractant was added to it. An
extractant ethanol of various concentrations was used: 10%, 20%, 30%, 40%, 50%, 60%,
70%, 80%, 90%, or purified water. The flask was sealed and left to infuse for 24 h at room
temperature (21 ± 1) ◦C. After infusion, ultrasonic extraction was performed by placing
the flasks in an ultrasonic bath (Elmasonic S30H, Elma Schrnidbauer GmbH) for 30 min.
Under the influence of ultrasound, there is an unauthorized increase in temperature, which
at the end of the ultrasonic extraction of raw materials was (45 ± 0.5) ◦C. The resulting
extract was filtered through cotton wool so that the particles of raw materials did not fall
on the filter. Extraction was carried out twice more under the conditions described above
with 25 mL of fresh extractant, filtering the extracts into the same flask. The first portion
of the extract was collected separately, the second and third portions were combined and
evaporated to dryness (rotary evaporator Heating Bath B-100, BUCHI) at a temperature of
(45 ± 0.2) ◦C and a vacuum of 0.01 MPa; the resulting dry residue was dissolved in the first
portion of the extract. Thus, the extracts to be studied were prepared in the ratio of raw
material to extractant 1:5.

4.4. Chromatographic Analyses

The test samples and standard substances were applied to the plates using an au-
tomatic HPTLC application device (Linomat 5, CAMAG, Muttenz, Switzerland). For
chromatographic studies, extracts (2 mL) were additionally filtered through a Millipore
filter with a pore size of 0.45 µm. The sample application volume was 5 µL. Methanol
solutions of standard substances were prepared at the following concentrations: rutin
1 mg/mL, hyperoside 1 mg/mL, quercetin 0.2 mg/mL, rosmarinic acid 1 mg/mL, caffeic
acid 1 mg/mL, and chlorogenic acid 0.2 mg/mL.

Chromatographic separation was performed on HPTLC plates in a vertical glass
chamber (CAMAG). In the mobile phase, the ethyl acetate/formic acid/water ratio was
15:1:1 [31,62,63]. A total of 70 mL of the mobile phase was used, and the chamber saturation
time with the mobile phase was 40 min. After the eluent covered the distance from the start
line to the finish line, the plates were removed from the chamber and dried in an oven at
(105 ± 2) ◦C. Detection was based on natural fluorescence before and after derivatization
by sequentially spraying 2-aminoethyl diphenylborate (10 g/L) and macrogol 400 (50 g/L)
in UV light at 254 and 366 nm. The obtained chromatographic images were analyzed using
HPTLC software (visionCATS, CAMAG).

4.5. Method for Determination of Total Phenolic Content

Total phenolic content (TPC) was determined by using the Folin-Ciocalteu method [64].
Briefly, 0.25 mL of the diluted sample was added to 0.25 mL 1:1 diluted Folin-Ciocalteu
reagent, and then 0.5 mL of saturated sodium carbonate solution (200 g/L) was added after
4 min, along with 4.0 mL of water. After incubation at room temperature (23–25 ◦C) for
45 min, the absorbance of the mixture was measured at 760 nm using a U-3900/3900H
Hitachi UV–Vis spectrophotometer (Hitachi, Tokyo, Japan). The compensation solution was
water. All analyses were performed in triplicate. The total phenolic content was expressed
as gallic acid equivalents (mg of GAE/g) according to the formula:

X, mg/g =
A·mst·K

Ast·m
·1000,

where X—the total phenolic content in terms of gallic acid, mg/g;
K—dilution factor;
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A—absorption of diluted sample at 760 nm;
Ast—absorption of solutions of gallic acid at 760 nm.
The calibration range of gallic acid was from 5.45 to 12.48 µg/mL.

4.6. Method for Determining the Total Flavonoid Content

The content of flavonoids was determined using differential spectrophotometry based
on the formation of complexes of aluminum ions with flavonoids in a different reaction
medium according to the method described in article [45]. Determination was carried out
in methanol according to three methods that differed in the reaction medium—the first
with the addition of only AlCl3, the second with AlCl3 and CH3COOH, and the third with
AlCl3 and CH3COONH4 [44,65,66]. For the UV–Vis analysis, the original test samples were
diluted with methanol so that the maximum absorption at the wavelengths of interest
(λmax) was within the range of 0.6–0.8.

Method I: 2 mL of methanol, 0.5 mL of the test extract sample (or standard), and
0.20 mL of a 10% solution of AlCl3 in methanol were successively added to a 5.0 mL flask
and held for 3 min; the volume of methanol was adjusted to 5.0 mL.

Method II: 2 mL of methanol, 0.5 mL of the test extract sample (or standard). and
0.20 mL of a 10% solution of AlCl3 in methanol were successively added to a 5.0 mL flask
and held for 3 min. Next, 0.2 mL of a 1M solution of glacial acetic acid in methanol was
added. and the volume was adjusted to 5.0 mL with methanol.

Method III: 2 mL of methanol, 0.5 mL of the test extract sample (or standard). and
0.20 mL of a 10% solution of AlCl3 in methanol were successively added to a 5.0 mL flask
and held for 3 min. Next, 0.2 mL of a 1M solution of ammonium acetate in methanol was
added. and the volume was adjusted to 5.0 mL with methanol.

Compensation solutions were prepared similarly but without the addition of AlCl3.
The reaction mixtures were thoroughly stirred, held for 30 min at room temperature,

and subjected to spectrophotometric analysis in the range of 280 to 500 nm (U-3900/3900H
Hitachi). All analyses were performed in triplicate.

The total content of flavonoids in the studied extracts was calculated by the standard
method in terms of rutin, hyperoside, or quercetin according to the formula as in the
Section 4.5.

Where X—the total content of flavonoids in terms of rutin, hyperoside, or quercetin, mg/g;
K—dilution factor;
A—absorption at 437 nm (Method I), 409 nm (Method II), or 406 nm (Method III) for

conversion to rutin; at 436 nm (Method I), 407 nm (Method II), or 407 nm (Method III) for
conversion to hyperoside; at 456 nm (Method I), 434 nm (Method II), or 433 nm (Method III)
for conversion to quercetin;

Ast—absorption of solutions of standard samples of flavonoids at the same wavelengths.

4.7. DPPH Radical Scavenging Activity

Antioxidant activities of the samples were analyzed by investigating their abili-
ties to scavenge the DPPH% [67]. Briefly, a 76 µM solution of DPPH (1,1-diphenyl-2-
picrylhydrazyl) was prepared using 96% ethanol. Then, 0.05 mL of the tested extract was
added to 1.95 mL of the DPPH solution in 2 mL tubes. The blank consisted of the same vol-
ume of the extract and 1.95 mL of 96% ethanol. The mixtures were then mixed vigorously
and allowed to stand at room temperature in the dark for 40 min. The absorbance of the
resulting mixtures was read at a wavelength of 517 nm in 40 min, using the spectropho-
tometer U-3900/3900H Hitachi. The DPPH radical scavenging activity was computed
according to the following equation:

DPPH radical scavenging activity, (%) =
Acontrol − Asample

Acontrol
·100

where Acontrol is the absorbance of the solution of DPPH against 96% ethanol;
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Asample is the absorbance of the reaction mixtures of the extract with DPPH at a
wavelength of 517 nm against the same volume of the extract and 1.95 mL of 96% ethanol.

The reaction mixture for measuring Acontrol consisted of 1.95 mL of 76 µM solution of
DPPH and 0.05 mL of 96% ethanol. All analyses were performed in triplicate. Quercetin
was used as a reference standard, and the results were expressed as mg quercetin/mL
extract of Rh. tomentosum.

4.8. Antimicrobial Activity In Vitro

The studied extracts were tested for antimicrobial activity by the method of diffusion
in agar and the method of serial dilutions [68–70]. For the agar diffusion method, 100 µL of
the extract was sprinkled into a well in an agar plate (MPA, Sabouraud), where a bacterial
suspension (McFarland 0.5) was inoculated. For the broth serial dilutions assay, we added
50 µL of meat-peptone broth and 100 µL of the studied extract to the first well, mixed,
and 50 µL was transferred to the second well (second dilution), which contained 50 µL
of the broth, and so on. Then, 50 µL of pure bacterial suspension (0.5 McFarland) was
added to each well. The bacterial control contained 50 µL of broth + 50 µL of pure bacterial
suspension. The plate was incubated for 24 h (37 ◦C). To count the number of colonies
from each well, a sterile disposable loop (1 µL) was applied to a sector of an agar plate
(MPA). After 24 h of incubation, colonies were counted on each sector. The control of test
microorganisms was the total bacterial growth.

Ten reference and clinical microbial and fungal strains were used, previously identified
by the MALDI TOF system (Bruker, Bremen, Germany) and 16S rRNA gene sequences.
Reference strains: Candida albicans ATCC 885-653, Staphylococcus aureus ATCC 25923,
Pseudomonas aeruginosa ATCC 10145, Aspergilus niger. All clinical strains (b2 Staphylococcus
aureus, biofilm-forming; 223 Staphylococcus delphinium; 211 Staphylococcus aureus; 222 Entero-
coccus spp, 218 Klebsiella pneumonia, and 221 E. coli) were multidrug-resistant or extensively
drug-resistant with different antibiotic resistance patterns. Clinical strains were isolated
from a patient with healthcare-associated infections from regional hospitals. All testing
was repeated in triplicate.

4.9. Statistical Analysis

The mean and standard deviation (SD) were calculated according to the monograph
“Statistical Analysis of the Results of a Chemical Experiment” of the State Pharmacopoeia
of Ukraine [71]. The average value was established based on 3 measurements. Values of the
confidence interval were calculated using Student’s criterion limit. The data are presented
as the mean ± SD [46].

5. Conclusions

Using an inexpensive, fast, and reproducible technique (HPTLC) and test markers, the
presence of substances of flavonoid structure, rutin, hyperoside, and quercetin, and hydrox-
ycinnamic acids, chlorogenic acid, were established in all the studied samples. The obtained
results show that the HPTLC is the method of choice for the analysis of plant herbal ex-
tracts. The TPC and TFC were estimated using spectrophotometric methods involving the
Folin-Ciocalteu reagent and the complexation reaction with aluminum chloride. The TPC
expressed as gallic acid equivalents ranged from 27.42 ± 0.13 to 50.91 ± 2.78 mg GAE/g.
Spectrophotometric techniques are proposed based on the reaction of the complexation of
flavonoids with aluminum chloride using appropriate standard samples of flavonoid rutin,
hyperoside, and quercetin. It has been proven that the course of the complexation reaction,
according to the quantification of the flavonoid structure substances by the spectropho-
tometric method, is influenced by some factors, including the environment, the structure
of the complexes, etc. Regardless of the chosen method, for the further production of Rh.
tomentosum extracts with a higher content of flavonoid structure substance, it is advisable
to use 60%, 70%, and 80% ethyl alcohol as the extractant. Following the DPPH assay, regres-
sion analysis shows that phenolic compounds contribute to about 80% (r2 = 0.8028, p < 0.05)
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of the radical scavenging properties in the extract of Rh. tomentosum. The microbiologi-
cal evaluation demonstrated that ethanol extracts, particularly those with concentrations
of 60% and 70%, as well as those with 10%, 20%, and 30%, were effective against both
Gram-positive (clinical and reference staphylococci) and Gram-negative bacteria (reference
Pseudomonas aeruginosa). The water-based extract also displayed antimicrobial properties,
though its efficacy was comparatively lower.
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