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Abstract: Metalloenzymes are ubiquitously present in the human body and are relevant to a variety
of diseases. However, the development of metalloenzyme inhibitors is limited by low specificity and
poor drug-likeness associated with metal-binding fragments (MBFs). A generalized drug discovery
strategy was established, which is characterized by the property characterization of zinc-dependent
metalloenzyme inhibitors (ZnMIs). Fifteen potential Zn2+-binding fragments (ZnBFs) were identified,
and a customized pharmacophore feature was defined based on these ZnBFs. The customized feature
was set as a required feature and applied to a search for novel inhibitors for histone deacetylase
1 (HDAC1). Ten potential HDAC1 inhibitors were recognized, and one of them (compound 9) was a
known potent HDAC1 inhibitor. The results demonstrated the effectiveness of our strategy to identify
novel inhibitors for zinc-dependent metalloenzymes.

Keywords: metalloenzyme inhibitors; metal-binding fragments; property characterization; histone
deacetylase; virtual screening

1. Introduction

Metalloenzymes are involved in various biological processes, including epigenetic
regulation, immune regulation, antimicrobial resistance and metabolism. Therefore, metal-
loenzymes are associated with a variety of diseases such as cancer, arthritis, cardiovascular
disease, glaucoma, Alzheimer’s and AIDS [1,2]. At least 558 out of the 1371 Enzyme
Commission (EC) entries recorded in MACiE databases are attributed to metal-dependent
enzymes, which represents a significant portion of the enzyme family [3]. The extensive
association with human diseases and the large number of known metalloenzymes have
stimulated intense research interest in the discovery of novel metalloenzyme inhibitors as
potential therapeutic agents.

To date, the U.S. Food and Drug Administration (FDA) has approved more than
60 small-molecule metalloenzyme inhibitors, and representative drugs are shown in
Figure 1 [4,5]. Currently, more than 1500 small-molecule drugs are on the market, the
proportion of metalloenzyme inhibitors is only about 4%, which is surprisingly insignifi-
cant compared to the proportion of metalloenzymes in all enzymes (40%). This disparity
implies that the development of therapeutics targeting metalloenzymes can be demanding
and challenging [5]. As demonstrated by the representative metalloenzyme inhibitors
(Figure 1), the vast majority of these inhibitors present a metal-binding fragment (MBF),
which plays a key anchoring role in enzyme–inhibitor interaction [6]. The identification of
MBFs to achieve structural diversity and favorable physicochemical properties has become
a bottleneck in the development of metalloenzyme inhibitors. Take the Zn2+-dependent
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metalloenzyme as an example. Hydroxamic acid is a preferred chelator for Zn2+. As a
well-known MBF, hydroxamic acid is readily introduced to the inhibitor structures and can
generally ensure potent binding. Therefore, it presents ubiquitously in inhibitors targeting
various metalloenzymes, including matrix metalloproteins (MMPs), histone deacetylases
(HDACs), and many others. However, it also associates with disadvantages such as poor
selectivity and poor pharmacokinetic profiles. Hence, it might be responsible for the severe
side effects and insufficient efficacy related to metalloenzyme inhibitors [7,8].

Figure 1. Representative metalloenzyme inhibitors as therapeutical drugs. Metal-binding fragments
are represented in red. (Data from Chembl database, https://www.ebi.ac.uk/chembl/, accessed on
15 February 2024).

Currently, the discovery of novel metalloenzyme inhibitors typically involves screen-
ing chemical libraries of structurally diverse chelators against targets of interest for potential
hits. Dick et al. [9] synthesized 24 metal-binding isosteres based on the structure of picol-
inic acid, and approximately half of the isosteres exhibited inhibitory activity similar to
picolinic acid. The results demonstrate that the isosteric replacement of MBFs is a feasible
strategy to generate novel metalloenzyme inhibitors. Agrawal et al. [10] constructed a
chelator fragment library based on a variety of metal-binding groups and the library was
screened against MMP-2. A hit was identified, and an expanded library derived from the
hit was then synthesized, which afford high-affinity hits against MMP-2. These approaches
did facilitate the discovery of novel metalloenzyme inhibitors. However, the chelator
libraries were generated based on existing metal binding fragments and were unlikely to
provide novel MBFs. Therefore, innovative strategies and approaches are urgently needed
to expand the diversity of MBFs.

Recent efforts to identify novel MBFs have resorted to computational approaches,
for which the appropriate parameterization of metal ions is the major challenge. Most
currently available docking programs cannot accurately model the interaction between
inhibitors and metal ions. Researchers have striven to improve the specificity and accu-
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racy of docking, and strategies including customizing field parameters [11], predefining
coordination configurations [12], establishing specific scoring functions [13], and re-scoring
based on docking consistency [14] have been actively pursued. Furthermore, metal–ligand
interactions are often described as hydrogen-bonding interactions in pharmacophore char-
acterization, which results in poor model specificity [15,16]. Currently available methods
to improve model specificity mainly include establishing specific fragment queries [16] and
constructing specific metal-binding pharmacophores [17]. In addition, QSAR methods have
also been applied to metalloenzyme inhibitor characterization. It is worth noting that the
introduction of appropriate quantum chemical descriptors calculated by density functional
theory (DFT), such as ionization potential, electron attraction or affinity, charges on the
atoms of the molecule, multipole moments, and polarization, can effectively improve the
performance of QSAR models in predicting compound activity [18,19].

In our previous studies [20,21], novel indoleamine 2, 3-dioxygenase (IDO) 1 and xan-
thine oxidase (XO) inhibitors were successfully identified through fragment recognition
and property characterization of the MBFs. To search for novel XO inhibitors [21], we
applied the enhanced characterization of the molybdopterin-binding group (MBG) with
DFT-based physical, chemical, and topological properties. Two novel potent XO inhibitors
with novel MBGs were thus recognized and showed IC50 values of 23 nM and 26 nM, re-
spectively. Such results encouraged us to generalize the property characterization strategy
to discover novel MBFs and metalloenzyme inhibitors for certain subfamilies of metalloen-
zymes. Accordingly, we extended our property characterization strategy to zinc-dependent
metalloenzymes herein. Briefly, zinc-dependent metalloenzyme inhibitors (ZnMIs) were
characterized and key electronical descriptors related to Zn2+-binding fragments (ZnBFs)
were revealed. The fragment libraries were then screened based on the classification model
to identify potential ZnBFs. Finally, the reliability of the identified ZnBFs was verified using
histone deacetylase (HDAC) 1 as a validation target. A substructure search for potential
ZnMIs successfully identified a known and potent HDAC1 inhibitor, which supports the
reliability and validity of the screening strategy.

2. Results and Discussion
2.1. Dataset Collection and Descriptor Selection

PDB complex entries for 757 Zn2+-dependent metalloenzymes were collected with
their binding ligands and Ki information (represented in nM). For ligands with inconsistent
Ki values in different PDB entries, the activity values were represented by the average
values of the lg (Ki) when the lg (Ki) difference was less than or equal to 1, or discarded
when the lg (Ki) difference was larger than 1. A total of 523 ligands with lg (Ki) values
ranging from −4 to 7 were retained. These ligands were then divided into a high-activity
group (lg (Ki) < 2) and low-activity group (lg (Ki) > 3). In each group, one of the two ligands
with pair similarity by fingerprint MACCs greater than 0.75 was arbitrarily removed to
reduce redundancy. A dataset with 131 high-activity and 77 low-activity ligands was
gathered. A total of 165 ligands in the dataset were randomly selected as the modeling set,
and the remaining 43 ligands were used as the external test set.

The zinc-binding fragments in the 131 high-activity ligands were analyzed and are
shown in Table S1. Five zinc-binding fragments, namely MBP1-2-88, MBP2-1-9, MBP1-
1-38, MBP1-1-12, and MBP1-2-81 (the MBP numbers were quoted from reference [22]),
were identified as the most frequently presented fragments (more than five times) and are
shown in Figure 2. Four fragments bind to Zn2+ in a monodentate coordination manner
through the oxygen atom of the phosphoric acid or urea group and the nitrogen atom of
the sulfonamide group. Yet, the hydroxamic acid fragment binds to Zn2+ in a bidentate
coordination manner through the two oxygen atoms.

A total of 3109 descriptors were calculated based on the entire ligand structures in
their original form presented in the complex structures. Descriptors with zero variance or
with a correlation coefficient to lg (Ki) less than 0.15 were first removed. For descriptors
with pairwise correlation coefficient values greater than 0.8, one of the two descriptors with
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a lower correlation coefficient to lg (Ki) was deleted. After initial screening, 125 descriptors
were retained. Four different descriptor selection methods, including Cfs subset evaluation
(Cfs), gain ratio attribute evaluation (GR), wrapper subset evaluation (Wrapper), and Cfs
subset evaluation combined with wrapper subset evaluation (Cfs&wrapper), were applied
to select four descriptor sets with 69, 31, 71, and 34 descriptors, respectively.

Figure 2. Structures of the five most common zinc-binding fragments presented in 135 high-activity
ligands. Metal-binding atoms are shown in red, and variable fragments are incorporated at the sites
represented by *.

2.2. Construction of Classification Models

Based on the four selected descriptor sets, the modeling set was further randomly
divided into a training set and an internal test set by cluster analysis with a ratio of 7:3.
Eight algorithms including Naive Bayes (NB), IBK, J48 [23], Attribute Selection Classifier
(ASC)_NB, ASC_IBK, ASC_J48, ZeroR, and OneR were used in model construction. The
accuracy of the constructed model was evaluated by ten-fold cross-validation. The valida-
tion was repeated ten times using different random seeds, and the average classification
accuracy was returned to evaluate the performance of different classification methods.

The modeling results of the IBK algorithm were mainly affected by the K value, which
represented the number of adjacent samples used to predict the category of unknown
samples. IBK models with different K values were constructed, and the results are shown in
Table S2 and Figure S1A. At the beginning, as the K value increased, the accuracy gradually
improved due to the reduction in noise interference. However, when the K value increased
to a certain extent, the increase in K value resulted in inaccurate classification and even
worse accuracy. Generally, the modeling accuracy of the IBK algorithm was slightly higher
than that of the ASC_IBK algorithm. Since the IBK algorithm is based on the similarity
between samples, it is reasonable that IBK is not sensitive to the selection of attributes.
The best prediction accuracy was 76.50%, which was produced by modeling with the
Cfs&Wrapper descriptor selection method and a K value of 25 (Table 1).

Table 1. Predictive accuracy (%) of models derived from different algorithms and descriptor
selection methods.

Algorithms
Descriptor Selection Methods

Cfs GR Wrapper Cfs&Wrapper

ASC_IBK 73.82 73.97 74.27 75.60
IBK 76.11 75.96 76.44 76.50

ASC_J48 72.36 75.43 71.49 73.97
J48 71.30 73.84 70.03 74.12

ASC_NB 76.09 78.52 77.60 76.85
NB 77.02 82.82 79.20 79.44

ZeroR 63.82 63.82 63.82 63.82
OneR 70.86 71.37 70.10 72.01

When modeling with the J48 algorithm, different pruning methods with variable
minimum numbers of instances (Minimum Obj) were adopted to reduce noise interference.
The modeling results are shown in Figure S1B and Table S3. As the Minimum Obj value
increased, the accuracy first increased and then decreased. In addition, the accuracy of
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the models constructed by the ASC_J48 algorithm was generally better than that of the
J48 algorithm. The results show that the J48 algorithm is sensitive to attribute selection,
which is consistent with the fact that the J48 algorithm is based on attribute values. The best
predictive accuracy was 75.43%, which was obtained by modeling with the GR descriptor
selection method and Minimum Obj of 4 (Table 1).

The remaining modeling algorithms (ASC_NB, NB, ZeroR, and OneR algorithms) were
also used, and the best accuracy rates were 78.52%, 82.82%, 63.82%, and 72.01%, respectively.
Among them, 63.82% was the baseline accuracy as no attributes were referenced, and the
classification was totally random. This indicates that the two groups of compounds are
essentially balanced in our modeling set (Table 1).

Among the eight modeling algorithms, the NB and ASC_NB algorithms showed the
best performance, and predictive accuracy higher than 75% was achieved, which was
over 10% higher than the baseline accuracy (63.82%). The NB algorithm can effectively
predict unknown instances based on the frequency of sample distribution and has strong
anti-interference ability. The modeling accuracy rates of the IBK and ASC_IBK algorithms
were higher than those of the J48 and ASC_J48 algorithms, indicating that IBK has better
anti-interference ability. The predictive accuracy of the OneR algorithm, modeled with only
one attribute, was still better than that of the ZeroR algorithm. Such results suggested that
the selection of attributes was reasonable.

2.3. Classification Model Validation

Ten different groups of training and internal test sets were randomly generated and
modeled using the NB and ASC_NB algorithm, respectively. The accuracy of the model was
evaluated through a 10-fold cross-validation method and further validated through internal
and external test sets. The validation results are shown in Table 2. When modeling with the
Cfs&Wrapper descriptor selection method and NB algorithm (referred to as Cfs&Wrapper-
NB), the predictive accuracy of the training set and the internal test set exceeded 80%, and
the predictive accuracy of the external test set reached 72.5%.

Table 2. Predictive accuracy (%) of the training, internal test, and external test sets for models built by
ASC_NB or NB algorithms and different descriptor selection methods.

Algorithms
Descriptor Selection Methods

Cfs GR Wrapper Cfs&Wrapper

ASC_NB
Training Set 75.32 72.17 81.25 79.25

Internal Test Set 76.61 81.48 74.46 78.41
External Test Set 70.32 69.76 72.09 71.14

NB
Training Set 77.49 76.52 77.67 81.27

Internal Test Set 76.96 83.33 76.59 82.27
External Test Set 73.01 69.76 69.76 72.54

Then, the ten models established by the Cfs&Wrapper-NB method were further an-
alyzed. Model 5 showed the best predictive accuracy on the external test set, and the
AUC values of the ROC curve derived from the external test set reached 0.80 (Table 3).
Therefore, it was used for the subsequent screening of fragment libraries. The structures
and relevant information regarding the training, internal test, and external test sets used
for the construction and validation of Model 5 are shown in Figure S2 and Table S4.

The false-positive molecules predicted by Model 5 were then analyzed, and their
structures are shown in Figure S3. Most of the false-positive molecules were sulfonamides
and hydroxamic acid analogs, which may attribute to the higher proportion of these two
structural classes in the high-activity group.

The learning curve derived from Model 5 is shown in Figure S4. When the sample
size exceeded 80%, the model accuracy slowly increased and reached a stable level. This
result indicates that the sample size is sufficient and the model is reliable.
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Table 3. The AUC values of the ROC curves derived from models generated from training, internal
test, and external test sets by the Cfs&Wrapper-NB method.

Model Names
AUC Values

Training Set Internal Test Set External Test Set

1 0.839 0.857 0.792
2 0.844 0.867 0.782
3 0.860 0.827 0.757
4 0.840 0.912 0.782
5 0.860 0.822 0.801
6 0.848 0.849 0.762
7 0.884 0.802 0.755
8 0.881 0.729 0.765
9 0.813 0.900 0.760
10 0.838 0.875 0.779

2.4. Interpretation of the Model

The 34 descriptors selected by the Cfs&Wrapper method used in Model 5 were con-
sidered to be important descriptors for ZnMIs. The correlation coefficients and statistical
significance between the 34 descriptors were then analyzed, and their eigenvalues and
classification are shown in Table S5. Sixteen of the thirty-four descriptors had absolute cor-
relation coefficients greater than 0.3 and were statistically significant in different categories
by the Mann–Whitney U test. These descriptors were considered to be highly correlated
with the activity of ZnMIs. In particular, the descriptors related to electronic properties are
considered to be highly relevant to MBFs due to the critical role of electronic natures in
MBF-Zn2+ interaction. Eight descriptors related to electronic properties were then further
analyzed, as shown in Table S6. The correlation coefficients of these descriptors were 0.44,
0.40, 0.36, 0.35, 0.35, 0.34, 0.31, and 0.30, respectively.

The data distribution of the eight descriptors for the two classes of compounds is
shown in Figure S5. JGI9 and JGI8 are topological charge descriptors. BCUTp-1h repre-
sents the highest polarizability weighted by BCUTS. PEOE_VSA-4, PEOE_VSA+1, and
PEOE_VSA-0 are local charge descriptors representing the sum of vi, where the range of qi
is [−0.25, −0.20), [0.05, 0.10), and [−0.05, 0.00), respectively. The result suggests that higher
polarizability, more local negative charges, or fewer positive charges would lead to stronger
bonding with metals. In addition, nAtomP and HBA_Count are related to the number of
atoms in the maximum π system and the number of hydrogen-bond-accepting groups in
the molecule, respectively. The identification of these descriptors revealed key structural
features contributing to metal binding, and the presence of larger π systems and more
hydrogen bond acceptors might be favorable for metal binding. These results are consistent
with the previous observation that the higher the electron-donating capacity of the ligand,
the stronger the binding ability to metalloenzymes [24]. All in all, these eight descriptors
significantly affect the classification results and could enhance the characterization of MBFs.

2.5. Fragment Library Screening

A total of 73,212 small-size molecules were collected from commercial chemical li-
braries (such as Specs, Topscience, and J&K) and our in-house library of synthetic interme-
diates as a potential fragment library. The molecules were first predicted by Model 5, and
those predicted to be highly active were further analyzed. Only molecules with electronic
descriptor values in the range of (µ − 1.96σ ~ µ + 1.96σ) were retained, where µ represents
the mean of the descriptor values and σ represents the standard deviation (Table S6).

A total of 67 small-size molecules were selected, and the representative 15 molecules
are shown in Figure S6. The corresponding ZnBFs presented in these molecules are
listed in Figure 3 with the potential Zn2+-binding atoms shown in red. Heteroatoms
of O/N/S/F within a distance of 2.8 Å from the metal atoms were selected as the binding
atoms [22]. Among them, ZnBF-1, ZnBF-2, ZnBF-5, and ZnBF-6 are known Zn2+-binding
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fragments [25–27], which proves the reliability of the model. Novel ZnBFs can be recog-
nized from fragment libraries with better structural novelty and diversity and can further
guide the discovery of new ZnMIs.

Figure 3. Representative ZnBFs identified by fragment library screening. Potential Zn2+-binding
atoms are shown in red, and variable fragments are incorporated at the sites represented by *.

2.6. Substructure Search and Virtual Screening for HDAC1 Inhibitors

To verify the feasibility of our strategy to identify inhibitors for any specific Zn2+-
dependent metalloenzyme, the fifteen ZnBFs (Figure 3) were applied to screen the Specs
library to obtain potential ZnMIs for HDAC1. Basically, a customized ZnBF pharmacophore
feature [20,28] was generated by the Customize Pharmacophore Features protocol in DS
2018, which was defined by a ZnBF library containing the 15 ZnBFs listed in Figure 3. The
customized ZnBF pharmacophore feature was set as a required feature and used for the
substructure search in the Specs library for potential HDAC1 inhibitors.

The resulting hits were then docked with HDAC1, and ten molecules were prioritized
for further biological testing. These compounds were initially tested for their percent
inhibition against HDAC1 at the concentration of 100 µM. The structures and HDAC1
inhibitory activities of these compounds are shown in Table S7. Among them, compound
9 (Figure 4A) showed an inhibitory rate of 99.4% at 100 µM and was identified as a
potent inhibitor against HDAC1. Further literature investigation showed that compound
9 was a known HDAC1 inhibitor with an IC50 of 0.957 µM [29]. The docking results
(Figure 4B,C) indicated that compound 9 binds with the zinc ion through the amide oxygen
in a monodentate manner. The amide nitrogen and the phenolic oxygen present hydrogen
bonds with His131 and Gly140, respectively, which ensures the effective binding of the
metal-binding fragment to the zinc ion.
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Figure 4. The structure (A) and interaction mode ((B): 2D diagram; (C): 3D diagram) of compound 9
with HDAC1.

The successful recognition of compound 9 without preliminary knowledge demon-
strates the reliability of the screening strategy and encourages further application of this
strategy to identify novel inhibitors for HDAC1 or other Zn2+-dependent metalloenzymes.

3. Materials and Methods

Molecular Operating Environment [30] (MOE) (2014.09) software, Discovery Studio
2018 [31] (DS 2018), and Padel [32] (http://www.yapcwsoft.com/dd/padeldescriptor/,
accessed on 15 February 2024) software were used for descriptor calculation. The software
package Weka [33] (3.8.5) (https://waikato.github.io/weka-wiki/, accessed on 15 February
2024) was used for descriptor selection and modeling. Glide [34] was used for molecular
docking. The parameters were defined by default unless otherwise specified.

3.1. Properties Characterization of ZnMIs and Virtual Screening Strategy against HDAC1

The primary goal of this work was to explore a generalized strategy based on property
characterization to discover novel ZnMIs with unique ZnBFs. The strategy to identify novel
ZnBFs and ZnMIs is shown in Figure 5. Since inhibitors targeting different metalloenzymes
cannot be described by quantitative models, classification models were used in property
characterization. Briefly, physicochemical, electronic, and DFT descriptors were generated
for ligands with different binding affinities, and classification models were thus constructed.
The electronical properties most relevant to the ZnBFs were revealed by analyzing the
modeling descriptors. Both the classification models and the descriptor distribution ranges
were used for fragment library screening to identify potential ZnBFs. ZnMIs were further
obtained through ZnBF-based substructure searches. HDAC1 was used as the validation
target, and the ZnMIs identified by this strategy were further selected through docking
studies and evaluated with enzymatic tests against HDAC1.

http://www.yapcwsoft.com/dd/padeldescriptor/
https://waikato.github.io/weka-wiki/
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Figure 5. Property characterization-based strategy to discover novel inhibitors for HDAC1.

3.2. Dataset Collection and Descriptor Selection

Chemical and enzymatic activity information regarding ZnMIs was collected from Met-
alPDB [35], Melad [22], Binding DB [36], Binding Moad [37], and PDB Bind [38] databases.

The DFT, physicochemical, and topological properties of the molecules in the data set
were calculated by DS, MOE, and Padel, respectively. Four different methods were used
for descriptor selection in WEKA, including Cfs subset evaluation (Cfs), gain ratio attribute
evaluation (GR), wrapper subset evaluation (Wrapper), and Cfs combined with Wrapper
(Cfs&wrapper). Among them, Cfs and GR are methods to select descriptors based on the
predictive ability and gain ratio of a single descriptor for a specific category. Wrapper
selects high-performance descriptor subsets through learning algorithms, such as Naive
Bayesian, IBK, J48, etc. Naive Bayesian was used in this study.

3.3. Construction and Validation of the Classification Model

The interpretability of the model was emphasized in the selection of classification
algorithms, and eight machine learning algorithms, including Naive Bayesian (NB), IBK,
J48 [23], Attribute Selected Classifier (ASC)_NB, ASC_IBK, ASC_J48, ZeroR, and OneR,
were adopted with WEKA. NB is a probability-based Bayesian classifier. IBK is a distance-
based lazy classifier. J48 is a decision tree classifier based on descriptor information gain.
ASC is a meta-classifier that takes the result of the classifier as the input of classification.
In this study, the NB, IBK, and J48 classifiers were used in ASC, represented by ASC_NB,
ASC_IBK, and ASC_J48, respectively. ZeroR and OneR are rule-based classifiers that
use zero or one descriptor for model construction and were used herein to evaluate the
rationality of attribute selection.

Predictive accuracy is primarily measured by classification accuracy defined by the
following equation:

Classification Accuracy = number of correctly classified instances/total number of instances × 100% (1)

Parameters such as active (detected)% and hit rate (HR) were also used in model valida-
tion and were defined as follows:

Active (detected) % = TP/(TP + FP) × 100% (2)

HR = TP/A × 100% (3)

where TP and FP were the number of true-positive and false-positive molecules found in
the screened database, respectively, and A was the total number of active compounds in
the entire database.

In addition, the ROC (Receiver Operating Characteristic) curve was used to evaluate
the power of the model to differentiate between active and inactive compounds. The
learning curve was also used to verify the reliability of our models.
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3.4. Docking Method for HDAC1

Here, 1C3R [39] (PDB ID) was used as the receptor during docking with Glide. The
distance threshold between the ligand and Zn2+ was defined as 2.5 Å, and the metal-
binding interaction was defined as the required interaction. The ligand configuration was
set to tetrahedral.

The effectiveness of the docking method was verified by docking its natural ligand
TSN (the structure was shown in Figure S7) with the decoy set. The decoy set consisted
of 1616 highly active HDAC1 inhibitors (IC50 < 100 nM), 101 inactive molecules collected
from Chembl (IC50 > 100 µM), and 1500 putative inactive molecules selected from the
ACD database with similar physical and chemical properties and different topological
structures [40]. The RMSD value of the TSN re-docking conformation was 0.960 Å, which
indicated good accuracy. When docked with decoy set molecules, the docking score of
TSN (−9.037) was used as the cutoff value, and the active (detected) % and HR were 81.9%
and 37.5%, respectively. Furthermore, the AUC value of 0.744 indicated that the docking
method has good discriminative power to distinguish active and inactive molecules.

3.5. Enzymatic Test against HDAC1

The enzymatic test against HDAC1 was performed by Chempartner (Shanghai, China).
The compounds were tested in vitro using SAHA (purchased from Sigma -Aldrich, Merck
KGaA, Darmstadt, Germany and/or its affiliates, Cat. No. SML0061) as the reference
compound, and the testing concentration was set as 100 µM. HDAC1 was purchased from
BPS bioscience (San Diego, CA, USA) and prepared in modified Tris Buffer. The substrate
solution was made by trypsin and Ac-peptide substrate in modified Tris Buffer. A total
of 15 µL of the HDAC1 solution was transferred to the assay plate and incubated at room
temperature for 15 min; then, 10 µL of the substrate solution was added to each well to
start the reaction. The fluorescence was then measured for excitation and emission at wave-
lengths of 355 nm and 460 nm by a Envision plate reader. The percentage inhibition was
calculated using the following equation: Inhibition % = (Max-Signal)/(Max-Min) × 100%.
All the tests were performed in duplicate.

4. Conclusions

To overcome poor specificity and drug-likeness related to currently available metal-
binding fragments, chemoinformatic techniques were used to characterize ZnBFs and
to discover new ZnMIs with improved property profiles. Fifteen potential ZnBFs were
identified through property characterization, and virtual screening based on fragment
recognition and molecular docking prioritized ten potential HDAC1 inhibitors for biological
tests. Compound 9, a known potent HDAC1 inhibitor, was successfully identified, which
demonstrates the robustness of our strategy based on property characterization and virtual
screening. Although ZnBF-5 is a known ZnBF and compound 9 is a known HDAC1
inhibitor, such a strategy is readily extendable. When applied to chemical libraries with
better structural diversity and drug-likeness, it might recognize novel ZnMIs for specific
Zn2+-dependent metalloenzymes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29051096/s1, Figure S1: (a) The curve of IBK model
prediction accuracy (%) changing with K values; (b) The curve of J48 model prediction accuracy
(%) changing with Minumum Obj values; Figure S2: Structures of (a) training set, (b) internal
test set, and (c) external test set; Figure S3: The false positive molecules predict by the model;
Figure S4: The learning curve drawn by the NB method; Figure S5: (a)–(h) Distribution of JGI9,
nAtomP, JGI8, HBA_Count, BCUTp-1h, PE-OE_VSA-4, PEOE_VSA+1, PE-OE_VSA-0 among different
classes, respectively; Figure S6: Representative 15 fragment small molecules; Figure S7: Structure
of TSN in crystal complex 1C3R; Table S1: Information of high frequency binding fragments in the
high activity dataset of Zn2+ metalloenzymes; Table S2: Accuracy of models using IBK method
with different K values; Table S3: Accuracy of models using J48 method with different Min Num
Obj values; Table S4: Information of (a) training set, (b) internal test set and (c) external test set
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molecules; Table S5: Meanings and classification of the 34 descriptors using in Model 5. The sixteen
highly relevant descriptors were shown in bold; Table S6: The descriptor range and interpretation
of eight electronic descriptors related to MBFs in Model 5; Table S7: The structure and activity of
10 compounds obtained by virtual screening for HDAC1.
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