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Abstract: A method was developed for the determination of 26 drugs of abuse from different classes,
including illicit drugs in quantitative dried blood spots (qDBSs), with the aim to provide a convenient
method for drug testing by using only 10 µL of capillary blood. A satisfactory limit of quantification
(LOQ) of 2.5 ng/mL for 9 of the compounds and 5 ng/mL for 17 of the compounds and a limit of
detection (LOD) of 0.75 ng/mL for 9 of the compounds and 1.5 ng/mL for 17 of the compounds
were achieved for all analytes. Reversed-phase liquid chromatography was applied on a C18 column
coupled to MS, providing selective detections with both +ESI and -ESI modes. Extraction from the
qDBS was performed using AcN-MeOH, 1:1 (v/v), with recovery ranging from 84.6% to 106%, while
no significant effect of the hematocrit was observed. The studied drugs of abuse were found to
be stable over five days under three different storage conditions (at ambient temperature 21 ◦C, at
−20 ◦C, and at 35 ◦C), thus offering a highly attractive approach for drug screening by minimally
invasive sampling for individuals that could find application in forensic toxicology analysis.

Keywords: LC–MS/MS analysis; drugs of abuse; quantitative dried blood spot; blood micro sampling;
drug screening

1. Introduction

Dried blood spots (DBSs) represent a minimally invasive sample collection approach
that can find applications in various fields. From its introduction in bioanalysis a century
ago [1–4], applications have been increasing over the years, including newborn screening,
analysis of small molecules, DNA, proteins for diagnostics [5], therapeutic drug moni-
toring [6], preclinical drug development, and forensic toxicology [7] among others. The
cost-effectiveness, facilitated storage, and shipment conditions of the DBSs in combination
with decreased biohazard risk support their potential in the area of toxicological analysis.

Whole blood, plasma, and urine are the typical specimens used for drug analysis in
forensic toxicology [8–11]. However, shipment, sample storage, and handling of these
types of biological samples may bring limitations. DBSs offer numerous benefits, the most
important being the ability to collect blood without venipuncture. Reduced invasiveness
and low biohazard risk, for instance, for HIV or other infectious pathogens, during sample
shipment, are two additional advantages of DBS sampling [12,13]. Moreover, many reports
have already focused on the enhanced stability of the analytes in these types of samples at
room temperature, without the need for refrigeration [14,15].
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A crucial challenge, however, is the need for highly sensitive instrumentation and
methodologies capable of detecting low levels of drugs in such small blood volumes
collected in a DBS. With regard to quantification, the accurate and reproducible collection
of blood is often difficult; thus, valid and accurate quantitative data are not feasible.
Quantitative dried blood spot (qDBS) analysis overcomes this limitation, offering the
advantage of collecting small but precise predefined blood volume, e.g., 10, 20, 50 µL. Thus,
it can be used for accurate determination [16,17] besides the screening applications.

To date, many analytical protocols have been developed to determine/quantify drugs of
abuse in DBSs by modern analytical techniques, including liquid chromatography tandem–
mass spectrometry (LC–MS/MS) [16,18–26] mainly for quantification purposes; liquid chro-
matography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) [17,27] and gas
chromatography–mass spectrometry (GC–MS) [11,28] for drug screening. Nowadays, vari-
ous methodologies have been developed for DBSs for both quantification and screening
purposes, offering precise analyte level measurements and efficiency of detection in bio-
logical samples. Most of these focus on the detection or/and quantification of a specific
category of drugs, such as cocaine and its metabolites, benzodiazepines, new psychoactive
substances (NPSs), amphetamines, and cannabinoids [14,16,29]. There are few protocols
that enable the simultaneous determination of a plethora of illicit drugs belonging to var-
ious categories in DBSs but require a minimum blood volume of 15 µL [17,20,21,30–33].
In all these cases, spots in a simple filter paper, such as Whatman protein saver cards, are
used, which presents various limitations, especially in terms of accurate quantification.

The current study aimed to highlight the opportunities arising from the implementa-
tion of qDBSs in drug screening for forensic toxicology purposes. The focus was set on the
development of a valuable method for the detection of 26 drugs of abuse and metabolites
(both illicit drugs and others) in a 10 µL qDBS that offers high precision in sampling [34–38]
and has the potential to be applied for quantitative purposes. The studied substances
are those frequently abused. To represent these, we chose the following drugs: benzodi-
azepines and metabolites (diazepam, bromazepam, temazepam, oxazepam, alprazolam, and
7-aminflunitrazepam), synthetic opioids (methadone and AH-7921), cannabinoids (tetrahy-
drocannabinol (THC), cannabinol (CBN), cannabidiol (CBD), and synthetic cannabinoids
(JWH-018)), cocaine and metabolites (benzoylecgonine, methylecgonine, and cocaethylene),
amphetamines analogues (3,4-methylenedioxymethamphetamine (MDMA), 25B-NB2OMe,
25C-NB2Ome, and 25I-NB2OMe), and other stimulants (cathine, mescaline, mephedrone,
methylone, 3,4-methylenedioxypyrovalerone (MDPV), and 1-benzylpiperazine). A sensitive
qualitative method was developed and evaluated for the detection of the target analytes from
qDBSs using liquid chromatography coupled to high tandem mass spectrometry.

To our knowledge, this is the first method developed for drug abuse screening utiliz-
ing a commercially available qDBS device. The proposed protocol delivers efficient and
reliable results by using only 10 µL of blood, obtained in a minimally invasive way by
finger pricking.

2. Results
2.1. LC–MS/MS Optimization

For the efficient separation of twenty-six (26) drugs and metabolites, some of which
have similar structures, various chromatographic systems were tested. Two different C18
columns, an Intensity Solo 2 C18 column (2.1 mm × 100 mm, 2.0 µm) and an Acquity
BEH C18 (2.1 mm × 100 mm, 1.7 µm), were used. Mobile phase systems applied included
the following: (a) A: H2O-MeOH, 90:10 (v/v), 0.01% FA and B: MeOH, 0.01% FA and
(b) A: 5 mM AF in H2O-MeOH, 90:10 (v/v) acidified with 0.01% FA and B: 5 mM AF in
MeOH acidified with 0.01% FA. Different gradient elution profiles were tested, starting
with up to 95% aqueous phase. Based on the literature, retention of more hydrophilic
analytes on RPLC assays requires initial mobile phase conditions of 80–90% water [39].
The optimum selected conditions were finally obtained with A: 5 mM aq. AF-MeOH,
90:10 (v/v), 0.01% FA and B: 5 mM AF in MeOH, 0.01% FA on an Intensity Solo 2 C18
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column. The system demonstrated satisfactory chromatographic performance under all
test conditions. However, further improved peak shapes and signals of higher intensity
were achieved under these conditions. The chromatographic traces of the analytes obtained
on the two columns can be seen in Figure 1.

Furthermore, to achieve the highest level of sensitivity, detection parameters in the
mass spectrometer were optimized. Different MS parameters were tested to achieve the
highest intensities and signals for all compounds. Specifically, ion spray voltage for +ESI
was set at 5000, while for -ESI at −4500. Cone temperature was set at 300 ◦C, heated probe
temperature at 250 ◦C, while curtain gas was set at 20 psi. Multiple reaction monitor-
ing (MRM) mode was employed to monitor selective transitions for the target analytes.
Two daughter ions for each analyte were selected for detection confirmation. The MRM
transitions, retention times, and collision energies for every analyte are listed in Table 1.

Table 1. MRM transitions, retention times, detection parameters, LOD, and LOQ for all analytes.

Analyte Molecular
Weight Parent Ion Daughter

Ions
Collision

Energy (eV)
Retention

Time (min)
LOQ

(ng/mL)
LOD

(ng/mL)

Bromazepam 316.2 317.0 228.0|209.0 40 6.69 5.00 1.50

Temazepam 300.7 301.3 255.1|282.9 35 8.42 5.00 1.50

Oxazepam 286.7 287.3 241.1|269.1 35 8.02 5.00 1.50

Alprazolam 308.8 309.8 281.2|274.1 25 8.13 5.00 1.50

7-aminoflunitrazepam (7-AF) 283.3 284.0 226.9|135.1 32 4.48 5.00 1.50

Methadone 309.4 310.0 265.0|105.0 14 7.84 5.00 1.50

Cathine 151.2 152.0 134.0|117.0 10 2.86 5.00 1.50

Mescaline 211.3 212.0 195.1|180.1 22 2.93 5.00 1.50

25B-NB2OMe 380.3 381.0 121.3|91.2 25 6.69 5.00 1.50

25C-NB2OMe 335.8 336.8 121.3|91.2 20 7.28 5.00 1.50

25I-NB2OMe 427.3 428.3 121.3|91.2 20 7.78 5.00 1.50

Mephedrone 177.2 178.1 160.3|147.3 10 3.56 5.00 1.50

AH-7921 329.3 329.2 173.2|95.3 30 6.56 5.00 1.50

1-Benzylpiperazine 176.3 177.0 91.2|85.2 20 3.33 5.00 1.50

Methylone 207.2 208.1 132.2|160.3 25 2.91 5.00 1.50

3,4-Methylenedioxypyrovalerone
(MDPV) 275.3 276.2 135.2|126.3 25 4.35 5.00 1.50

JWH-018 341.5 342.3 214.4|155.3 25 11.5 5.00 1.50

Diazepam 284.7 285.5 154.0|193.0 28 9.45 2.50 0.75

Cocaine 303.4 304.0 182.0|82.0 20 3.99 2.50 0.75

Benzoylecgonine 289.3 290.0 105.0|168.0 18 3.58 2.50 0.75

Methylecgonine 199.3 200.0 82.0|182.0 18 1.98 2.50 0.75

Cocaethylene 317.4 318.3 196.2|82.0 18 4.77 2.50 0.75

3,4-
methylenedioxymethamphetamine

(MDMA)
193.3 194.0 163.0|135.0 12 3.17 2.50 0.75

Tetrahydrocannabinol (THC) 314.4 313.0 245.2|191.0 25 11.7 2.50 0.75

Cannabinol (CBN) 310.4 311.2 223.2|240.0 20 11.6 2.50 0.75

Cannabidiol (CBD) 314.5 315.0 193.0|92.7 25 11.5 2.50 0.75

Daughter ion in bold indicates the quantifier ion.
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Figure 1. Total ion chromatograms (TICs) of the elution of all 26 illicit drugs in both stationary phases
under the same mobile phases and gradient program. The left chromatogram corresponds to Intensity
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2.2. Optimization of qDBS Sample Treatment

In the analysis of DBS samples, the analytes extraction is a crucial step. The applied
extraction protocol should be carefully designed to achieve the maximum recovery and
sufficient sensitivity levels [40], as this can be challenging due to the small sample volume.
During this process, several factors should be considered, including the type of paper used
in the device, as there is a possibility of substances being released from its materials during
sample extraction [41]. Also, blood hematocrit should be considered, as it has multiple
effects on the analyte’s extraction from DBSs. Blood hematocrit determines blood viscosity,
which can cause varying DBS homogeneity on the filter paper [42]. In addition, in the field
of toxicological analyses and drug screening, several other factors should be taken into
account, such as the characteristics of the blood (postmortem or in vivo) and the age of the
bloodstains, as they might have a substantial impact on the extraction efficiency [21]. Hence,
the validity of the extraction system should be assessed in relation to the aforementioned
factors [6,7,12].

Despite the fact that there are numerous methods reported in the literature for the
quantitative measuring of drugs in DBS, no data exist yet on the extraction of drugs of abuse
from qDBSs. Different paper substrates have been tested, aiming to determine illicit drugs,
with Whatman 903 protein saver card being the most commonly used [16–19,22–24,26].
Moreover, Whatman BFC 180 [21], Bond Elute Dried matrix spotting cards (Agilent) [25],
FTA DMPK cards [43], and Sartorius Stedim Biotech Sample carrier paper [20] have been
examined and proved to be adequately efficient for drug extraction purposes. However,
these approaches do not offer the possibility for accurate collection of a specific volume of
blood; thus, they have some accuracy limitations in drug analysis.

The Capitainer qDBS device allows for the accurate collection of an exact volume of
blood as it is transferred through a capillary to a precut 6 mm paper disc. A more detailed
description of the device can be found in a previous work of the authors [38].

In the present study, a Capitainer qDBS with two collecting discs (10 µL each) was
used. In previously reported studies on the determination of drugs, a variety of samples
volume have been used on DBS, in all cases larger than 10 µL. More specifically, either
25 µL [16,17], 30 µL [23,24,43], 50 µL [21,22,26], or 85 µL [18,19] of blood were spotted on
paper cards. Hence, the Capitainer qDBS (10 µL of whole blood spotted) is the smallest
volume of blood used for such analyses.

The initial step was to design a comprehensive experimental approach to identify the
optimum extraction protocol for the analytes of interest from the qDBS sample. Based
on our literature findings, several studies in DBS determining either benzodiazepines or
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cocaine and metabolites, or both, performed SPE [14,18,19]. Extraction solvents tested
include MeOH-AcN 3:1 (v/v) [21,22], pure H2O [23], 0.1% FA in MeOH [25], 1% FA in
H2O [26], MeOH [24], AcN-H2O 8:2 (v/v) [17], and AcN-MeOH 1:1 (v/v) [43]. Herein, AcN,
MeOH, and a mixture of AcN-MeOH, 1:1 (v/v) were evaluated. An MQC sample (fortified
with 50 ng/mL for bromazepam, temazepam, oxazepam, alprazolam, 7-AF, methadone,
cathine, mescaline, 25B-NB2OMe, 25C-NB2OMe, 25I-NB2OMe, mephedrone, AH-7921,
1-benzylpiperazine, methylone, MDPV, JWH-018, and with 25 ng/mL for diazepam, co-
caine, benzoylecgonine, methylecgonine, cocaethylene, MDMA, THC, CBN, CBD) was
used to investigate which would be the most efficient extraction system for all the studied
analytes from qDBSs. As can be seen in Figure 2, with the exception of methylone and
mephedrone, which were extracted more efficiently with AcN, pure MeOH or mixture of
MeOH with AcN provided better extraction recoveries. AcN-MeOH, 1:1 (v/v) was selected
as the optimal qDBS extraction solvent given the fact that 14 out of the 24 drugs had higher
intensity using this solvent (in comparison to the other test solvents). Acidification of the
AcN-MeOH, 1:1 (v/v) mixture by adding 0.1% FA, as previously reported [25,26], did not
improve recovery and thus was not considered further. One milliliter of solvent provided
satisfactory results; higher volumes were tested with no enhanced recoveries.
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2.3. Drugs Screening
2.3.1. Sensitivity, LOD, and LOQ

The method developed here aims for the application of a minimally invasive sample
collection approach for drug screening in blood. Thus, the study was focused on the
detection of the drugs of abuse. For this, LOQ and LOD were estimated, as described
in Section 3.6.1. Further parameters, such as intra- and interday accuracy and precision
related to quantification, were not studied; however, it will be the goal of a future study. For
bromazepam, temazepam, oxazepam, alprazolam, 7-AF, methadone, cathine, mescaline,
25B-NB2OMe, 25C-NB2OMe, 25I-NB2OMe, mephedrone, AH-7921, 1-benzylpiperazine,
methylone, MDPV, and JWH 018, LOQ was accessed at 5 ng/mL, while for diazepam,
cocaine, benzoylecgonine, methylecgonine, cocaethylene, MDMA, THC, CBN, and CBD, at
2.5 ng/mL. Details for LODs are demonstrated in Table 1.

2.3.2. Extraction Recovery (ER%), Hematocrit Effect

Sample volume and hematocrit (Hct) have proved to be two major factors, affecting
spot formulation, homogeneity, drying time, and analyte recovery, and are, thus, studied
in DBS applications [42,44,45]. In a qDBS device, a precisely measured sample volume is
collected on the disc. Nonetheless, the Hct may have an impact on the accuracy of the
sampling or, even more so, on the success of the analyte extraction, and, as previously
reported [46,47], an independent hematocrit response bias is likely to be observed.

Herein, the impact of Hct on the extraction recovery of all analytes of interest was
investigated by estimating the percentage recovery in three different Hct levels. Results of
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extraction recovery at LH (35%), FH (40%), and HH (50%) in two different fortified levels
are illustrated in Table 2A,B. Based on the results, it was concluded that no effect of Hct
was observed, given the fact that ER% spans to similar levels (ranging from 84.6% to 106%)
and was within the acceptable criteria [48].

Table 2. (A,B) Extraction recoveries ± sd in two fortified levels, in three hematocrit levels for the
listed analytes.

(A)

Analyte

Fortified Concentration

5 ng/mL 50 ng/mL

LH
(ER% ± sd)

FH
(ER% ± sd)

HH
(ER% ± sd)

LH
(ER% ± sd)

FH
(ER% ± sd)

HH
(ER% ± sd)

Bromazepam 85.3 ± 0.5 91.6 ± 0.9 93.9 ± 0.5 89.7 ± 0.8 92.9 ± 1.6 95.2 ± 0.8

Temazepam 90.6 ± 0.4 92.6 ± 0.9 91.7 ± 1.2 90.1 ± 0.6 94.4 ± 1.2 94.2 ± 0.2

Oxazepam 87.7 ± 0.6 89.7 ± 0.2 96.0 ± 0.7 88.4 ± 0.8 93.3 ± 0.3 104 ± 0.6

Alprazolam 90.7 ± 0.4 100 ± 0.5 109 ± 1.7 86.3 ± 0.2 101 ± 1.0 106 ± 1.3

7-aminoflunitrazepam (7-AF) 86.7 ± 0.5 93.7 ± 0.2 87.3 ± 0.7 88.1 ± 1.2 96.1 ± 0.1 96.4 ± 0.5

Methadone 84.6 ± 0.8 105 ± 1.9 99.6 ± 0.7 86.0 ± 0.5 96.2 ± 0.9 94.8 ± 0.3

Cathine 85.7 ± 0.4 89.3 ± 0.4 97.4 ± 0.6 86.2 ± 0.5 88.2 ± 0.6 97.2 ± 0.3

Mescaline 88.4 ± 0.8 94.6 ± 0.6 102 ± 1.0 90.2 ± 0.7 89.8 ± 0.9 98.5 ± 0.7

25B-NB2OMe 89.3 ± 0.7 92.7 ± 0.3 92.9 ± 0.7 88.8 ± 0.6 94.7 ± 0.5 103 ± 1.3

25C-NB2OMe 86.2 ± 0.8 88.7 ± 1.0 94.6 ± 0.8 86.6 ± 0.2 96.6 ± 0.9 88.8 ± 0.8

25I-NB2OMe 86.8 ± 0.1 95.1 ± 0.3 96.9 ± 0.3 89.0 ± 0.4 86.3 ± 0.2 97.4 ± 0.8

Mephedrone 88.9 ± 0.3 89.2 ± 0.6 101 ± 0.8 87.9 ± 0.6 96.4 ± 0.4 95.0 ± 0.1

AH-7921 91.5 ± 0.6 92.7 ± 1.2 88.2 ± 0.4 93.6 ± 0.7 95.5 ± 1.3 99.9 ± 1.1

1-Benzylpiperazine 88.3 ± 1.5 92.6 ± 0.5 85.6 ± 0.3 86.6 ± 0.3 94.8 ± 0.6 93.9 ± 0.4

Methylone 86.5 ± 0.6 88.2 ± 0.4 90.1 ± 0.4 89.0 ± 0.3 92.1 ± 0.4 98.0 ± 0.2

3,4-Methylenedioxypyrovalerone (MDPV) 89.2 ± 0.7 91.5 ± 0.5 96.2 ± 0.3 90.8 ± 0.5 95.0 ± 0.6 97.7 ± 0.8

JWH-018 85.1 ± 0.4 95.8 ± 0.6 88.6 ± 0.4 85.5 ± 0.3 87.3 ± 0.3 90.6 ± 0.4

(B)

Analyte

Fortified Concentration (ng/mL)

2.5 ng/mL 25 ng/mL

LH
(ER% ± sd)

FH
(ER% ± sd)

HH
(ER% ± sd)

LH
(ER% ± sd)

FH
(ER% ± sd)

HH
(ER% ± sd)

Diazepam 92.3 ± 1.2 86.3 ± 0.2 108 ± 1.0 89.1 ± 0.8 90.5 ± 0.8 105 ± 0.8

Cocaine 88.4 ± 0.4 93.4 ± 0.9 102 ± 1.5 85.9 ± 0.5 87.7 ± 0.9 103 ± 1.0

Benzoylecgonine 86.6 ± 0.2 98.7 ± 0.8 94.2 ± 0.2 85.2 ± 0.4 89.5 ± 0.4 91.6 ± 0.8

Methylecgonine 87.9 ± 0.8 105 ± 0.9 94.6 ± 0.8 85.6 ± 0.5 106 ± 0.5 89.7 ± 0.4

Cocaethylene 91.2 ± 0.5 95.6 ± 1.3 91.7 ± 1.2 90.5 ± 0.3 98.4 ± 1.0 88.8 ± 0.8

3,4-methylenedioxymethamphetamine
(MDMA) 85.7 ± 0.5 98.7 ± 0.6 96.6 ± 0.9 88.0 ± 0.2 95.6 ± 0.6 94.8 ± 0.3

Tetrahydrocannabinol (THC) 85.7 ± 0.8 87.8 ± 0.6 88.2 ± 0.4 84.8 ± 0.2 96.4 ± 0.2 89.9 ± 0.7

Cannabinol (CBN) 85.2 ± 0.6 89.9 ± 1.1 85.6 ± 0.3 86.3 ± 1.1 88.9 ± 0.5 86.7 ± 1.2

Cannabidiol (CBD) 84.9 ± 0.3 90.4 ± 0.7 87.9 ± 0.4 87.4 ± 0.5 87.3 ± 1.2 89.3 ± 0.6

2.3.3. Stability

Analyte stability was evaluated by analyzing fortified qDBS samples under three
different storage conditions (benchtop 20 ◦C, freezer −20 ◦C, and oven 30 ◦C) over 5 se-
quential days. Results of stability were expressed as % relative error (% Er), demonstrated
in Table 3. As observed in Figure 3, all analytes were estimated to be within +15% Er to
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−15% Er in all cases, indicating that the analytes are stable under the given conditions for
almost a week allowing for a quite adequate time frame for their analysis.
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Table 3. Relative error (%Er) found for all analytes in three different fortified levels, in three different
storage conditions over 5 sequential days.

Analyte
5 Days in 20 ◦C 5 Days in −20 ◦C 5 Days in 30 ◦C

LQC
(%Er)

MQC
(%Er)

HQC
(%Er)

LQC
(%Er)

MQC
(%Er)

HQC
(%Er)

LQC
(%Er)

MQC
(%Er)

HQC
(%Er)

Bromazepam −2.10 −1.20 0.98 −6.77 −5.90 −3.83 −12.9 −12.1 −10.1

Temazepam −4.40 −1.59 −1.94 −9.17 −4.18 −2.91 −10.8 −7.97 −10.4

Oxazepam −1.86 −1.60 −1.50 −8.53 −3.80 −0.80 −9.28 −5.00 −7.60

Alprazolam −6.51 0.20 0.99 −5.94 −3.40 −1.88 −7.85 −4.00 −5.35

7-aminoflunitrazepam (7-AF) 0.80 −2.97 1.20 −4.00 −7.59 −3.62 −10.3 −13.6 −9.92

Methadone −6.75 −3.78 −4.61 −1.84 −5.78 −3.14 −2.86 −4.38 −5.88

Cathine −4.33 −5.02 −3.96 −1.57 −3.82 −2.67 −8.01 −10.1 −9.04

Mescaline −5.81 −4.18 −7.21 −7.25 −5.98 −4.62 −8.92 −10.2 −10.4

25B-NB2OMe 1.88 −5.99 −1.96 −2.97 −8.47 −6.63 −10.3 −13.8 −11.4

25C-NB2OMe −4.82 −4.38 −0.99 −7.60 −7.17 −3.87 −13.6 −13.2 −10.2

25I-NB2OMe −6.41 −2.83 −6.67 −5.48 −1.86 −5.73 −9.82 −10.1 −8.53

Mephedrone −4.12 −5.01 −5.98 −3.16 −4.06 −5.04 −9.22 −11.6 −8.92

AH-7921 5.03 −5.99 −4.16 6.08 −5.05 −3.20 0.63 −9.18 −5.94

1-Benzylpiperazine −5.04 −4.37 −2.91 −7.80 −7.15 −5.74 −13.8 −13.2 −11.9

Methylone −7.07 0.20 −4.90 −7.99 −0.79 −5.84 −10.5 −5.96 −6.00

3,4-Methylenedioxypyrovalerone (MDPV) −2.90 −7.31 −4.55 −3.86 −8.23 −5.50 −6.46 −9.09 −7.43

JWH-018 −1.02 −3.54 −2.94 −2.00 −4.50 −3.90 −5.49 −5.31 −5.49

Diazepam 1.70 −1.98 −5.69 −1.26 −4.83 −8.43 −6.38 −7.91 −11.8

Cocaine −7.81 −2.00 −3.48 −6.25 −6.00 −3.89 −12.4 −12.1 −10.2

Benzoylecgonine −8.64 −4.38 −2.21 −4.94 −4.78 −6.84 −11.5 −14.3 −8.25
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Table 3. Cont.

Analyte
5 Days in 20 ◦C 5 Days in −20 ◦C 5 Days in 30 ◦C

LQC
(%Er)

MQC
(%Er)

HQC
(%Er)

LQC
(%Er)

MQC
(%Er)

HQC
(%Er)

LQC
(%Er)

MQC
(%Er)

HQC
(%Er)

Methylecgonine −6.51 −2.02 −6.25 −9.24 −4.87 −8.98 −14.8 −11.1 −14.9

Cocaethylene −5.49 −1.63 0.40 −9.02 −2.04 −7.24 −14.5 −1.22 −8.85

3,4-methylenedioxymethamphetamine (MDMA) −5.83 −8.30 −0.20 −4.93 −9.88 −5.79 −5.83 −13.0 −6.59

Tetrahydrocannabinol (THC) −2.90 −7.95 −8.33 −5.73 −10.63 −11.00 −11.9 −13.8 −14.8

Cannabinol (CBN) −4.78 −6.64 −8.93 −8.37 −8.30 −12.30 −14.7 −11.2 −13.5

Cannabidiol (CBD) −6.01 −9.88 −7.37 −4.72 −7.00 −8.37 −10.7 −14.0 −10.4

3. Materials and Methods
3.1. Reagents, Materials, and Chemicals

Methanol (MeOH) and acetonitrile (AcN), LC–MS grade, were purchased from HiPer-
Solv CHROMANORM®. LC–MS grade isopropanol (IPA) was obtained from Fisher Scien-
tific International, Inc., Hampton, NH, USA. A Milli-Q purification system (18.2 MΩ cm−1)
was used to provide ultrapure water. Ammonium formate (AF) ≥99% and formic acid (FA)
98–100% mobile phase additives were purchased from Riedel-de Haën® (Sigma-Aldrich,
Steinheim, Germany) and ChemLab, Zedelgem Belgium, respectively. Reference standards
of diazepam, bromazepam, temazepam, oxazepam, alprazolam, 7-aminoflunitrazepam
(7-AF), methadone, 3,4-methylenedioxymethamphetamine (MDMA), cathine, mescaline,
cocaine, benzoylecgonine, methylecgonine, cocaethylene, 25B-NB2OMe, 25C-NB2OMe,
25I-NB2OMe, mephedrone, AH-7921, 1-Benzylpiperazine, methylone, 3,4-Methylenedioxy
pyrovalerone (MDPV), JWH-018, tetrahydrocannabinol (THC), cannabinol (CBN), and
cannabidiol (CBD) were of more than 98% purity and were purchased from Lipomed AG
(Arlesheim, Switzerland).

Dried blood spots (qDBSs) devices were obtained from Capitainer AB® (Solna, Sweden).

3.2. Working Standard Solutions and Quality Control Samples (QCs)

All analytes’ stock solutions (1 mg/mL) were prepared in methanol by dissolv-
ing an appropriate amount of each solid standard. Following dilutions with MeOH,
working solutions of 0.1 mg/mL concentration were prepared for each drug. Subse-
quently, a mixture, containing a concentration of 10 µg/mL bromazepam, temazepam,
oxazepam, alprazolam, 7-aminoflunitrazepam (7-AF), methadone, cathine, mescaline,
25B-NB2OMe, 25C-NB2OMe, 25I-NB2OMe, mephedrone, AH-7921, 1-benzylpiperazine,
methylone, 3,4-methylenedioxypyrovalerone (MDPV), JWH-018, and at a concentra-
tion of 5 µg/mL diazepam, cocaine, benzoylecgonine, methylecgonine, cocaethylene,
3,4-methylenedioxymethamphetamine (MDMA), tetrahydrocannabinol (THC), cannabinol
(CBN) and cannabidiol (CBD), was created in H2O-MeOH, 50:50 (v/v). All working and
stock solutions were stored at −20 ◦C.

For validation purposes, a sample prepared by pooling 10 whole blood samples
was used (QC). By appropriate spiking of the latter at three different levels of the drugs
LQC, MQC, and HQC, samples were prepared, which were then transferred by a sy-
ringe onto the qDBS disc. LQC, MQC, and HQC were spiked at 5 ng/mL, 50 ng/mL,
and 100 ng/mL, respectively, with bromazepam, temazepam, oxazepam, alprazolam,
7-aminoflunitrazepam (7-AF), methadone, cathine, mescaline, 25B-NB2OMe, 25C-NB2OMe,
25I-NB2OMe, mephedrone, AH-7921, 1-benzylpiperazine, methylone, 3,4-methylenedioxyp
yrovalerone (MDPV), and JWH-018. For the rest of the drugs, namely, for diazepam, cocaine,
benzoylecgonine, methylecgonine, cocaethylene, 3,4-methylenedioxymethamphetamine
(MDMA), tetrahydrocannabinol (THC), cannabinol (CBN), cannabidiol (CBD), LQC, MQC,
and HQC were prepared by spiking at 2.5 ng/mL, 25 ng/mL, and 50 ng/mL, respectively.

For the evaluation of extraction recovery, venous whole blood collected from three in-
dividuals with three different hematocrit levels (low 35%, medium 40%, and high 50%)
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were used. Spiking at LQC and MQC, as described above for QC, was performed to study
the impact of hematocrit in extraction efficiency. The collection of the blood samples was
performed under the approval of the Ethical Committee of the Aristotle University of
Thessaloniki (protocol number 62883/2023).

3.3. Instrumentation and Analytical Conditions

A reversed-phase liquid chromatography–tandem mass spectrometry (RPLC–MS/MS)
method was developed for the determination of the 26 drugs in qDBS extracts using an Elute
LC chromatographic system coupled to an EVOQ Elite triple quadrupole mass spectrometer
(Bruker Daltonics, Bremen, Germany). Separation was carried out on an Intensity Solo
2 C18 (2.1 × 100 mm, 2 µm) column and the mobile phases consisted of A: H2O-MeOH,
90:10 (v/v), 5 mM ammonium formate, 0.01% formic acid and B: MeOH, 5 mM ammonium
formate, 0.01% formic acid. Elution was performed by a 15 min gradient as follows:
0–0.5 min: 15–30% B (flow rate 0.2 mL/min), 0.5–10 min: 30–80% B (flow rate 0.2 mL/min);
10–10.5 min: 80–100% B (flow rate 0.4 mL/min); 10.5–12 min 100% B. At 12.01 min, the
composition was returned to the initial conditions and column re-equilibration was applied
for 3 min. Column temperature was set at 50 ◦C, and autosampler’s temperature at 4 ◦C.
Injection volume was 5 µL.

3.4. qDBS Sample Extraction Optimization

Different extraction conditions were tested to examine the extraction efficiency of the
analytes from the qDBS disc. Specifically, extraction recovery and repeatability of various
solvents or mixtures, including AcN, MeOH, and AcN: MeOH, 1:1 (v/v), were assessed.
The extraction procedure started by carefully removing one disc (1 × 10 µL) from the
Capitainer device, and then by transferring it into an Eppendorf tube. One milliliter of the
extraction solvent was added. Vortex-mixing for 10 min, sonication for 10 min, and/or
homogenization by bead beater were tested. For the latter, the disc was placed in a tube
that contained approximately 20 ceramic bead media balls, vortex-mixed for 10 min, and
then was homogenized with solvent for 30 s at a speed of 6.0 m/s; this was repeated twice.
In all cases, centrifugation for 10 min at 6700× g was thereafter held. Finally, 500 µL of the
supernatant were transferred to a tube and evaporated until dryness. The dry residue was
reconstituted with 50 µL of H2O-MeOH, 85:15 (v/v). The procedure was performed three
times for the different extraction conditions. The solvent system that provided better results
was also tested at a smaller volume (200 µL); in this condition, one hundred microliters of
supernatant were directly transferred to an LC–MS vial and subjected to analysis.

3.5. Final qDBS Sample Treatment Protocol

In a tube that had previously been filled with about 20 ceramic balls (1.4 mm ceramic
bead media), one qDBS sample was placed. Then, 1 mL of can-MeOH, 1:1 (v/v) was
added. After 10 min of vortex-mixing, two cycles of beat-beater homogenization lasting
30 s each were carried out at a speed of 6.0 m/s. Five hundred microliters of the supernatant
was transferred to a 1.5 mL Eppendorf tube after centrifuged at 6700× g for 10 min and
evaporated to dryness. The dry residue was reconstituted with 50 mL of H2O-MeOH,
85:15 (v/v).

3.6. qDBS Drugs Screening
3.6.1. Sensitivity, LOD, and LOQ

The sensitivity of the method was estimated through the limits of detection (LODs) for
the studied analytes. Limit of quantification (LOQ) values were estimated experimentally
by analyzing the spiked qDBS HQC sample after serial dilutions. LODs were established
as the concentration where the chromatographic peaks-to-noise ratio was 3:1, whereas for
LOQ, a 10:1 ratio was considered.
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3.6.2. Extraction Recovery (ER%) and Hematocrit Effect

Extraction recovery (ER%) and hematocrit effect were evaluated for the employed
extraction protocol. Three blood samples with different hematocrit spanning from low
to high levels (low hematocrit, LH 35%; fixed hematocrit, FH 40%; and high hematocrit,
HH 50%) were obtained from volunteers to assess the impact of the hematocrit on the
extraction efficiency. Two different levels of the analytes standard mixture were added in
qDBS samples (LQC, MQC) before and after extraction. Extraction recovery, ER%, was
determined based on Equation (1). Hematocrit effect was evaluated as part of extraction
recovery efficiency at the three different samples of different hematocrit levels (LH, FH, HH).

%ER =
Peak area spiked before extraction
Peak area spiked after extraction

× 100 (1)

3.6.3. Stability of qDBS Samples

Stability of the analytes in the qDBS samples was studied under three different storage
conditions: at benchtop (20 ◦C), in the oven (30 ◦C), and in the freezer (−20 ◦C). Three
concentrations (LQC, MQC, and HQC) were examined. Evaluation of short-term stability
was carried out by analyzing the spiked qDBS samples (LQC, MQC, HQC) stored under
three different conditions for 5 days. The same spiked qDBS samples were analyzed
after being freshly prepared to estimate the % relative error (%Er). The three different
freshly prepared spiked qDBS QC samples were used to plot a calibration curve, aiding in
generating concentration data.

4. Conclusions

The applied UHPLC–MS/MS method was developed with the aim to detect 26 illicit
drugs in qDBS samples by analyzing only 10 µL of capillary blood. Herein, a simple, rapid,
and trustworthy extraction protocol was achieved, reaching high sensitivity levels for all
analytes. This is the first approach reported for the detection of frequently screened drugs
utilizing a qDBS device, using just a small drop of blood. Stability experiments showed
negligible bias that suggests the validity of the method within a 5-day time period, even at
RT storage conditions. Therefore, the method offers a great promise for future applications
in drug screening for toxicological and forensic analysis purposes.
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