
Citation: Nishidono, Y.; Saifudin, A.;

Tanaka, K. Characterization of the

Volatile Constituents of Plai (Zingiber

purpureum) by Gas Chromatography–

Mass Spectrometry. Molecules 2024, 29,

1216. https://doi.org/10.3390/

molecules29061216

Academic Editor: Francesco Cacciola

Received: 17 February 2024

Revised: 6 March 2024

Accepted: 7 March 2024

Published: 8 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Characterization of the Volatile Constituents of Plai (Zingiber
purpureum) by Gas Chromatography–Mass Spectrometry
Yuto Nishidono 1,2,* , Azis Saifudin 3 and Ken Tanaka 1

1 College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan;
ktanaka@fc.ritsumei.ac.jp

2 Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
3 Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Sukoharjo 57102, Jawa Tengah, Indonesia;

azis.saifudin@ums.ac.id
* Correspondence: nisidono@fc.ritsumei.ac.jp; Tel.: +81-77-561-5179

Abstract: Zingiber purpureum Roscoe, known as plai in Thailand, is a perennial plant of the Zingiber-
aceae family and has traditionally been used in Southeast Asian countries to treat inflammation, pain,
and asthma. In this study, we performed the characterization of the volatile constituents in ethyl
acetate extracts of plai. Ethyl acetate extracts derived from the rhizomes of plai were subjected to gas
chromatography–mass spectrometry, and the key peaks in the total ion current chromatograms were
annotated or identified. In total, twenty-one compounds were identified using isolation procedures
or standards, and nine compounds were annotated by comparing their Kovats retention index (RI)
and electron ionization (EI) mass spectra with those in the literature. Most of the identifications were
inconsistent with the tentative annotations found via library search and suggested that some peaks
were incorrectly assigned in previous studies. Thus, to avoid further misannotations and contribute
to the research on dereplication, the RI value, EI mass spectral data, and NMR spectroscopy data of
the isolated compounds are reported.

Keywords: Zingiber purpureum Roscoe; plai; cassumunar ginger; phenylbutenoids; GC–MS

1. Introduction

The goal of metabolomics research on medicinal plants is to comprehensively and
accurately identify all low-molecular-weight metabolites [1], thus providing an effective
approach to evaluating the quality of medicinal plants [2]. These studies are mainly based
on targeted and untargeted analyses [1]. In untargeted analyses, annotation and identifica-
tion are critical to converting metabolomics data into meaningful biological knowledge [3].
However, especially in studies on medicinal plants, the process of annotation and identifi-
cation of metabolites remains a major bottleneck due to the limited data in libraries and
lack of standards [1,4].

In 2007, four different levels of metabolite identification were defined by the chemical
analysis working group of the Metabolomics Standards Initiative (MSI) [5,6], namely, the
identified compounds (level 1), putatively annotated compounds (level 2), putatively char-
acterized compound classes (level 3), and unknown compounds (level 4). Recently, level 0,
which includes compounds identified via isolation and full stereochemical characteriza-
tion, was established as a new confidence level of metabolite identification [6,7]. In many
studies, authentic standards were not used; therefore, annotations (levels 2 and 3) and not
identifications (levels 0 and 1) were achieved [8].

Zingiber purpureum Roscoe (syn Z. cassumunar Roxb.) is a perennial plant in the
Zingiberaceae known as plai (phlai) in Thailand and bangle or bengle in Indonesia [9–11].
Over the past two decades, Z. montanum (J.Koenig) Link ex A.Dietr. has been accepted
as the scientific name for plai (cassumunar ginger), whereas Bai et al. recently proposed
that Z. purpureum Roscoe is the correct name for this plant [12]. This herb is widely used
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as a remedy or component of herbal recipes in Asian countries [9]. In Thailand, it is used
as the main component in massage oil to relieve muscle pain and is consumed to relieve
asthma [9,13]. In the Thai Herbal Pharmacopoeia, plai is listed as an anti-inflammatory,
counter-irritant, and mosquito-repellent herb [14]. In fact, products using plai oil are
currently made and distributed to alleviate muscle pain [15]. In Indonesia, bangle has been
used to relieve colic in children [13], to treat abdominal obesity in postpartum women [16],
and as a vermifuge and an analeptic for the uterus [17]. Scientific studies have revealed
the bioactivities of the extracts or fractions of this plant behind these traditional uses, such
as antioxidant, anti-inflammatory, antifungal, antimicrobial, anti-asthma, neuroprotective,
anticancer, antiaging, and skin whitening effects [18].

Plai contains several types of secondary metabolites. Among them, phenylbutenoids,
curcuminoids, and essential oil constituents are the major bioactive compounds [18]. In par-
ticular, phenylbutenoids are major characteristic compounds of this herb and show various
biological activities, including anti-asthma, anticancer, anti-inflammatory, chondropro-
tective, and melanogenic effects [18,19]. Owing to their volatility, gas chromatography–
mass spectrometry (GC–MS) is often employed for the analysis of the extracts and oils
of plai [15,20–39]. Although these studies contributed to the elucidation of chemical
constituents in plai, some peaks are still unidentified, and some discrepancies in peak
annotations are found in the literature.

In this study, to confirm or revise the peak annotation of the volatile constituents
in plai extracts, we performed their characterization. In particular, the compounds cor-
responding to key peaks were isolated, and their structures were elucidated based on
NMR spectroscopic data. Finally, Kovats retention index (RI) value, electron ionization (EI)
mass spectral data, and NMR data of the isolated compounds are reported to contribute to
further studies on the chemical constituents of plai.

2. Results and Discussion

Previous studies have shown that essential oils obtained through the hydrodistillation
of plai contained phenylbutenoid monomers [26], and the ethyl acetate fraction of the 70%
ethanol extract of plai contained phenylbutenoid monomers and dimers [33]. Therefore,
herein, the dried rhizomes of two plai samples purchased in Thailand and Indonesia were
extracted using ethyl acetate, and then the extracts were subjected to GC–MS (Figure 1).
Thirty major peaks were detected in the GC–MS total ion current (TIC) chromatograms
of the extracts, and their tentative annotation was performed via library search using the
Wiley 9 database (Table 1 and Figure 2).
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Figure 1. Gas chromatography–mass spectrometry total ion current chromatograms of ethyl acetate
extracts of plai purchased in Thailand (A) and Indonesia (B). The numbers in the figure refer to the
structures in Figure 2.
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Table 1. Annotation or identification of volatile constituents in the ethyl acetate extracts of plai samples.

Peak RI Compounds Annotated via Library Search Similarity Compounds Annotated or Identified via This Study MSI 1

1 931 α-Thujene (1) 95 α-Thujene (1) 2
2 939 α-Pinene (2) 98 α-Pinene (2) 2
3 979 Sabinene (3) 96 Sabinene (3) 1
4 982 β-Pinene (4) 98 β-Pinene (4) 2
5 991 Myrcene (5) 97 Myrcene (5) 2
6 1019 α-Terpinene (6) 96 α-Terpinene (6) 2
7 1028 p-Cymene (7) 97 p-Cymene (7) 2
8 1063 γ-Terpinene (8) 98 γ-Terpinene (8) 2
9 1075 4-Thujanol (9 or 10) 97 trans-4-Thujanol (9) 1

10 1103 4-Thujanol (9 or 10) 96 cis-4-Thujanol (10) 2
11 1188 Terpinen-4-ol (11) 96 Terpinen-4-ol (11) 1
12 1483 3,4-Dimethoxybenzaldehyde (12) 93 3,4-Dimethoxybenzaldehyde (12) 0
13 1530 β-Sesquiphellandrene (13) 93 β-Sesquiphellandrene (13) 2
14 1592 1,4-Dimethoxy-2-methyl-3-(2-propen-1-yl)benzene (14a) 86 (E)-1-(3′,4′-Dimethoxyphenyl)but-1-ene (14) 0
15 1633 1,4-Dimethoxytriquinacene (15a) 86 (E)-1-(3′,4′-Dimethoxyphenyl)buta-1,3-diene (15) 0
16 1752 δ-Cuparenol (16a) 80 Xanthorrhizol (16) 1
17 1759 Methyl 3,4-dimethoxycinnamate (17a) 72 (E)-1-(2′,4′,5′-Trimethoxyphenyl)but-1-ene (17) 0
18 1782 4,7-Dimethoxy-1-indanone (18a) 78 (E)-3-(3′,4′-Dimethoxyphenyl)propenal (18) 0
19 1811 1,4,7-Trimethoxytriquinacene (19a) 80 (E)-1-(2′,4′,5′-Trimethoxyphenyl)buta-1,3-diene (19) 0
20 1872 1,2-Dimethoxy-4-(1-methoxy-2-propen-1-yl)benzene (20a) 76 (E)-4-(3′,4′-Dimethoxyphenyl)but-3-en-1-ol (20) 0
21 1914 2-[(3,4-Dimethoxyphenyl)amino]ethanol (21a) 73 Cassumunol H (21) 0
22 1988 1,4-Dimethoxytriquinacene (15a) 76 (E)-4-(3′,4′-Dimethoxyphenyl)but-3-en-1-yl acetate (22) 0
23 3007 (E)-1-(3′,4′-Dimethoxyphenyl)buta-1,3-diene (15) 76 cis-Banglene (23) 0
24 3048 (E)-1-(3′,4′-Dimethoxyphenyl)buta-1,3-diene (15) 76 trans-Banglene (24) 0
25 3074 3,6-Dihydro-8,9-dimethoxy-1H-2-benzoxocin (25a) 73 2′-Methoxy cis-banglene (25) 0
26 3120 3,6-Dihydro-8,9-dimethoxy-1H-2-benzoxocin (25a) 72 2′-Methoxy trans-banglene (26) 0
27 3134 3,6-Dihydro-8,9-dimethoxy-1H-2-benzoxocin (25a) 72 2′′′-Methoxy cis-banglene (27) 0
28 3172 3,6-Dihydro-8,9-dimethoxy-1H-2-benzoxocin (25a) 74 2′′′-Methoxy trans-banglene (28) 0
29 3195 1-[[(1E,3E)-4-Methoxy-2-methyl-1,3-butadien-1-yl]thio]-2-methylbenzene (29a) 75 2′, 2′′′-Dimethoxy cis-banglene (29) 0
30 3239 4-(3,4-Dimethoxyphenyl)-3,4-dihydro-2H-pyran (30a) 73 2′, 2′′′-Dimethoxy trans-banglene (30) 0

1 Confidence levels of identification according to the Metabolomics Standards Initiative (MSI) (0: Isolation; 1: Standard; 2: RI value and EI mass spectral data matched with those in
the literature).
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Next, verification of the tentative annotations was conducted. The annotation of peaks
1, 2, 4–8, and 13 was verified by comparing the EI mass spectrum and RI value with those
reported [40]. Peaks 3 and 11 were identified as sabinene (3) and terpinen-4-ol (11), respec-
tively, using standards. In addition, peak 12 was assigned to 3,4-dimethoxybenzaldehyde
(12) via isolation [41]. Therefore, the annotation and identification of these peaks was
consistent with the annotation found via library search.

Peaks 9 and 10 were tentatively annotated as 4-thujanol, which is also known as
sabinene hydrate. The configuration of the purchased standard was confirmed as a trans-
configuration by comparing its NMR spectroscopic data with those of trans- and cis-4-
thujanol [42,43]. According to the RI value and EI mass spectral data of the standard, peak
9 was finally identified as trans-4-thujanol (9). Moreover, additional RI values revealed
that peak 10 was cis-4-thujanol (10) [40]. These results confirm that some peaks were
previously misannotated [20–25]. In particular, trans-4-thujanol (trans-sabinene hydrate)
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and cis-4-thujanol (cis-sabinene hydrate) were reversely annotated to their corresponding
peaks, most likely because the compound recently known as trans-sabinene hydrate was
classically named as cis-sabinene hydrate [44]. Following the suggestion by Mladenović
and Radulović [45], trans-4-thujanol (9) and cis-4-thujanol (10) in this study are also shown
as (1S*,3R*,4R*)-4-thujanol (9) and (1S*,3R*,4S*)-4-thujanol (10), respectively.

Peaks 14 and 17 were tentatively annotated as 1,4-dimethoxy-2-methyl-3-(2-propen-
1-yl)benzene (14a) and methyl 3,4-dimethoxycinnamate (17a), respectively, via a library
search. However, their EI mass spectrum and RI value were similar to those of phenyl-
butenoids [26]. To investigate these differences, the compounds corresponding to peaks 14
and 17 were isolated, and their structures were established on the basis of the NMR data [46].
Therefore, peaks 14 and 17 were finally assigned to (E)-1-(3′,4′-dimethoxyphenyl)but-1-ene
(14) and (E)-1-(2′,4′,5′-trimethoxyphenyl)but-1-ene (17), respectively.

The EI mass spectrum of peak 15 showed the molecular ion peak at 190 (m/z), and peak
15 was tentatively annotated as 1,4-dimethoxytriquinacene (15a) via a library search. Previous
studies also reported the presence of a compound annotated as 1,4-dimethoxytriquinacene
(15a) [25,27–30]. In addition, Mektrirat et al. annotated the compound affording the molec-
ular ion peak at 190 (m/z), which eluted after β-sesquiphellandrene, as 1,2-dimethyl-6-
nitroindolizine on the basis of the mass spectral libraries [31]. However, the EI mass spectrum
of peak 15 was consistent with that of (E)-1-(3′,4′-dimethoxyphenyl)buta-1,3-diene (15) [26].
Therefore, the compound corresponding to peak 15 was isolated to clarify its structure, finding
that peak 15 indeed corresponds to (E)-1-(3′,4′-dimethoxyphenyl)buta-1,3-diene (15) [47].
Similarly, peak 19 was tentatively annotated as 1,4,7-trimethoxytriquinacene (19a). Although
this annotation was consistent with previous studies [25,27–29], the present study shows that
the compound corresponding to peak 19 was (E)-1-(2′,4′,5′-trimethoxyphenyl)buta-1,3-diene
(19) [48]. To avoid further misannotation, the differences in the EI mass spectrum between
phenylbutadienes (identified compounds) and triquinacenes (misassigned compounds) were
clarified. As shown in Figure 3, phenylbutadienes and triquinacenes can be discriminated on
the basis of the ratio of their molecular ion peaks [M]+ and their deprotonated molecular ion
peaks [M − H]+.

Molecules 2024, 29, x FOR PEER REVIEW 5 of 14 
 

 

thujanol (cis-sabinene hydrate) were reversely annotated to their corresponding peaks, 
most likely because the compound recently known as trans-sabinene hydrate was classi-
cally named as cis-sabinene hydrate [44]. Following the suggestion by Mladenović and 
Radulović [45], trans-4-thujanol (9) and cis-4-thujanol (10) in this study are also shown as 
(1S*,3R*,4R*)-4-thujanol (9) and (1S*,3R*,4S*)-4-thujanol (10), respectively. 

Peaks 14 and 17 were tentatively annotated as 1,4-dimethoxy-2-methyl-3-(2-propen-
1-yl)benzene (14a) and methyl 3,4-dimethoxycinnamate (17a), respectively, via a library 
search. However, their EI mass spectrum and RI value were similar to those of phenyl-
butenoids [26]. To investigate these differences, the compounds corresponding to peaks 
14 and 17 were isolated, and their structures were established on the basis of the NMR 
data [46]. Therefore, peaks 14 and 17 were finally assigned to (E)-1-(3′,4′-dimethoxy-
phenyl)but-1-ene (14) and (E)-1-(2′,4′,5′-trimethoxyphenyl)but-1-ene (17), respectively. 

The EI mass spectrum of peak 15 showed the molecular ion peak at 190 (m/z), and 
peak 15 was tentatively annotated as 1,4-dimethoxytriquinacene (15a) via a library search. 
Previous studies also reported the presence of a compound annotated as 1,4-dimethoxy-
triquinacene (15a) [25,27–30]. In addition, Mektrirat et al. annotated the compound afford-
ing the molecular ion peak at 190 (m/z), which eluted after β-sesquiphellandrene, as 1,2-
dimethyl-6-nitroindolizine on the basis of the mass spectral libraries [31]. However, the EI 
mass spectrum of peak 15 was consistent with that of (E)-1-(3′,4′-dimethoxyphenyl)buta-
1,3-diene (15) [26]. Therefore, the compound corresponding to peak 15 was isolated to 
clarify its structure, finding that peak 15 indeed corresponds to (E)-1-(3′,4′-dimethoxy-
phenyl)buta-1,3-diene (15) [47]. Similarly, peak 19 was tentatively annotated as 1,4,7-tri-
methoxytriquinacene (19a). Although this annotation was consistent with previous stud-
ies [25,27–29], the present study shows that the compound corresponding to peak 19 was 
(E)-1-(2′,4′,5′-trimethoxyphenyl)buta-1,3-diene (19) [48]. To avoid further misannotation, 
the differences in the EI mass spectrum between phenylbutadienes (identified com-
pounds) and triquinacenes (misassigned compounds) were clarified. As shown in Figure 
3, phenylbutadienes and triquinacenes can be discriminated on the basis of the ratio of 
their molecular ion peaks [M]+ and their deprotonated molecular ion peaks [M − H]+. 

 
Figure 3. Comparison between the EI mass spectra of (A) (E)-1-(3′,4′-dimethoxyphenyl)buta-1,3-
diene (15) and 1,4-dimethoxytriquinacene (15a) and (B) (E)-1-(2′,4′,5′-trimethoxyphenyl)buta-1,3-
diene (19) and 1,4,7-trimethoxytriquinacene (19a). EI-MS mass spectra of 15a and 19a were obtained 
from the Wiley 9 database. 

(A) (B)

50 100 150 200 (m/z)
0.00

0.25

0.50

0.75

1.00 (×10,000)
159

144

115
189175 190

50 100 150 200 (m/z)
0.00

0.25

0.50

0.75

1.00 (×10,000)
159

190144115

175

O

O

50 100 150 200 (m/z)
0.00

0.25

0.50

0.75

(×10,000)
189

220

174

145

205
158

1.00

(m/z)50 100 150 200
0.00

0.25

0.05

0.75

(×10,000)
189

174

219158 205145 220

1.00

Figure 3. Comparison between the EI mass spectra of (A) (E)-1-(3′,4′-dimethoxyphenyl)buta-1,3-diene
(15) and 1,4-dimethoxytriquinacene (15a) and (B) (E)-1-(2′,4′,5′-trimethoxyphenyl)buta-1,3-diene (19)
and 1,4,7-trimethoxytriquinacene (19a). EI-MS mass spectra of 15a and 19a were obtained from the
Wiley 9 database.
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The EI mass spectrum of peak 16 showed the molecular ion peak at 218 (m/z) and the
base ion peak at 136 (m/z). It was annotated as δ-cuparenol (16a) via a library search with
80% similarity, and Risnawati et al. could not identify this peak [32]. In this study, a search
in the Adams database revealed that xanthorrhizol showed these features [40], which is
consistent with other studies [49,50]. Accordingly, using the standard, peak 16 was finally
identified as xanthorrhizol (16), which is reported as a component of Z. purpureum Roscoe
for the first time.

Peak 18 was tentatively annotated as 4,7-dimethoxy-1-indanone (18a) and was finally
identified as (E)-3-(3′,4′-dimethoxyphenyl)propenal (18) [51].

Peaks 20 and 22 were finally identified as (E)-4-(3′,4′-dimethoxyphenyl)but-3-en-1-ol
(20) and (E)-4-(3′,4′-dimethoxyphenyl)but-3-en-1-yl acetate (22), respectively [52]. These
identifications were consistent with previous studies [25,32,33].

In the EI mass spectrum of peak 21, the molecular ion peak was detected at 224 (m/z).
To date, some compounds consistent with this result have been isolated from plai, including
(E)-4-(3,4-dimethoxyphenyl)but-3-ene-1,2-diol [52] and cassumunols G and H [53]. Among
them, only the EI mass spectrum of (E)-4-(3,4-dimethoxyphenyl)but-3-ene-1,2-diol was
reported [52], although it was not consistent with that of peak 21. Thus, cassumunol H (21)
was isolated and assigned to peak 21 [53].

Peaks 23 and 24 were tentatively annotated as the phenylbutenoid monomer (E)-1-
(3′,4′-dimethoxyphenyl)buta-1,3-diene via a library search. The EI mass spectra of these
peaks were almost the same, and the molecular ion and base ion peaks were detected at
380 (m/z) and 190 (m/z), respectively (Figure 4 and Figure S1). Risnawati et al. suggested
that their corresponding compounds are cis-l,2-bis[(E)-3,4-dimethoxystyryl]cyclobutene,
cis-banglene (cis-3-(3′,4′-dimethoxyphenyl)-4-[(E)-3′′′,4′′′-dimethoxystyryl]cyclohex-1-ene),
or trans-banglene (trans-3-(3′,4′-dimethoxyphenyl)-4-[(E)-3′′′,4′′′-dimethoxystyryl]cyclohex-
1-ene) [32]. In this study, the compounds corresponding to peaks 23 and 24 were isolated,
and their structures were elucidated via NMR analysis [46], allowing the assignment of
these peaks to cis-banglene (23) and trans-banglene (24), respectively. Similarly, the EI mass
spectra of peaks 29 and 30 showed the molecular ion peak at 440 (m/z) and the base ion peak
at 220 (m/z) (Figure 4 and Figure S1). These peaks were finally assigned to 2′,2′′′-dimethoxy
cis-banglene (cis-3-(2′,4′,5′-trimethoxyphenyl)-4-[(E)-2′′′,4′′′,5′′′-trimethoxystyryl]cyclohex-
1-ene) (29) and 2′,2′′′-dimethoxy trans-banglene (trans-3-(2′,4′,5′-trimethoxyphenyl)-4-[(E)-
2′′′,4′′′,5′′′-trimethoxystyryl]cyclohex-1-ene) (30), respectively [46,54].
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Figure 4. Enlarged gas chromatography–mass spectrometry total ion current (TIC) and extracted ion
current chromatograms of ethyl acetate extracts of plai purchased in Thailand (A) and Indonesia (B).
(1) TIC, (2) m/z 380 ([M]+ of compounds 23 and 24), (3) m/z 410 ([M]+ of compounds 25–28), (4) m/z
440 ([M]+ of compounds 29 and 30), (5) m/z 190, (6) m/z 220. The numbers in the figure refer to the
structures in Figure 2.
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Peaks 25–28 showed almost the same EI mass spectra, in which the molecular ion peak
and the base ion peak were detected at 410 (m/z) and 220 (m/z), respectively (Figure 4 and
Figure S1), indicating that these peaks correspond to banglenes with an additional methoxy
group. Because the EI mass spectra could not reveal the position of methoxy groups,
the corresponding compounds were isolated, and their structures were elucidated [46,55].
Accordingly, peaks 25–28 were finally identified, as shown in Table 1 and Figure 2.

Plai samples purchased in Thailand and Indonesia showed different volatile composi-
tions (Figure 1). The relative amounts of compounds 1–30 in ethyl acetate extracts calculated
according to the GC–MS peak areas are listed in Table S1. 3,4-Dimethoxybenzaldehyde
(12) and (E)-3-(3′,4′-dimethoxyphenyl)propenal (18) were only detected in the ethyl acetate
extract obtained from the rhizomes of the sample purchased in Indonesia. In addition, the
extract of the same sample showed a low intensity of (E)-1-(3′,4′-dimethoxyphenyl)buta-
1,3-diene (15). These observations were consistent with Seaho’s suggestion that these
aldehydes 12 and 18 are produced via the oxidative double-bond cleavage of (E)-1-(3′,4′-
dimethoxyphenyl)buta-1,3-diene (15) during storage [19]. Therefore, different volatile
compositions between the two analyzed samples may have resulted from the differences in
storage methods and duration, in addition to geographical variations.

In total, twenty-one compounds, including fifteen phenylbutenoids and one phenylbu-
tanoid, were identified, and nine compounds were annotated. The results indicate that
some peaks were incorrectly assigned in previous investigations [20–25,27–31,34]. To avoid
further misannotations and to contribute to the research on dereplication, the RI value, EI
mass spectral data, and NMR data of the isolated compounds are summarized in Table 1
and in the Materials and Methods section. Some of these data, such as the RI value of
compounds 23–30 and the EI mass spectral data of compound 21, are reported for the
first time.

3. Materials and Methods
3.1. General Experimental Procedures

NMR spectra were recorded using a JNM-ECZ500R spectrometer (JEOL Ltd., Tokyo,
Japan). Tetramethylsilane (0.00 ppm for 1H NMR) and the solvent peak (77.0 ppm for
13C NMR) in chloroform-d were used as internal standards. GC–MS was performed on
a Shimadzu GCMS-QP2010 (Shimadzu Corporation, Kyoto, Japan). Medium-pressure
liquid chromatography (MPLC) was performed using a Yamazen pump 540 (Yamazen
Corporation, Osaka, Japan) equipped with a universal column premium silica gel or
a universal column ODS (Yamazen Corporation). Semipreparative high-performance
liquid chromatography (HPLC) was performed on a Shimadzu prominence HPLC system
equipped with a CBM-20A communication bus module, a LC-20AR liquid chromatograph,
a SIL-10AF auto sampler, an SPD-20A UV/Vis detector, and an FRC-10A fraction collector
(Shimadzu Corporation). The flow rate and wavelength were set at 5 mL/min and 254 nm,
respectively. Separation was performed using a Cosmosil 5C18 MS-II packed column (5 µm,
10 mm × 250 mm, Nacalai Tesque, Inc., Kyoto, Japan) or a Cosmosil Cholester column
(5 µm, 10 mm × 250 mm, Nacalai Tesque, Inc.). Thin-layer chromatography was conducted
on precoated silica gel 60 F254 or RP-18 F254 plates (Merck, Darmstadt, Germany).

3.2. Plant Materials

Dried rhizomes of Zingiber purpureum Roscoe (Zingiberaceae) were purchased from
the crude drug market in Surakarta, Indonesia, in August 2017 and Bangkok, Thailand, in
July 2018. These crude drugs were authenticated by one of the authors (A.S.). A voucher
specimen (RIN-170102 and 180107) has been deposited at the Museum of Materia Medica,
Ritsumeikan University (Kusatsu, Shiga, Japan).

3.3. Chemicals

A standard alkane mixture (C9–C40) was purchased from GL Sciences (Tokyo, Japan).
Sabinene (3), trans-4-thujanol (9), terpinen-4-ol (11), and xanthorrhizol (16) were purchased
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from Nacalai Tesque Inc. Other analytical-grade chemicals and chromatographic solvents
were purchased from Nacalai Tesque Inc. or FUJIFILM Wako Pure Chemical Corporation
(Osaka, Japan).

3.4. Extraction and Isolation

The dried rhizomes of plai (111 g) purchased in Thailand were pulverized and ex-
tracted with ethyl acetate under reflux (3 × 500 mL, each 1 h). After the solvent was
evaporated in vacuo, 11.0 g of crude extract was obtained. A portion of the ethyl acetate
extract (9.58 g) was chromatographed on silica gel using an n-hexane/ethyl acetate solvent
system (70:30–0:100) to give 15 fractions. Fr. 2 (526.4 mg) and Fr. 4 (155.8 mg) were sub-
jected to MPLC with chloroform and semipreparative HPLC (Cosmosil Cholester column)
with an isocratic mobile phase of 80% aq. acetonitrile, yielding compounds 14 (30.1 mg,
tR = 4.7 min) and 17 (33.6 mg, tR = 4.7 min), respectively. Fr. 3 (555.5 mg) and 5 (279.1 mg)
were purified via MPLC (90% MeOH) to yield compounds 15 (312.8 mg) and 19 (106.8 mg),
respectively. An aliquot of Fr. 7 (112.6 mg) was further purified via semipreparative HPLC
(Cosmosil Cholester column) eluted with 80% acetonitrile to afford compounds 24 (50.4 mg,
tR = 7.3 min) and 23 (46.1 mg, tR = 8.1 min). The same procedure was performed for the
purification of Fr. 10 (121.8 mg), giving compounds 30 (16.4 mg, tR = 7.1 min) and 29
(49.9 mg, tR = 7.6 min). Fr. 8 (105.7 mg) was separated by semipreparative HPLC (5C18
MS-II packed column, acetonitrile–water, 8:2) to yield compounds 26 (29.8 mg, tR = 7.6 min)
and 25 (69.4 mg, tR = 8.3 min). Fr. 9 (103.8 mg) was also purified by semipreparative
HPLC (5C18 MS-II packed column, acetonitrile–water, 7:3) to yield compounds 28 (51.5 mg,
tR = 9.0 min) and 27 (34.8 mg, tR = 10.1 min).

Similarly, the ethyl acetate extract (8.74 g) was obtained from dried rhizomes of plai
(105 g) purchased in Indonesia. A portion of the extract (1.30 g) was subjected to MPLC with
an ODS column eluted by 80% methanol to give six fractions (Fr. 1–Fr. 6). Fr. 1 (26.6 mg)
was separated by preparative TLC (chloroform:methanol = 95:5) to afford compound 21
(1.8 mg). Fr. 2 (245.0 mg) was separated using a universal column premium silica gel
with an elution of n-hexane–ethyl acetate (6:4 v/v) to give compounds 12 (15.3 mg), 18
(11.8 mg), and 20 (40.8 mg). Fr. 3 (118.2 mg) was purified under the same conditions,
yielding compound 22 (17.5 mg).

3.4.1. 3,4-Dimethoxybenzaldehyde (12)
1H NMR (500 MHz, CDCl3): δH 3.95 (3H, s), 3.98 (3H, s), 6.99 (1H, d, J = 8.6 Hz), 7.42

(1H, d, J = 1.7 Hz), 7.47 (1H, dd, J = 8.6, 1.7 Hz), 9.86 (1H, s); 13C NMR (125 MHz, CDCl3):
δC 56.0, 56.1, 108.8, 110.3, 126.9, 130.1, 149.5, 154.4, 190.9; EI-MS: m/z 166 (100), 165 (65), 151
(14), 95 (50), 80 (10), 79 (26), 77 (43), 67 (13), 65 (19), 63 (12), 52 (13), 51 (25).

3.4.2. (E)-1-(3′,4′-Dimethoxyphenyl)but-1-ene (14)
1H NMR (500 MHz, CDCl3): δH 1.09 (3H, t, J = 7.5 Hz), 2.22 (2H, m), 3.87 (3H, s), 3.90

(3H, s), 6.14 (1H, dt, J = 15.8, 6.5 Hz), 6.32 (1H, dt, J = 15.8, 1.5 Hz), 6.80 (1H, d, J = 8.2 Hz),
6.87 (1H, dd, J = 8.2, 2.0 Hz), 6.92 (1H, d, J = 2.0 Hz); 13C NMR (125 MHz, CDCl3): δC 13.8,
26.0, 55.7, 55.9, 108.3, 111.1, 118.7, 128.3, 130.8, 131.1, 148.1, 148.9; EI-MS: m/z 192 (99), 178
(12), 177 (100), 162 (16), 161 (72), 149 (41), 147 (16), 146 (56), 145 (19), 133 (11), 131 (28), 121
(27), 119 (23), 117 (47), 116 (13), 115 (44), 107 (32), 105 (21), 103 (29), 93 (11), 91 (70), 89 (11),
79 (19), 78 (15), 77 (39), 65 (26), 63 (13), 55 (20), 51 (20).

3.4.3. (E)-1-(3′,4′-Dimethoxyphenyl)buta-1,3-diene (15)
1H NMR (500 MHz, CDCl3): δH 3.89 (3H, s), 3.92 (3H, s), 5.13 (1H, brd, J = 10.9 Hz),

5.30 (1H, brd, J = 16.3 Hz), 6.49 (1H, ddd, J = 16.3, 10.9, 10.6 Hz), 6.51 (1H, d, J = 15.0 Hz),
6.67 (1H, dd, J = 15.0, 10.6 Hz), 6.82 (1H, d, J = 8.4 Hz), 6.95 (1H, dd, J = 8.4, 1.7 Hz), 6.96
(1H, d, J = 1.7 Hz); 13C NMR (125 MHz, CDCl3): δC 55.8, 55.9, 108.5, 111.1, 116.7, 119.8,
127.8, 130.2, 132.6, 137.2, 148.9, 149.0; EI-MS: m/z 190 (69), 189 (12), 175 (18), 174 (12), 160
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(13), 159 (100), 158 (13), 147 (19), 145 (10), 144 (67), 131 (12), 128 (14), 127 (13), 119 (12), 117
(28), 116 (15), 115 (62), 104 (16), 103 (18), 91 (18), 78 (13), 77 (15), 51 (12).

3.4.4. (E)-1-(2′,4′,5′-Trimethoxyphenyl)but-1-ene (17)
1H NMR (500 MHz, CDCl3): δH 1.10 (3H, t, J = 7.5 Hz), 2.24 (2H, m), 3.82 (3H, s), 3.87

(3H, s), 3.89 (3H, s), 6.13 (1H, dt, J = 15.9, 6.6 Hz), 6.50 (1H, s), 6.64 (1H, dt, J = 15.9, 1.5 Hz),
6.97 (1H, s); 13C NMR (125 MHz, CDCl3): δC 13.9, 26.4, 56.1, 56.4, 56.7, 97.8, 109.5, 118.8,
122.7, 131.3, 143.3, 148.7, 150.7; EI-MS: m/z 222 (100), 207 (66), 191 (41), 179 (32), 177 (16),
176 (54), 175 (14), 161 (24), 151 (23), 149 (15), 147 (25), 137 (21), 133 (12), 132 (10), 121 (14),
117 (11), 115 (15), 107 (13), 105 (12), 103 (12), 91 (27), 79 (13), 77 (23), 69 (18), 55 (12).

3.4.5. (E)-3-(3′,4′-Dimethoxyphenyl)propenal (18)
1H NMR (500 MHz, CDCl3): δH 3.93 (3H, s), 3.94 (3H, s), 6.62 (1H, dd, J = 15.8, 7.7 Hz),

6.91 (1H, d, J = 8.3 Hz), 7.08 (1H, d, J = 2.0 Hz), 7.17 (1H, dd, J = 8.3, 2.0 Hz), 7.43 (1H, d,
J = 15.8 Hz), 9.67 (1H, d, J = 7.7 Hz); 13C NMR (125 MHz, CDCl3): δC 55.9, 56.0, 109.7, 111.0,
123.4, 126.6, 127.0, 149.3, 151.9, 152.9, 193.6; EI-MS: m/z 192 (62), 191 (13), 177 (24), 162 (13),
161 (100), 149 (25), 138 (11), 133 (19), 121 (29), 118 (14), 106 (14), 105 (19), 103 (23), 93 (12), 91
(48), 89 (18), 79 (13), 78 (27), 77 (53), 65 (16), 63 (14), 52 (11), 51 (25).

3.4.6. (E)-1-(2′,4′,5′-Trimethoxyphenyl)buta-1,3-diene (19)
1H NMR (500 MHz, CDCl3): δH 3.84 (3H, s), 3.88 (3H, s), 3.90 (3H, s), 5.10 (1H, brd,

J = 10.2 Hz), 5.28 (1H, brd, J = 16.8 Hz), 6.50 (1H, s), 6.53 (1H, ddd, J = 16.8, 10.5, 10.2 Hz),
6.68 (1H, dd, J = 15.8, 10.5 Hz), 6.86 (1H, d, J = 15.8 Hz), 7.01 (1H, s); 13C NMR (125 MHz,
CDCl3): δC 56.1, 56.4, 56.7, 97.6, 109.3, 116.0, 117.9, 127.1, 128.0, 138.0, 143.3, 149.6, 151.6;
EI-MS: m/z 220 (67), 205 (12), 190 (15), 189 (100), 177 (12), 174 (52), 173 (17), 159 (15), 158
(19), 146 (16), 145 (36), 131 (14), 115 (20), 103 (12), 91 (17), 77 (15), 75 (11), 69 (17).

3.4.7. (E)-4-(3′,4′-Dimethoxyphenyl)but-3-en-1-ol (20)
1H NMR (500 MHz, CDCl3): δH 2.47 (2H, dtd, J = 7.2, 6.2, 1.2 Hz), 3.76 (2H, t, J = 6.2 Hz),

3.88 (3H, s), 3.90 (3H, s), 6.08 (1H, dt, J = 15.9, 7.2 Hz), 6.44 (1H, dt, J = 15.9, 1.2 Hz), 6.81 (1H, d,
J = 8.2 Hz), 6.89 (1H, dd, J = 8.2, 1.9 Hz), 6.93 (1H, d, J = 1.9 Hz); 13C NMR (125 MHz, CDCl3):
δC 36.3, 55.8, 55.9, 62.1, 108.4, 111.0, 119.1, 124.3, 130.3, 132.5, 148.5, 148.9; EI-MS: m/z 208 (39),
178 (12), 177 (100), 147 (12), 146 (48), 131 (16), 91 (10).

3.4.8. Cassumunol H (21)
1H NMR (500 MHz, CDCl3): δH 1.96 (1H, dddd, J = 13.0, 7.3, 4.0, 3.7 Hz), 2.22 (1H,

dddd, J = 13.0, 8.6, 8.6, 6.3 Hz), 3.88 (3H, s), 3.89 (3H, s), 4.13 (1H, ddd, J = 8.6, 8.6, 7.3 Hz),
4.21 (1H, ddd, J = 8.6, 8.6, 4.0 Hz), 4.28 (1H, ddd, J = 6.3, 3.7, 3.6 Hz), 4.71 (1H, d, J = 3.6 Hz),
6.85 (1H, d, J = 8.0 Hz), 6.89 (1H, brs), 6.89 (1H, m); 13C NMR (125 MHz, CDCl3): δC 34.2,
55.9, 55.9, 67.0, 78.8, 87.2, 108.6, 111.1, 117.7, 133.1, 148.4, 149.0; EI-MS: m/z 224 (47), 167
(97), 166 (46), 165 (36), 152 (11), 151 (35), 139 (100), 124 (27), 109 (12), 108 (18), 107 (14), 95
(17), 91 (10), 79 (14), 77 (26), 65 (13), 57 (24).

3.4.9. (E)-4-(3′,4′-Dimethoxyphenyl)but-3-en-1-yl acetate (22)
1H NMR (500 MHz, CDCl3): δH 2.07 (3H, s), 2.53 (2H, dtd, J = 7.0, 6.8, 1.4 Hz), 3.88 (3H,

s), 3.91 (3H, s), 4.18 (2H, t, J = 6.8 Hz), 6.04 (1H, dt, J = 15.8, 7.0 Hz), 6.41 (1H, dt, J = 15.8,
1.4 Hz), 6.81 (1H, d, J = 8.2 Hz), 6.89 (1H, dd, J = 8.2, 1.9 Hz), 6.91 (1H, d, J = 1.9 Hz); 13C
NMR (125 MHz, CDCl3): δC 21.0, 32.3, 55.8, 55.9, 63.8, 108.5, 111.0, 119.1, 123.6, 130.3, 132.0,
148.5, 148.9, 171.2; EI-MS: m/z 250 (9), 191 (10), 190 (66), 189 (11), 177 (13), 175 (25), 160 (14),
159 (100), 147 (27), 146 (35), 144 (24), 131 (17), 119 (12), 117 (17), 115 (22), 103 (12), 91 (15).

3.4.10. cis-Banglene (23)
1H NMR (500 MHz, CDCl3): δH 1.63 (2H, m), 2.19 (1H, m), 2.26 (1H, m), 2.71 (1H, m),

3.51 (1H, brs), 3.76 (3H, s), 3.83 (3H, s), 3.86 (3H, s), 3.86 (3H, s), 5.58 (1H, dd, J = 15.8, 9.2),
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5.80 (1H, m, J = 10.0 Hz), 5.98 (1H, m, J = 10.0 Hz), 6.26 (1H, d, J = 15.8), 6.69 (1H, d, J = 1.9),
6.73 (1H, brs), 6.75 (1H, dd, J = 8.2, 1.9), 6.76 (2H, m), 6.80 (1H, d, J = 8.2); 13C NMR (125
MHz, CDCl3): δC 24.2, 24.8, 42.6, 45.7, 55.7, 55.7, 55.8, 55.9, 108.5, 110.2, 111.0, 113.5, 118.7,
121.9, 128.0, 128.4, 129.1, 131.0, 132.4, 133.7, 147.4, 148.0, 148.1, 148.8; EI-MS: m/z 380 (7),
191 (13), 190 (100), 175 (15), 160 (10), 159 (80), 144 (13), 115 (10).

3.4.11. trans-Banglene (24)
1H NMR (500 MHz, CDCl3): δH 1.67 (1H, m), 1.92 (1H, m), 2.21 (2H, m), 2.35 (1H, m),

3.18 (1H, m, J = 8.6), 3.83 (3H, s), 3.85 (3H, s), 3.86 (3H, s), 3.88 (3H, s), 5.68 (1H, m, J = 10.0
Hz), 5.90 (1H, m, J = 10.0 Hz), 6.02 (1H, dd, J = 15.9, 7.3), 6.09 (1H, d, J = 15.9), 6.70 (1H,
d, J = 1.9), 6.73 (1H, dd, J = 8.2, 1.9), 6.77 (1H, d, J = 8.2), 6.78 (1H, d, J = 8.2), 6.81 (1H, dd,
J = 8.2, 1.9), 6.82 (1H, d, J = 1.9); 13C NMR (125 MHz, CDCl3): δC 24.5, 27.8, 45.4, 48.0, 55.8,
55.8, 58.8, 55.9, 108.5, 110.7, 111.0, 111.5, 118.7, 120.4, 127.6, 128.8, 130.2, 130.9, 132.1, 137.5,
147.2, 148.2, 148.5, 148.8; EI-MS: m/z 380 (6), 191 (14), 190 (100), 175 (16), 160 (10), 159 (81),
144 (13), 115 (11).

3.4.12. 2′-Methoxy cis-banglene (25)
1H NMR (500 MHz, CDCl3): δH 1.73 (2H, m), 2.17 (1H, m), 2.27 (1H, m), 2.76 (1H, m),

3.67 (3H, s), 3.79 (3H, s), 3.84 (3H, s), 3.85 (3H, s), 3.86 (3H, s), 4.10 (1H, brs), 5.70 (1H, m,
J = 10.0 Hz), 5.84 (1H, dd, J = 15.9, 8.5), 5.97 (1H, m, J = 10.0 Hz), 6.10 (1H, d, J = 15.9), 6.45
(1H, s), 6.70 (1H, brs), 6.73 (2H, m), 6.75 (1H, s); 13C NMR (125 MHz, CDCl3): δC 24.0, 25.2,
37.1, 41.2, 55.7, 55.9, 56.1, 56.3, 56.7, 96.9, 108.5, 111.1, 114.8, 118.5, 122.0, 128.1, 128.2, 129.6,
131.4, 131.5, 142.2, 147.8, 147.9, 148.7, 151.6; EI-MS: m/z 410 (9), 221 (15), 220 (100), 205 (10),
190 (16), 189 (76), 174 (12), 159 (14).

3.4.13. 2′-Methoxy trans-banglene (26)
1H NMR (500 MHz, CDCl3): δH 1.69 (1H, m), 1.87 (1H, m), 2.21 (2H, m), 2.36 (1H, m),

3.71 (3H, s), 3.74 (1H, m, J = 8.6), 3.84 (3H, s), 3.86 (3H, s), 3.86 (3H, s), 3.88 (3H, s), 5.60 (1H,
m, J = 10.0 Hz), 5.90 (1H, m, J = 10.0 Hz), 6.07 (2H, m), 6.45 (1H, s), 6.73 (1H, s), 6.76 (1H, d,
J = 8.6), 6.79 (1H, dd, J = 8.6, 1.7), 6.83 (1H, d, J = 1.7); 13C NMR (125 MHz, CDCl3): δC 24.3,
27.9, 39.6, 45.1, 55.7, 55.9, 56.1, 56.6, 56.6, 97.4, 108.5, 111.0, 112.6, 118.7, 124.8, 127.6, 128.0,
130.3, 131.2, 132.6, 142.9, 147.6, 148.0, 148.8, 151.4; EI-MS: m/z 410 (10), 221 (15), 220 (100),
205 (11), 190 (15), 189 (80), 174 (12), 159 (14).

3.4.14. 2′′′-Methoxy cis-banglene (27)
1H NMR (500 MHz, CDCl3): δH 1.64 (2H, m), 2.18 (1H, m), 2.25 (1H, m), 2.75 (1H, m),

3.52 (1H, brs), 3.77 (3H, s), 3.77 (3H, s), 3.78 (3H, s), 3.85 (3H, s), 3.87 (3H, s), 5.52 (1H, dd,
J = 16.0, 9.2), 5.80 (1H, m, J = 10.0 Hz), 5.98 (1H, m, J = 10.0 Hz), 6.47 (1H, s), 6.61 (1H, d,
J = 16.0), 6.72 (1H, d, J = 1.7), 6.72 (1H, s), 6.76 (1H, dd, J = 8.2, 1.7), 6.80 (1H, d, J = 8.2); 13C
NMR (125 MHz, CDCl3): δC 24.2, 24.9, 42.9, 45.8, 55.7, 55.8, 56.1, 56.3, 56.7, 97.7, 109.4, 110.2,
113.6, 118.8, 122.0, 122.6, 128.0, 129.1, 132.9, 133.9, 143.3, 147.4, 148.0, 148.8, 150.7; EI-MS:
m/z 410 (9), 221 (15), 220 (100), 205 (10), 190 (15), 189 (81), 174 (13), 159 (14).

3.4.15. 2′′′-Methoxy trans-banglene (28)
1H NMR (500 MHz, CDCl3): δH 1.68 (1H, m), 1.94 (1H, m), 2.21 (2H, m), 2.39 (1H,

m), 3.20 (1H, m, J = 8.6 Hz), 3.74 (3H, s), 3.83 (3H, s), 3.85 (3H, s), 3.85 (3H, s), 3.87 (3H, s),
5.68 (1H, m, J = 10.0 Hz), 5.90 (1H, m, J = 10.0 Hz), 6.02 (1H, dd, J = 15.9, 7.6), 6.44 (1H, d,
J = 15.9), 6.46 (1H, s), 6.72 (1H, d, J = 1.9) 6.74 (1H, dd, J = 8.2, 1.9), 6.78 (1H, d, J = 8.2), 6.88
(1H, s); 13C NMR (125 MHz, CDCl3): δC 24.6, 27.9, 45.6, 48.1, 55.8, 55.8, 56.1, 56.5, 56.8, 98.1,
109.6, 110.7, 111.6, 118.8, 120.4, 123.2, 127.6, 130.3, 132.5, 137.7, 143.3, 147.2, 148.5, 148.8,
150.9; EI-MS: m/z 410 (10), 221 (15), 220 (100), 205 (10), 190 (14), 189 (74), 174 (11), 159 (12).
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3.4.16. 2′, 2′′′-Dimethoxy cis-banglene (29)
1H NMR (500 MHz, CDCl3): δH 1.75 (2H, m), 2.16 (1H, m), 2.27 (1H, m), 2.80 (1H, m),

3.68 (3H, s), 3.73 (3H, s), 3.79 (3H, s), 3.80 (3H, s), 3.85 (3H, s) 3.86 (3H, s), 4.11 (1H, brs),
5.70 (1H, m, J = 10.0 Hz), 5.78 (1H, dd, J = 16.1, 8.6), 5.97 (1H, m J = 10.0 Hz), 6.44 (1H, s),
6.46 (1H, s), 6.46 (1H, d, J = 16.1), 6.71 (1H, s), 6.76 (1H, s); 13C NMR (125 MHz, CDCl3):
δC 24.2, 25.3, 37.1, 41.5, 56.0, 56.1, 56.3, 56.5, 56.7, 56.8, 96.9, 98.0, 109.5, 114.8, 119.4, 122.3,
122.5, 128.1, 129.6, 131.9, 142.3, 143.2, 147.7, 148.5, 150.7, 151.6; EI-MS: m/z 440 (7), 221 (15),
220 (100), 205 (10), 190 (11), 189 (77), 174 (12).

3.4.17. 2′, 2′′′-Dimethoxy trans-banglene (30)
1H NMR (500 MHz, CDCl3): δH 1.70 (1H, m), 1.90 (1H, m), 2.20 (2H, m), 2.40 (1H, m),

3.73 (3H, s), 3.74 (3H, s), 3.74 (1H, overlapped), 3.84 (3H, s), 3.85 (3H, s), 3.86 (3H, s), 3.87
(3H, s), 5.59 (1H, m, J = 10.0 Hz), 5.88 (1H, m, J = 10.0 Hz), 6.04 (1H, dd, J = 15.9, 8.0), 6.43
(1H, d, J = 15.9), 6.45 (1H, s), 6.45 (1H, s), 6.74 (1H, s), 6.92 (1H, s); 13C NMR (125 MHz,
CDCl3): δC 24.4, 28.1, 39.8, 45.3, 56.1, 56.1, 56.5, 56.6, 56.6, 56.9, 97.5, 98.1, 109.4, 112.6, 119.1,
122.4, 125.0, 127.5, 130.5, 132.9, 142.9, 143.3, 147.5, 148.6, 150.7, 151.4; EI-MS: m/z 440 (6),
221 (15), 220 (100), 205 (11), 190 (12), 189 (87), 174 (15), 145 (11).

3.5. GC–MS Analysis

The pulverized samples were extracted with 1 mL of ethyl acetate per 10 mg sample
for 24 h at room temperature. After extraction, the samples were filtered through a 0.45 µm
Millipore filter unit (Advantec, Tokyo, Japan) and subjected to GC–MS by injecting 1 µL of
sample in the splitless mode. The injector temperature was set at 270 ◦C, and the carrier
gas (helium) was set at a constant flow rate of 1 mL/min. Metabolites were separated
using a DB-5MS capillary column (30 m × 0.25 mm i.d., film thickness 0.25 µm, Agilent
Technologies, Santa Clara, CA, USA). The GC oven temperature was initially set at 50 ◦C
and held for 3 min, increased to 300 ◦C at a rate of 10 ◦C/min, and then maintained at 300
◦C for 12 min. Mass spectrometry was performed in the EI mode with an electron energy
of 70 eV. The temperature of the ion source and interface was set at 270 ◦C.

Tentative annotations were performed via library search using the Wiley 9 database.
Identifications and annotations were performed according to the confidence levels of
metabolite identification defined by the chemical analysis working group of MSI. Briefly,
identifications with levels 0 and 1 were isolation and standard, respectively. The structures
of isolated compounds were established based on NMR spectroscopic data [41,46–48,51–55].
Annotations with level 2 were RI value and EI mass spectral data matched with those in
the literature [40].

4. Conclusions

In this study, the characterization of the volatile constituents in ethyl acetate extracts
prepared from the rhizomes of plai was performed. In the GC–MS TIC chromatograms,
thirty major peaks were detected, and their corresponding compounds were annotated or
identified. Eventually, twenty-one compounds, including fifteen phenylbutenoids and one
phenylbutanoid, were identified by means of isolation procedures or using standard com-
pounds, and nine compounds were annotated on the basis of RI value and EI mass spectral
data. Most of the identifications were inconsistent with tentative annotations obtained via
library search, indicating the presence of incorrect peak assignments in previous studies.
To avoid further misannotations and to contribute to studies on dereplication, the RI value,
EI mass spectral data, and NMR data of the isolated compounds are reported.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29061216/s1, Table S1: Relative contents (%) of major
30 compounds in ethyl acetate extracts derived from the rhizomes of plai purchased in Thailand and
Indonesia; Figure S1: EI-MS spectra of isolated compounds.
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